Selection of Remedy Report 40 C.F.R. §257.97(a)

Intermountain Generating Facility Delta, Utah

Prepared for: Intermountain Power Service Corporation 850 West Brush Wellman Road Delta, Utah 84624

Prepared by:

Stantec Consulting Services, Inc. 2890 East Cottonwood Parkway Suite 300 Salt Lake City UT 84121-7283

Project No.: 203709098

June 16, 2021

Sign-off Sheet and Signatures of Environmental Professionals

This document was prepared by Stantec Consulting Services Inc. ("Stantec") for Intermountain Power Service Corporation (the "Client"). The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by:

Just D

John G. Russell, III, CPG Utah PG #5216074-2250 Sr. Hydrogeologist, Environmental Risk Manager

Reviewed by:

Joel Thompson Principal Hydrogeologist

and

1/1000

David P. Grills, Jr., P.E. Sr. Engineer

Table of Contents

1.0	EXECUTIVE SUMMARY	
1.1	BACKGROUND	1.1
1.2	SELECTED REMEDY OVERVIEW	1.3
2.0	NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER	2.1
2.1	CONCEPTUAL SITE MODEL	
	2.1.1 Regional and Localized Hydrogeologic Characteristics	
	2.1.2 General Groundwater Quality	2.2
3.0	CORRECTIVE MEASURES ASSESSMENT AND SELECTION OF REMEDY	
4.0	SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(B)	4.1
4.1	PROTECTIVE OF POTENTIAL RISK TO HUMAN HEALTH, ECOLOGICAL	
	RECEPTORS, AND THE ENVIRONMENT, 40 CFR §257.97(B)(1)	
4.2	ATTAINMENT OF GROUNDWATER PROTECTION STANDARDS, 40 CFR §	
	257.97(B)(2)	4.2
4.3	SOURCE CONTROL, REMOVAL OF AS MUCH CCR MATERIAL RELEASED	
	FROM THE CCR UNITS AS IS FEASIBLE, AND WASTE MANAGEMENT, 40 CFR	
	§257.97(B)(3)-(5)	
	4.3.1 Interim Measures Prior to Closure	
	4.3.2 CCR Unit Closure and Post-Closure Care	
5.0	SELECTION OF REMEDY, EVALUATION FACTORS - § 257.97(C)	
5.1	SHORT AND LONG-TERM EFFECTIVENESS AND PROTECTIVENESS	
5.2	SELECTED REMEDY IS PROTECTIVE OF COMMUNITY CONCERNS	
6.0	SCHEDULE AND RECORDKEEPING	
6.1	SCHEDULE FOR IMPLEMENTATION OF SELECTED REMEDY, §257.97(D)	
6.2	RECORDKEEPING, §257.97(E)	
	om ash basin, model results	
	MODEL PREDICTIVE USE FOR MONITORING WELL PLACEMENTS	
2021	MODEL RESULTS	4

LIST OF FIGURES

Figure 1 General Site Location Map Figure 2 CCR Unit Location Map Figure 3 April 2021 Groundwater Potentiometric Map Figure 4 April 2021 TDS Isoconcentration Map Figure 5 Preliminary Design of Selected Remedy Components Figure 6 Groundwater Fate and Transport Model Flow Lines and Linear Velocities

LIST OF TABLES

Table 1 Groundwater Monitoring Well Construction Details

LIST OF APPENDICES

CCR COMPLIANCE WELL DRILLING LOGS AND WELL CONSTRUCTION APPENDIX A SCHEMATIC DIAGRAMS

- APPENDIX B APPENDIX C TABULATED GROUNDWATER MONITORING DATA
- STANTEC CROSS-SECTIONAL FIGURES

LIST OF ATTACHMENTS

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS

SELECTION OF REMEDY REPORT EXECUTIVE SUMMARY June 16, 2021

1.0 EXECUTIVE SUMMARY

1.1 BACKGROUND

On behalf of Intermountain Power Service Corporation ("IPSC"), Stantec Consulting Services Inc. ("Stantec") has prepared this report to document IPSC's rationale and proposed design for implementing an enhanced groundwater monitoring and recovery program pursuant to the United States Environmental Protection Agency's ("US EPA") Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, 40 CFR 257 Subpart D (the "Federal CCR Rule") (and the corresponding Utah CCR Rule at Utah Admin. Code R315-319 (the "State CCR Rule") (collectively, the "CCR Rules")) at IPSC's Intermountain Generating Facility ("IGF") located approximately 10 miles north of Delta, Millard County, Utah. IPSC's CCR compliance program addresses elements prescribed by CCR Rule Parts §257.90 (R315-319-90) Applicability; §257.91 (R315-319-91) Groundwater Monitoring Systems; §257.93 (R315-319-93) Groundwater Sampling and Analysis Requirements; §257.95 (R315-319-95) Assessment Monitoring Program; §257.96 (R315-319-96) Assessment of Corrective Measures; and §257.97 (a-e) Selection of Remedy (R315-319-97).

The Utah Department of Environmental Quality ("UDEQ"), Division of Waste Management and Radiation Control ("DWMRC") has regulatory oversight pursuant to the State CCR Rule, under which DWMRC issued Permit No. SW419 for IPSC's CCR units on November 23, 2020. The CCR Rules apply to each of IPSC's three (3) CCR units (reference Figures 1 and 2 for regional and site-specific, location maps):

- Combustion By-Products Landfill ("CB Landfill"),
- Bottom Ash Basin (surface impoundment underlain by 80-millimeter High Density Polyethylene [HDPE] liner), and
- Waste Water Basin (surface impoundment underlain by 80-mil HDPE liner).

Historical reports posted on IPSC's public website present IPSC's approach for addressing requirements specified by the CCR Rules, as well as the facility's UDEQ, Division of Water Quality ("DWQ") Groundwater Discharge Permit No. UGW270004. The DWQ has regulatory oversight for IPSC's compliance with its Groundwater Discharge Permit, which includes operation, monitoring, maintenance, and corrective measure protocol associated with IPSC's Groundwater Discharge permitted facilities that include the Bottom Ash Basin and the Waste Water Basin.

As detailed in IPSC's most recent reports, including IPSC's November 2020 Amended Assessment of Corrective Measures report and 2020 Annual Groundwater Monitoring and Corrective Action Summary Report (dated January 2021), IPSC is implementing groundwater monitoring and corrective measures under its CCR and Groundwater Discharge Permits. The DWQ and IPSC agreed that IPSC would implement a phased groundwater investigation and recovery program that focused initially on removal of Total Dissolved Solids (TDS) located downgradient of, and in relatively close proximity to, the Bottom Ash Basin. IPSC's DWQ permit action level for TDS is 1,100

EXECUTIVE SUMMARY June 16, 2021

milligrams per liter (mg/L; i.e. parts per million-ppm). Groundwater recovery wells WR-101, WR-102, and WR-103 have been used since 2010 for recovery of TDS-impacted groundwater (reference Figure 3 for well locations), as part of IPSC's Groundwater Discharge Permit compliance program.

The DWQ and IPSC agreed that additional groundwater monitoring wells, including sampling and pump testing of wells associated with CCR Rule compliance, would be installed to help delineate more precisely the location and hydraulic characteristics of the down-gradient leading edge of the TDS plume located southwest of the Bottom Ash Basin. Following delineation of the downgradient leading edge of the TDS plume, IPSC would then evaluate how to control the downgradient migration of the plume and select and design a remedy intended to ensure ongoing protection to human health and the environment.

Supplemental groundwater monitoring indicated that TDS had impacted groundwater quality downgradient of the Waste Water Basin. No supplemental wells were deemed necessary downgradient of the Combustion By-Products Landfill, as all CCR constituent concentrations including TDS quantified to date represent typical background concentrations. The only exceedances for CCR Appendix IV metals are arsenic and lithium (both of which have elevated background concentrations throughout the area) and molybdenum at the southwest boundary of the Bottom Ash Basin; and only arsenic and lithium at the southern and western boundaries of the Waste Water Basin. Since TDS is located downgradient of the two impoundments, TDS is being used as the leading indicator of impacted groundwater quality for fashioning a more comprehensive groundwater remediation program.

During 2020 as part of its corrective measure assessment, IPSC installed 25 wells to more definitively delineate the downgradient leading edges of TDS plumes located downgradient (southwest) of the Bottom Ash Basin and the Waste Water Basin. To date, IPSC has installed 84 groundwater monitoring wells as part of DWQ and DWMRC regulatory compliance and investigation of the downgradient leading edges of the TDS plumes. Figure 4 herein identifies TDS concentrations quantified during the most recent April 2021 semi-annual sampling event, superimposed atop an April 2021-extrapolated groundwater flow potentiometric map.

As detailed in this report, IPSC intends to expand its current groundwater recovery network by increasing the number of wells being used for groundwater recovery to reduce total mass of CCR constituents in groundwater and control the downgradient migration of such constituents. As additional groundwater quality data is generated and evaluated through statistical analysis, IPSC will be prepared to expand and/or enhance the groundwater monitoring and/or remedial approach, if deemed warranted. Currently, and for the foreseeable future, the CCR constituent plumes downgradient of the two surface impoundments do not pose unacceptable risk to human health, ecologic receptors, and/or the environment.

EXECUTIVE SUMMARY June 16, 2021

1.2 SELECTED REMEDY OVERVIEW

Recently, Stantec utilized data associated with the 2020 installation, aquifer testing, and sampling/analysis of 25 groundwater monitoring wells located at the downgradient leading edges of the TDS plumes to update its Conceptual Site Model and numerical groundwater fate and transport model. Model results and observations are discussed in more detail in the following report section 2.1.3 Stantec's Groundwater Fate and Transport Model. The model results have been used in support of selecting and designing an enhanced groundwater remediation program that is outlined in this report.

As part of the selected remedy, at least 30 existing groundwater monitoring wells will be equipped with dedicated submersible pumps and conveyance piping for groundwater recovery, in addition to the ongoing use of existing recovery wells WR-101, WR-102, and WR-103. Recovered water will be conveyed from wellheads to trunklines and break tanks before discharge to and evaporation in to-be-constructed, HDPE-lined evaporation basins regulated by the DWQ.

The recovery wells are intended to remove CCR contaminant mass from the aquifer and control downgradient migration of the plumes. Groundwater removal efforts will be concentrated at the downgradient leading edges of the TDS plumes (to facilitate plume containment) as well as at select wells located within central areas of the TDS plumes and in close proximity to the two surface impoundments (to facilitate plume mass removal and control).

IPSC's selected remedy also includes possible installation of additional, supplemental groundwater monitoring and/or recovery wells, if deemed warranted based on initial performance and groundwater monitoring results.

Pursuant to §257.97(a) [DWQ R315-319-97(a)], the owner or operator of a CCR unit, must satisfy the following criteria:

- As soon as feasible, select a remedy;
- Upon selection of a remedy, prepare a final report describing the selected remedy and how it meets applicable standards;
- Obtain a certification from a qualified professional engineer that the selected remedy meets the applicable requirements; and
- Place the remedy selection report in the operating record.

The following report sections detail how the selected remedy for addressing groundwater impacted by historical releases of CCR constituents from the Bottom Ash Basin and Waste Water Basin was selected based on criteria and evaluation factors specified by §257.97(a-d) [R315-319-97(a-d)]. IPSC intends to install and initiate operation of the expanded groundwater remediation program in accordance with the timeframe prescribed by §257.98 (R315-319-98). Likewise, routine groundwater quality monitoring will be administered on a semi-annual basis in accordance with §257.95 (R315-319-95) to monitor the success and effectiveness of the selected remedy's expanded groundwater recovery system.

EXECUTIVE SUMMARY June 16, 2021

As detailed in IPSC's November 2020 CCR Unit Closure Plans, each of the three CCR units will be closed 'in-situ,' whereby CCR materials are left and capped in-place in accordance with closure requisites specified by §257.101 and 102 (R315-319-101 and 102). Closure and post-closure care will be implemented in accordance with the CCR Rule, as is also detailed within IPSC's November 2020 CCR Unit Closure Plans. Planned CCR unit closure and post-closure actions will remediate CCR within the three regulated units and provide routine, post-closure monitoring for potential future releases from the closed units.

Implementation of the selected remedy, in conjunction with ongoing compliance with the CCR and Groundwater Discharge Permits, is intended to satisfy applicable groundwater quality standards and provide appropriate protection to human health and the environment, currently and for the foreseeable future. In summary, IPSC reviewed alternative remedial approaches and decided upon the selected remedy utilizing evaluation factors and standards prescribed by §257.97 (R315-319-97).

The CCR constituent plumes pose little to no risk to on- and off-site human health, currently and for the foreseeable future. Given the vast real property acreage (4,614-acres) that is owned by the IGF owner Intermountain Power Agency (IPA), as well as the relatively large distances (approximately two to 2.5-miles) to downgradient, off-site potential receptors who might use groundwater for potable and/or non-potable uses, IPSC anticipates that it can implement its selected remedy in a prompt and timely manner that will continue to provide protection to on- and off-site, human health and the environment.

NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER June 16, 2021

2.0 NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER

2.1 CONCEPTUAL SITE MODEL

2.1.1 Regional and Localized Hydrogeologic Characteristics

As discussed in IPSC's November 2020 Amended Assessment of Corrective Measures report, Stantec's Conceptual Site Model of the subsurface beneath the IGF was based on site-specific, hydrogeologic and hydraulic characteristics identified during past drilling, sampling, and pump testing of soil test borings and/or groundwater monitoring wells located across the IGF site. Subsequently during recent months, Stantec refined its Conceptual Site Model through update of its groundwater fate and transport model, as summarized in Attachment 1.

Stantec's current Conceptual Site Model indicates that the depth to uppermost groundwater varies across the site but approximates a range between 55 to 75 feet below grade. Typically, the uppermost sand and clay-matrix aquifer is located beneath one to several different clay-rich layers of varying clay thickness. Subsurface lithologic conditions in the vicinity of each of the three CCR units were generally as follows:

<u>CCR Unit</u>	Depth to Uppermost Aquifer (feet [ft.] below ground surface)	Thickness of Clay-Rich Soils Above the Aquifer (in feet-ft.)
CB Landfill	between 52 to 78 ft.	33 to 57 ft. thick
Bottom Ash Basin	between 55 to 60 ft.	25 to 40 ft. thick
Waste Water Basin	between 45 to 65 ft.	15 to 30 ft. thick

Copies of Stantec drilling logs and monitoring well schematic diagrams and IPSC's April 2021 water level measurements and water quality analytical results are presented in Appendices A and B, respectively herein. Table 1 herein presents a summary of groundwater monitoring well construction details. As may be noted by review of cross-sectional, hydrogeologic figures presented in Appendix C herein, the CCR units and much of the IGF are underlain by silt and clay-rich soils. Clay layers exhibit relatively impermeable, vertical permeability characteristics on the order of 1 x 10⁻⁶ to 1 x 10⁻⁹ centimeters per second (cm/sec), as quantified by historical geotechnical engineering, laboratory analyses.

Static water level measurements indicate that the uppermost aquifer beneath the site is under semi-confined to confined, hydraulic conditions, whereby static water levels rose within the wells following well installation and development. During the drilling of each borehole, uppermost, saturated soils were encountered at a certain subsurface depth (such as 55 to 75 feet below grade, for instance). Subsequently, the potentiometric head of the water table was under such hydraulic pressure that the static water level within each monitoring well rose to a height 10 to 45 feet higher than the original depth at which uppermost saturated soils were first encountered at time of borehole drilling. Areas overlain by thicker clay layers appear to exhibit more

NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER June 16, 2021

pronounced confined hydraulic characteristics. Typically, the potentiometric surface of uppermost groundwater approximates a range of between 20 to 55 feet below natural grade.

As shown in Figure 3 herein, Stantec's groundwater flow and potentiometric map associated with April 2021 water level monitoring data, the predominant groundwater flow direction across the site is generally from the northeast toward the southwest, with localized, varying components of flow from the east toward the west. In general, and as observed through historical monitoring of monitoring wells/piezometers associated with initial construction of the IGF in the late-1980s, historical flow patterns have been relatively consistent. The closest, regional body of surface water into which groundwater associated with the IGF might be expected to discharge, the Sevier River, is located approximately 10 to 15 miles south/southwest (downgradient) of the site. The river flows from the northeast toward the southwest and discharges into the terminal, saline Sevier Lake located approximately 35-miles southwest of the IGF.

As may be noted by review of Figure 4, the TDS plume located downgradient of the Bottom Ash Basin appears to be migrating toward the southwest predominantly. There is a localized area southwest/west of the southwestern corner of the Waste Water Basin, where groundwater appears to be migrating in two different, localized directions: flow is toward the west, due west of the basin and flow is toward the southwest, south of the basin. Analysis of localized, subsurface lithologic and hydrogeologic conditions suggests that the uppermost aquifer in this generalized area appears to exhibit relatively low vertical and horizontal permeability and hydraulic conductivity characteristics. The lithologic conditions result in a localized bifurcation of groundwater flow patterns toward the west and southwest, respectively.

2.1.2 General Groundwater Quality

As reported in IPSC's historical reports, groundwater monitoring associated with IPSC's Groundwater Discharge and CCR Rule Permits indicates that there are plumes of TDS-impacted groundwater in excess of TDS background concentrations located downgradient of the Bottom Ash Basin and the Waste Water Basin. Water quality data to date indicate that TDS has migrated farther downgradient of the two surface impoundments than any other monitored CCR constituent, and as such is being used as the leading indicator parameter for CCR constituent plume monitoring and remediation.

Comparative analysis of the Spring 2021 water quality data with preceding Fall 2020 data indicate no significant changes in CCR Appendix IV metal concentrations, with most Appendix IV constituent concentrations significantly less than those identified during Fall 2020. As reported in IPSC's 2020 Annual Groundwater Monitoring and Corrective Action Summary Report (dated January 2021), the quantitative analytical results associated with monitoring under the CCR Rule indicated the below-tabulated Appendix IV constituent/well pairs that represented Statistically Significant Levels (SSLs) above their respective Groundwater Protection Standards (GWPSs). There have been no SSL exceedances associated with the CB Landfill to date.

NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER June 16, 2021

CCR Appendix IV SSLs in excess of GWPSs (2015 – 2020)						
CCR Unit	Constituent/Well Pair	Lower Confidence Limit/Lower	GWPS			
		Confidence Band (LCL/LCB)				
CB Landfill No SSLs above GWPS						
Bottom Ash Basin	Arsenic/BAC-2	0.059 mg/L	0.0362 mg/L			
	Lithium/BAC-3	0.930 mg/L	0.4564 mg/L			
	Molybdenum/BAC-2	0.156 mg/L	0.1 mg/L			
Waste Water Basin	Arsenic/WWC-1	0.0219 mg/L				
	Arsenic/WWC-2	0.0148 mg/L	0.01000 //			
	Arsenic/WWC-3	0.0218 mg/L	0.01338 mg/L			
	Arsenic/WWC-4	0.0142 mg/L				
	Arsenic/WWC-5	0.0146 mg/L				
	Lithium/WWC-1	0.867 mg/L	0.587 mg/L			

Current water quality data indicate that three CCR Appendix IV metals exceed corollary GWPSs within monitoring and/or recovery wells located at the basin boundaries of the two surface impoundments. If the three metals are attributable to localized release of CCR constituents from the CCR impoundments (i.e., anthropogenic presence), it is anticipated that the rate of vertical migration of released CCR metal constituents beneath the basins into the unsaturated, vadose zone above the water table has been historically, and will continue to be, retarded (slowed) as a direct result of physical retardation through the low-permeability clays as well as geochemical processes (e.g., natural adsorption and cationic exchange within the porous, clay-rich soils). Likewise, in consideration of the relatively thick and impermeable, clay-rich soils located beneath the site, including within the saturated, phreatic zone, it is anticipated that similar retardation of metals is likely, historically and in the future.

Although it is documented throughout Utah and in proximity to the site that Arsenic and Lithium can be present naturally in soil and groundwater at elevated concentrations, IPSC will continue monitoring these and other CCR Rule metal constituents in groundwater as part of its routine groundwater monitoring program. It is documented that basin-fill aquifers in Utah (including Lake Bonneville sediments similar to those underlying the IGF) and throughout the western United States can contain elevated concentrations of naturally-occurring Arsenic and Lithium attributable to volcanic rock source material and lacustrine and hot spring deposits. For instance, the Baker Hot Springs and adjacent 9-mile by 6-mile Fumarole Butte/Crater Bench topographic features are located approximately 6-miles northwest of the IGF. Moreover, naturally-occurring concentrations of both Arsenic and Lithium can vary considerably across short, lateral distances within topsoil, subsurface soil, and aquifers, as a result of localized hydrogeologic, geochemical, and mineralogic characteristics.

Typically, TDS fate and transport is considered conservative (tends to migrate at the same rate as the average linear groundwater flow velocity); however, Appendix IV metal constituents, such as Arsenic, Molybdenum, and Lithium, are not anticipated to migrate at the same velocity as natural groundwater as a result of the clay-rich nature of the uppermost aquifer beneath the site. Natural attenuation processes, such as adsorption, cationic exchange, and dispersion, tend

NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER June 16, 2021

to attenuate the lateral (saturated, phreatic zone) movement of metals in clay-rich aquifers. Thus in summary, and as used historically for IPSC's compliance with its DWQ Groundwater Discharge Permit, IPSC intends to continue to utilize TDS as a leading indicator parameter of impacted groundwater quality at the site for fashioning and maintaining a successful groundwater remedial program.

The following report subsections provide more specific details regarding Stantec's analysis of subsurface lithologic and hydrogeologic conditions, as relate to the locations and orientations of the TDS plumes located downgradient of the two surface impoundments.

2.1.2.1 Bottom Ash Basin, TDS Plume

As may be noted by review of Figure 4, a TDS plume is inferred to extend generally from the Bottom Ash Basin toward the southwest. The downgradient leading edge of the plume is located well within IGF property boundaries at an approximate lateral distance to the closest, western property boundary of at least 2,000 feet. The highest TDS concentrations within the plume are associated with monitoring wells (and the three existing recovery wells WR-101, WR-102, and WR-103) located in relatively-close proximity to the basin. Historically and currently, the highest TDS concentrations are located near the northwestern-most corner and southern sides of the basin, areas which have experienced reported release (and localized liner repair) incidents in the past.

During CCR permit monitoring, TDS was quantified on occasion at concentrations in excess of background concentrations within CCR monitoring wells BA-U-1, BA-U-2, WWU-2, and WWU-1, each of which is located in an apparent upgradient (east) direction in relation to the Bottom Ash and Waste Water Basins. However, as may be noted by review of historical water quality data since monitoring began in late-2015, TDS concentrations have fluctuated in many of these wells, including concentrations that have been less than or typical of background concentrations in some wells, on occasion.

Additionally, during the most recent April 2021 semi-annual sampling event, TDS was quantified within wells BAC-15 and BAC-16 at concentrations not identified historically. Since monitoring began, neither well contained elevated concentrations of TDS. IPSC intends to utilize future groundwater quality monitoring to help identify how the TDS plume is moving in this region of the site. If needed, downgradient wells BAC-8, BAC-9, and/or BAC-10 may be used for groundwater recovery. Likewise, if needed, additional monitoring and/or recovery wells may be installed in this area.

As more data is generated with time, IPSC will gain better understanding of TDS concentrations and migration patterns east of the basin. As detailed in Attachment 1, Stantec's most recent update of its groundwater model indicates that TDS-impacted groundwater located east of the Bottom Ash Basin is expected to flow toward the west/southwest in similar fashion and flow paths as currently associated with TDS-impacted groundwater located beneath and downgradient of the basin. In turn, it is anticipated that IPSC's selected remedy, which includes the possible

NATURE AND EXTENT OF CCR CONSTITUENT-IMPACTED GROUNDWATER June 16, 2021

installation of additional monitoring and/or recovery wells, should provide effective and satisfactory protection to human health and the environment.

2.1.2.2 Waste Water Basin, TDS Plumes

As shown in Figure 4, there appear to be two TDS plumes located west and southwest of the Waste Water Basin, respectively. The TDS plume located near the northwestern-most corner of the basin is aligned predominantly toward the west. The TDS plume located near the southeastern most corner of the Waste Water Basin is aligned toward the southwest. As discussed in following report section *3.0 Corrective Measures Assessment and Selected Remedy*, both plumes are anticipated to be intercepted and removed from the aquifer as part of IPSC's selected remedy, thereby providing ongoing protection to human health and the environment.

CORRECTIVE MEASURES ASSESSMENT AND SELECTION OF REMEDY June 16, 2021

3.0 CORRECTIVE MEASURES ASSESSMENT AND SELECTION OF REMEDY

As detailed in IPSC's November 2020 Amended Assessment of Corrective Measures report, IPSC and Stantec evaluated alternative remedial strategies that could be employed to address CCR constituents in groundwater at the IGF. IPSC initiated an assessment of corrective measures within 90 days of detecting Appendix IV constituents above corollary GWPSs. Notification stating that the assessment had been initiated was completed by IPSC, and the results of the assessment were discussed in a public meeting.

IPSC evaluated various remedial options, including: ongoing use and expansion of the existing groundwater recovery network used in compliance with its Groundwater Discharge Permit; possible use of horizontal interceptor trenches and Ranney-type, collector wells; possible use of Monitored Natural Attenuation (MNA); and possible use of evaporation basins and possible construction of a water treatment facility for treatment of recovered groundwater.

IPSC currently anticipates that the most effective (and protective) remedial approach will be groundwater recovery and removal from the subsurface and subsequent evaporation of groundwater containing CCR constituents. IPSC believes that recovery of groundwater from beneath the IGF using vertical groundwater recovery wells, in conjunction with evaporation of recovered groundwater, is the most practical, reliable, and effective measure for remediating groundwater beneath the IGF while providing appropriate protection to on- and off-site human health. Existing and proposed water recovery infrastructure can be expanded readily and in a timely manner to accommodate any supplemental groundwater recovery wells that might be needed in the future.

In compliance with its Groundwater Discharge Permit, IPSC has been recovering groundwater since 2010 from recovery wells WR-101, WR-102, and WR-103 identified on Figure 4. The three wells are recovering TDS-impacted groundwater from areas located in close proximity to the estimated TDS plume centerline in a general downgradient direction from the Bottom Ash Basin and historical release areas located near the northwest corner and southern portions of the basin. Historically, the recovery wells have removed groundwater at rates between approximately 8 to 15 gpm, although the yields have declined with time to approximate 5 to 12 gpm currently. All recovered groundwater is being discharged to the east-west oriented, rectangular-shaped Recycling Basin located immediately south of the Bottom Ash Basin.

Since TDS has migrated farther downgradient from the Bottom Ash Basin and the Waste Water Basin than other CCR constituents, TDS will continue to be used as the leading indicator parameter of impacted groundwater quality for implementing IPSC's groundwater remediation program. IPSC and Stantec anticipate that the recovery of TDS-impacted groundwater at select recovery wells will also intercept metal constituents that might be present, as TDS is expected to continue to migrate at a faster rate than dissolved metals in the clay-rich aquifer that underlies the property.

CORRECTIVE MEASURES ASSESSMENT AND SELECTION OF REMEDY June 16, 2021

The three existing recovery wells are recovering groundwater from within the generalized middle of the TDS plume to help reduce the total mass of TDS within the uppermost aquifer beneath areas located southwest of the Bottom Ash Basin. IPSC intends to continue recovering TDSimpacted groundwater from the three wells for the foreseeable future, as such recovery is deemed an important element of its groundwater remediation program.

Aquifer testing of several wells located farther downgradient of the Bottom Ash Basin, as well as wells located at and downgradient of the Waste Water Basin, indicate individual well recovery yields of two (2) gpm to 15 gpm. Groundwater modeling indicates that use of groundwater recovery wells at the downgradient leading edges of the TDS plumes will intercept and recover CCR constituent-impacted groundwater, thereby capturing contamination and controlling downgradient migration. Likewise, recovery of groundwater from wells located closer to the two surface impoundments is intended to remove total mass of TDS from the aquifer.

As part of the selected remedy, 36 existing groundwater monitoring wells will be equipped with dedicated submersible pumps and groundwater conveyance piping, for groundwater recovery, in addition to the ongoing use of existing recovery wells WR-101, WR-102, and WR-103. Recovered water will be conveyed from wellheads to trunklines and break tanks before discharge to and evaporation within HDPE-lined, evaporation basins regulated under the DWQ Groundwater Discharge Permit.

Currently, and until a new evaporation basin is constructed in 2025, all recovered groundwater is being discharged into the Ash Recycle Basin for evaporation. Presently, IPSC is designing a new evaporation basin system that will be installed before the June 2025 transition from the existing coal units to the new natural gas- and hydrogen-fired units. Once constructed, IPSC intends to use the proposed evaporation basin system rather than the Ash Recycle Basin for future evaporation of recovered groundwater as part of its CCR and Groundwater Discharge Permit compliance programs.

At this time however, IPSC intends to use the following wells for groundwater recovery and plume control:

- Bottom Ash Basin Plume Control: wells WR-101, WR-102, WR-103, RW-9, BAC-11, BAC-13, BAC-14 and BAC-20 through BAC-38.
- Waste Water Basin Plume Control: wells: WWC-1, WWC-4, WWC-5, RW-4, WWC-6, and WWC-8 through WWC-17 (excluding WWC-9 and WWC-10).

CORRECTIVE MEASURES ASSESSMENT AND SELECTION OF REMEDY June 16, 2021

Figure 5 presents Stantec's preliminary design for the selected remedy component elements, including recovery wells, water conveyance piping, and break tanks. IPSC's selected remedy includes the possible installation of additional, supplemental groundwater monitoring and/or recovery wells, if deemed necessary for ongoing monitoring and control of the TDS plumes and protection to human health and the environment. IPSC intends to utilize future water quality monitoring data to help identify if any such additional wells might be warranted.

SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b) June 16, 2021

4.0 SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b)

In accordance with 40 CFR §257.97(a-e) Selection of Remedy (R315-319-97), IPSC has evaluated the following criteria, as part of analysis of alternative corrective measures which included the selected remedy of expansion of the existing groundwater recovery program. Following report subsections address each of the following criteria.

§257.97(b) Remedies must:

- (1) Be protective of human health and the environment;
- (2) Attain the groundwater protection standard as specified pursuant to § 257.95(h) (R315-319-95(h);
- (3) Control the source(s) of releases so as to reduce or eliminate, to the maximum extent feasible, further releases of constituents in Appendix IV to this part into the environment;
- (4) Remove from the environment as much of the contaminated material that was released from the CCR unit as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- (5) Comply with standards for management of wastes as specified in § 257.98(d) (R315-319-98(d).

4.1 PROTECTIVE OF POTENTIAL RISK TO HUMAN HEALTH, ECOLOGICAL RECEPTORS, AND THE ENVIRONMENT, 40 CFR §257.97(B)(1)

Currently, and for the foreseeable future, groundwater containing CCR constituents within the uppermost aquifer located beneath the IGF poses little to no risk to potential on- or off-site human health or ecological (wildlife and aquatic) receptors. As summarized below, there are no current and/or future-projected, complete exposure pathways.

IPSC's groundwater monitoring program indicates that the TDS plumes located southwest of the Bottom Ash Basin and west of the Waste Water Basin are located within IGF property boundaries. IPSC intends to use future groundwater quality monitoring data associated with WWC monitoring/recovery wells (including proposed groundwater recovery in the vicinity of the downgradient leading edge of the TDS plume located southwest of the Waste Water Basin) to investigate the impacts of the selected remedy and whether additional monitoring and/or recovery wells might be warranted for TDS plume delineation and/or control.

The depth to the uppermost aquifer beneath the IGF approximates 50 to 70 feet below natural grade, generally between the two surface impoundments and the closest, down-gradient property boundary (reference Figure 1). Thus, there is no identified current or anticipated means by which humans or wildlife (including domesticated animals) might come into direct contact with groundwater containing CCR constituents, including no dermal, inhalation, and/or ingestion exposure scenarios.

Groundwater in the uppermost, on-site aquifer is not being recovered for potable, irrigation, or any other domestic and/or industrial use. As discussed in detail within IPSC's November 2020 Demonstration of Requirements for Alternative Closure Deadline under 40 CFR §257.103(f)(2)

V//230709098/05-Repts/delivs/StantecRepts/2021/SelectionofRemedy

SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b) June 16, 2021

report, Stantec's review of the Utah Department of Natural Resources, Division of Water Rights' Internet-based, public, water well inventory (and as of April 2021) indicates that the closest reported, off-site groundwater production well located down-gradient (southwest) of the IPSC property is approximately 2.5 miles southwest of the IGF's southern property boundary (e.g., southwest of the Brush Wellman roadway). Given the vast real property acreage that is owned by IPA (4,614-acres), as well as the significant distances (approximately 2- to 2.5-miles) to off-site potential receptors who might use groundwater for potable and/or non-potable uses, IPSC anticipates that the selected remedy will mitigate future potential off-site exposures to CCRimpacted groundwater.

No IPSC staff or other on-site potential receptors come into contact with the recovered water. Groundwater being recovered at recovery wells, currently and as part of future implementation of the selected remedy, is pumped directly from each recovery well to a trunkline for discharge into an 80-mil HDPE-lined, evaporation basin. The outer perimeter of the IGF is secured by fencing and monitored by on-site security staff, preventing public access to the wells, surface impoundments, and evaporation basins.

There are also no wildlife, aquatic biota, or environmental exposure concerns implicated at the IGF. There is no natural body of surface water located on the IGF property. Since groundwater approximates 50 to 70 feet below grade, no potential wildlife or aquatic biota receptor should come in contact with groundwater. The closest body of surface water in relation to the IGF is the Sevier River, located approximately 10 to 15 miles south/southwest of the site. The perennial river flows generally from the northeast toward the southwest in this part of Millard County and ultimately discharges into the terminal, salt water Sevier Lake located approximately 35-miles southwest of the IGF. In summary, there are no known or potential exposure concerns as regards on- and off-site human health, wildlife, aquatic biota, and the environment.

4.2 ATTAINMENT OF GROUNDWATER PROTECTION STANDARDS, 40 CFR § 257.97(B)(2)

Following completion of proposed, in-situ closure of the Bottom Ash Basin, and based on the current array of recovery wells proposed for use as part of the selected remedy, Stantec's groundwater fate and transport model simulates that the selected remedy is capable of achieving groundwater protection standards sometime during an approximate 34-to 37-year timeframe for the TDS plume located southwest of the impoundment. The ultimate timeframe will be influenced by the degree of success of the selected remedy including use of the existing array of wells proposed for groundwater recovery, as well as the lateral extent to which the plume extends east/upgradient of the impoundment.

Following completion of proposed in-situ closure of the Waste Water Basin, and based on the current array of recovery wells proposed for use as part of the selected remedy, Stantec's groundwater fate and transport model predicts that the selected remedy will achieve groundwater protection standards sometime during an approximate 8- to 10-year timeframe for the CCR constituent plume located southwest of the impoundment. Future monitoring of groundwater recovery at recovery wells and monitoring of water quality at downgradient

SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b) June 16, 2021

monitoring wells will be used to help gauge if and when additional monitoring and/or recovery wells might be warranted to ensure appropriate delineation and control of the TDS plume located downgradient of the basin.

Currently, it is anticipated that it may require approximately 10 to 15 years to achieve groundwater protection standards west of the northwestern-most corner of the Waste Water Basin. Future monitoring of groundwater recovery at proposed recovery wells RW-4, WWC-5, and WWC-4 and monitoring of water quality at downgradient monitoring wells will be used to help gauge if and when additional monitoring and/or recovery wells might be warranted to ensure appropriate delineation and control of the small TDS plume located near the northwestern-most corner of the Waste Water Basin.

Based on current information, and given that there are no existing or future-projected, potential unacceptable risks to on- and/or off-site human health, ecological receptors, and/or the environment, IPSC intends to monitor the progress and success of the selected remedy, utilizing the existing array of recovery and monitoring wells proposed herein. Currently-proposed remedial actions are focused on interception and control of the downgradient leading edges of the CCR constituent plumes, in pursuit of achieving groundwater protection standards. If deemed advantageous and/or necessary to ensure continued protection of human health, potential ecological receptors, and/or the environment in the future, IPSC will evaluate whether additional monitoring and/or recovery wells might be warranted at the IGF (i.e. 'Adaptive Management' process).

4.3 SOURCE CONTROL, REMOVAL OF AS MUCH CCR MATERIAL RELEASED FROM THE CCR UNITS AS IS FEASIBLE, AND WASTE MANAGEMENT, 40 CFR §257.97(B)(3)-(5)

4.3.1 Interim Measures Prior to Closure

Source control measures under 40 CFR § 257.97(b)(3) are prescribed by UDEQ-regulated Groundwater Discharge Permit No. UGW270004 and DWMRC CCR Permit No. SW419, and as detailed within IPSC's November 2020 Demonstration of Requirements for Alternative Closure Deadline under 40 CFR §257.103(f)(2) report, IPSC intends to continue implementing its existing compliance programs as prescribed by the two UDEQ permits. Permit compliance requisites include measures and compliance schedules designed to operate, monitor, maintain, record/report, limit, and remediate (if and when necessary) IPSC's UDEQ-permitted facilities, per 40 CFR § 257.103(f)(2)(v)(B)(1). The permits define acceptable and prohibited wastes that may or may not be placed within each permitted unit during the operational lifespan of each CCR unit.

Currently, and as anticipated through closure and post-closure proceedings at each CCR unit, IPSC implements routine Best Management Practices (BMPs) including:

- proper facility operation and maintenance (O&M) protocol, including stormwater and inflow design flood control at regulated units and facilities;
- routine facility, embankment, and liner inspections and compliance monitoring;

V//230709098/05-Repts/delivs/StantecRepts/2021/SelectionofRemedy

SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b) June 16, 2021

- leak detection, release source and contamination assessment, and spill/leak reparation protocol;
- groundwater quality monitoring and remediation,
- fugitive air emission controls;
- compliance recording and regulatory reporting requisites; and
- closure and post-closure care.

Identified as Best Available Technology (BAT) within the IGF's Groundwater Discharge Permit, each of the two surface impoundments is underlain by a liner constructed of 80-mil HDPE material that lines the interior sidewalls (compacted embankment material) of each impoundment. As part of its DWQ permit, historically, currently, and for the foreseeable future, IPSC implements BMPs that are intended to help inspect for and remediate (if and when necessary) the potential release of CCR material contained within the two CCR surface impoundments. Likewise, routine BMPs are implemented at the CB Landfill to help inspect for and remediate (if and when necessary) potential release of CCR material.

On a daily basis, IPSC conducts visual inspections of the CCR surface impoundments to monitor water levels in the impoundments. IPSC conducts a more detailed inspection of the CCR units weekly to investigate for visible signs of actual and/or potential conditions that have resulted and/or might result in a potential release of CCR material from a surface impoundment to the surrounding environment. BMPs include monitoring of water levels inside each impoundment, inspecting exposed (daylighted) sections of HDPE liner material, inspecting interior and exterior embankment material, and inspecting for any other abnormal conditions that might result in, and/or indicate, actual and/or potential release of CCR material from a surface impoundment. Every 30 days, IPSC conducts an instrumentation inspection at each of the CCR units. A Professional Engineer completes an annual visual inspection of the CCR units and reviews the facility's operating record each year. Additionally, on an annual basis, IPSC contracts an independent contractor to conduct HDPE liner inspections.

Routine groundwater quality monitoring is also used as a means by which potential releases of CCR constituents can be identified downgradient of the impoundments and the CB Landfill. For instance, in the event that one or more CCR constituents is identified within a groundwater monitoring well for the first time, and/or there is an apparent anomalous increase in a constituent concentration in a monitoring well, IPSC will evaluate the groundwater quality data as part of its permitted facility monitoring program. If such data indicates the potential of a new release, IPSC will investigate (and repair, if applicable) the potential for a leak in the upgradient surface impoundment or CB Landfill.

IPSC field staff are required to report any such potential release incident or threat of release to IPSC's Environmental Group immediately. IPSC investigates and remediates (if and where necessary) the suspect and/or apparent release area. Additionally, as stipulated by its Groundwater Discharge Permit, IPSC must report a release incident to the DWQ, typically within five days of identification of the release incident. The report must include a description of the

V//230709098/05-Repts/delivs/StantecRepts/2021/SelectionofRemedy

SELECTION OF REMEDY, GENERAL REQUIREMENTS §257.97(b) June 16, 2021

release and its cause; the timeframe of the release; the estimated timeframe of ongoing release, whether it can be repaired immediately; as well as measures implemented to reduce, eliminate, and prevent recurrence of the release. Likewise, the CCR Permit also includes prescribed timeframes by which release, non-compliance, and remedial response must be addressed, recorded, and reported.

Liner reparation equipment and trained personnel are located at the IGF facility. In addition, IPSC works with contractors who are able to provide needed repairs in an efficient and timely manner. Typically, for instance, if a liner tear is identified, the liner tear is repaired by means of fusion welding and testing to verify satisfactory liner repair and integrity.

IPSC's October 2016 Structural Stability Assessment and Safety Factor Assessment reports (included within Gerhart Cole, Inc.'s 2016 Engineering Assessments of CCR Facilities, Intermountain Power Plant report) are posted on IPSC's public website and also presented within IPSC's November 2020 Demonstration of Requirements for Alternative Closure Deadline under 40 CFR §257.103(f)(2) report. The assessments indicated that the Bottom Ash Basin and Waste Water Basin berms were structurally stable and safe, as determined by an independent professional engineering firm. Ongoing, routine monitoring and reporting of the berms for stability and safety will continue in accordance with CCR Permit compliance, including independent 5-year reviews.

4.3.2 CCR Unit Closure and Post-Closure Care

Consistent with the removal and waste management requirements under 40 CFR § 257.97(b)(4)-(5), all three CCR-regulated units will be closed by in-situ dewatering, stabilization, burial, and capping, followed by post-closure monitoring and care, in accordance with relevant closure specifications prescribed by §257.101 through 104 and as detailed within IPSC's November 2020 CCR Unit Closure and Post-Closure Plan documents. It is anticipated that in-situ closure and capping of each CCR unit will provide satisfactory encapsulation of CCR material contained within the CCR units, thereby providing long-term source control and prevention of future releases of CCR constituents to the environment.

Closure elements, including dewatering, stabilization, unit capping, and stormwater control will provide protection against potential infiltration of stormwater and precipitation and potential leaching of CCR constituents from the units to the underlying unsaturated, vadose zone and phreatic zone (i.e., the water table and groundwater). IPSC intends to implement its CCR and non-CCR unit closure and post-closure proceedings, as prescribed by its UDEQ permits. The selected remedy for addressing CCR constituents in groundwater is intended to remove as much CCR mass that was released to the environment historically, as will be deemed feasible and practicable during ongoing site monitoring and review of potential risk to human health and the environment.

SELECTION OF REMEDY, EVALUATION FACTORS - § 257.97(c) June 16, 2021

5.0 SELECTION OF REMEDY, EVALUATION FACTORS - § 257.97(c)

§257.97(c) In selecting a remedy that meets the standards of §257.97(b), the owner or operator of the CCR unit shall consider the following evaluation factors:

- (1) The long- and short-term effectiveness and protectiveness of the potential remedy(s), along with the degree of certainty that the remedy will prove successful;
- (2) The effectiveness of the remedy in controlling the source to reduce further releases;
- (3) The degree to which community concerns are addressed by a potential remedy(s).

5.1 SHORT AND LONG-TERM EFFECTIVENESS AND PROTECTIVENESS

Ongoing compliance with its UDEQ CCR and Groundwater Discharge Permits, as outlined in preceding report section 4.3.1 Interim Measures Until CCR Unit Closures, is anticipated to provide short- and long-term effectiveness and protection to human health and the environment including groundwater. The selected remedy of physical recovery/removal of CCR constituent mass from groundwater is a conservative remedial approach for ensuring effective contaminant control, reduction of total contaminant mass in the subsurface, and ongoing monitoring for protection of human health and the environment.

In the event of potential release of CCR constituents from a CCR unit prior to closure of the unit, IPSC anticipates that its ongoing permit compliance program will prescribe successful response, remedial actions and source control that will reduce further releases from the unit and ensure effective protection of human health and the environment. Following closure of the CCR units, with the sources of CCR material encapsulated/remediated and monitored through CCR unit closure and post-closure proceedings, including ongoing groundwater monitoring and recovery, IPSC anticipates that such actions will provide long-term source control and prevention of future releases of CCR constituents to the environment including groundwater.

IPSC has a high degree of certainty that the selected remedy will prove effective, reliable, and successful in achieving IPSC's objectives of source control, reduction, and elimination. Of those remedial measures evaluated by IPSC, it is anticipated that the selected remedy offers a permanent, protective solution designed to provide short- and long-term certainty for successful, ongoing protection of human health and the environment.

5.2 SELECTED REMEDY IS PROTECTIVE OF COMMUNITY CONCERNS

The IGF is located in a remote, rural area, more than 10 miles north of the closest, municipal town of Delta, Utah, which had an estimated population of 3,550 in 2018. Rural residential land use located north of Delta, Utah is comprised primarily of sparsely populated, farming properties, each of which is typically comprised of several to 1000s of acres of predominantly undeveloped, agricultural-related lands. The closest residential area in relation to the IGF is located approximately 3 miles southwest of the southern IGF property boundary and is characterized by

SELECTION OF REMEDY, EVALUATION FACTORS - § 257.97(c) June 16, 2021

two small farms and homes, surrounded by at least a one-mile radius of undeveloped, agricultural-related land.

Off-site lands, extending for at least a 10-mile radius in all other directions (west, north, and east) surrounding the IGF are predominantly undeveloped, public and private land. The closest, off-site industrial property is owned and operated as a subsurface (1000s of feet below grade) natural gas storage facility by Magnum Development, LLC (south of State Route 174 and the IGF). Reportedly, neither Magnum nor the closest off-site groundwater production well (industrial operator located over 2.5-miles southwest of the IGF) recover groundwater from the uppermost aquifer below grade. As discussed in preceding report section 4.1, the closest, off-site groundwater production well is located approximately 2.5-miles southwest of the southern IGF property boundary, and the industrial well recovers groundwater from a deep aquifer that underlies the uppermost aquifer by hundreds of feet.

On the evening of January 9, 2019, IPSC and the UDEQ held a formal Public Meeting in Delta, Utah which was advertised to the public in advance. IPSC presented details regarding its compliance with the CCR Rules and its Groundwater Discharge Permit. IPSC discussed its intent to convert its operations from coal-fired boilers to natural gas and close/cap the three CCRregulated units in accordance with CCR Rule requisites. IPSC also discussed the presence of CCR constituents in groundwater and IPSC's ongoing monitoring and remedial compliance program related to its UDEQ-regulated units and groundwater quality. IPSC discussed the fact that there were no existing unacceptable risks to human health or the environment and IPSC's intentions to continue its compliance with UDEQ regulatory requirements to ensure ongoing protection of human health and the environment. IPSC, UDEQ, and Stantec representatives responded to public questions and comments during the meeting.

IPSC discussed IPSC's intention to continue delineating/remediating the plumes of TDS-impacted groundwater through installation and monitoring of supplemental groundwater monitoring wells and expand its existing groundwater recovery program to ensure ongoing protection to on- and off-site human health and the environment. The proposed expansion of its monitoring/recovery well network was intended to evaluate more precisely the downgradient leading edges of the CCR constituent plumes, in an effort to help identify the most practicable, reliable, timely, and protection to human health and the environment. There were no reported public objections to IPSC's current and future CCR compliance program and approach for continued remediation and monitoring of the IGF CCR units and groundwater quality beneath the property.

SELECTION OF REMEDY REPORT SCHEDULE AND RECORDKEEPING June 16, 2021

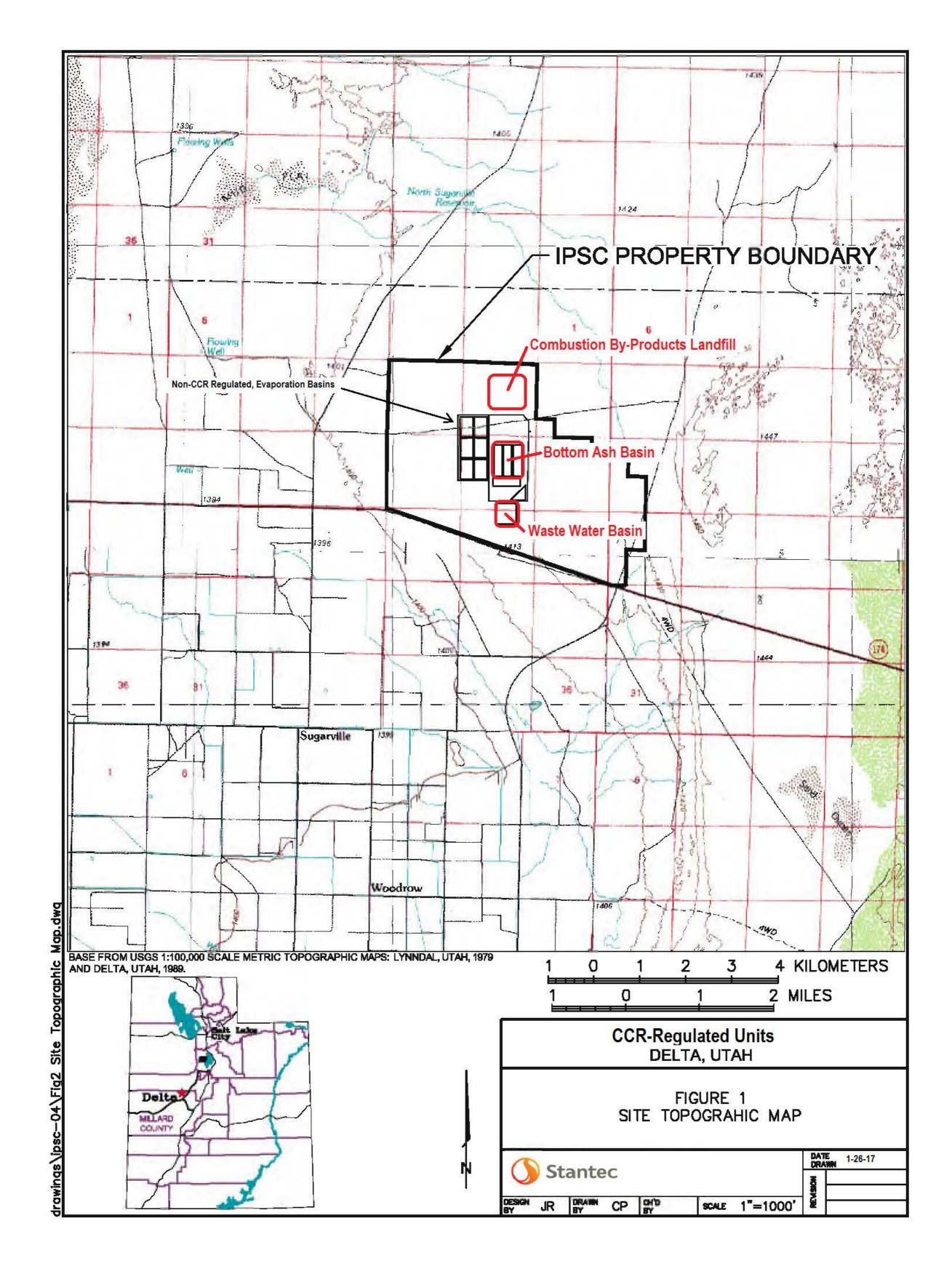
6.0 SCHEDULE AND RECORDKEEPING

6.1 SCHEDULE FOR IMPLEMENTATION OF SELECTED REMEDY, §257.97(D)

§257.97(d) The owner or operator must specify as part of the selected remedy a schedule(s) for implementing and completing remedial activities.

IPSC's November 2020 CCR Unit Closure Plans provide extensive details and element-specific schedules for closure of each of the three CCR units, no later than the end of 2028. This report section provides IPSC's anticipated schedule for implementation of the selected remedy for groundwater remediation.

Currently, IPSC is finalizing design of the electrical power components of the groundwater recovery system, designed to provide necessary monitoring and control of water recovery (wells with submersible pumps and water level controls, etc.) and water conveyance (trunkline piping and break tanks) components. Electrical power needs are being analyzed presently, with intents to solicit bids from Construction Contractors for installation during the Summer of 2021. Likewise, all other aspects of selected remedy components are also being designed currently. IPSC anticipates soliciting bids from Contractors for installation and start-up of the expanded groundwater recovery network, sometime during the third and fourth quarters of 2021.


6.2 RECORDKEEPING, §257.97(E)

§257.97(e) The owner or operator of the CCR unit must comply with the recordkeeping requirements specified in §257.105(h), the notification requirements specified in § 257.106(h), and the Internet requirements specified in § 257.107(h).

As of finalization of this report in June 2021, IPSC has posted this report on its public website, in similar fashion as all other CCR Rule-related documents that are web-posted currently.

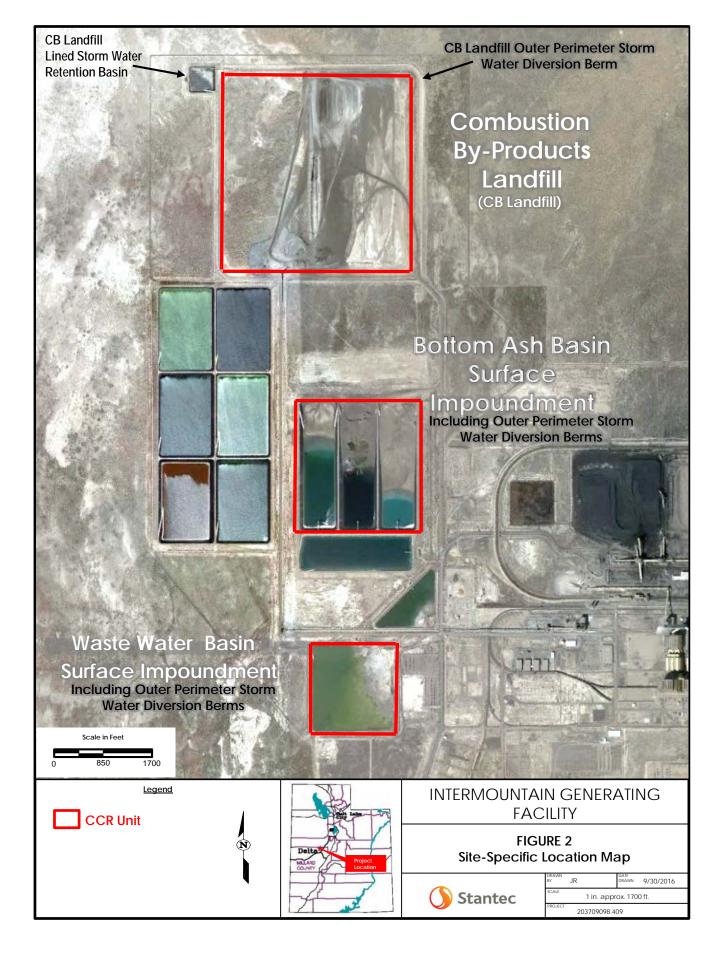

June 16, 2021

Figure 1 General Site Location Map

June 16, 2021

Figure 2. CCR Units Location Map

June 16, 2021

Figure 3 April 2021 Groundwater Potentiometric Map

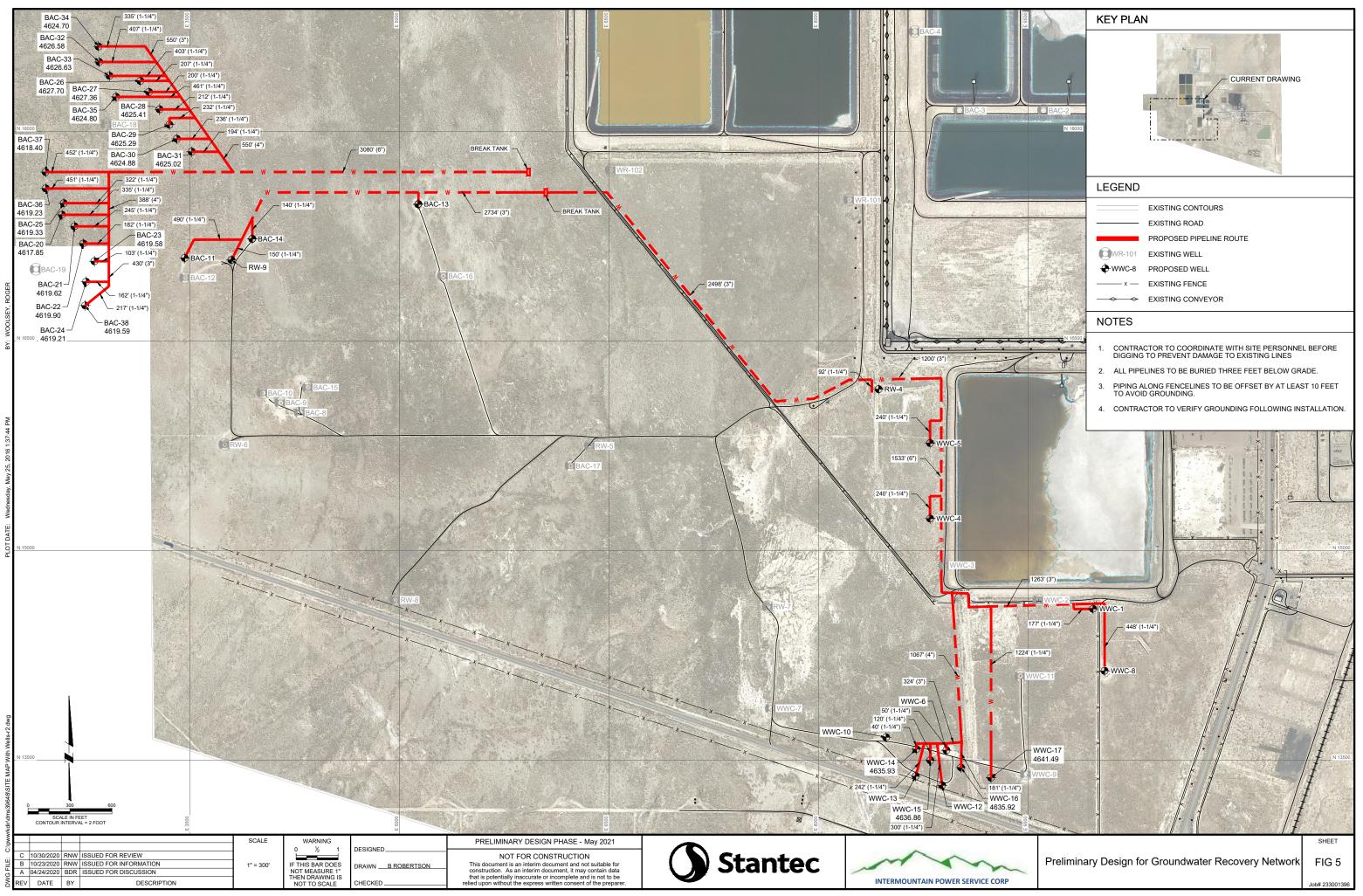

June 16, 2021

Figure 4 April 2021 TDS Iso-Concentration Map

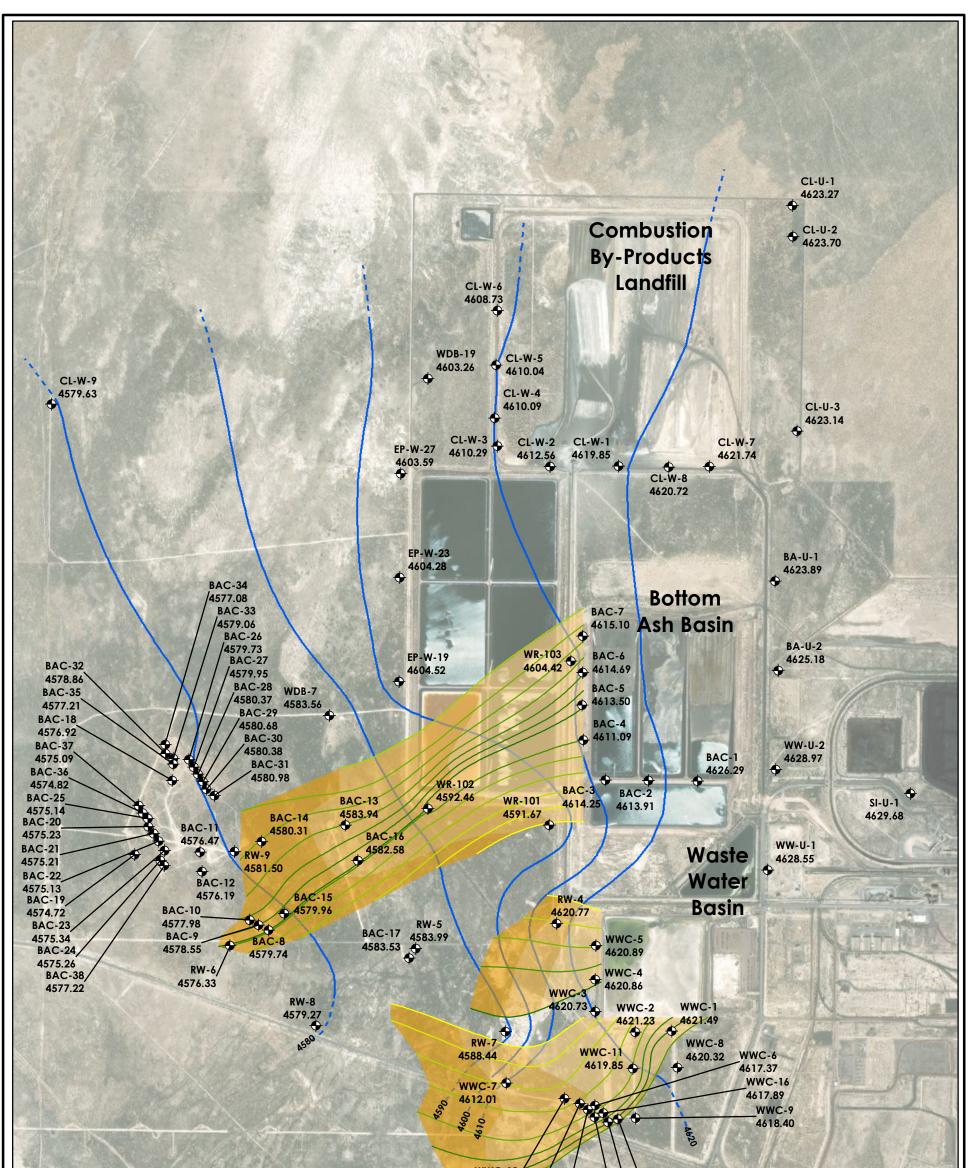

June 16, 2021

Figure 5 Preliminary Design of Selected Remedy Components

June 16, 2021

Figure 6 Groundwater Fate and Transport Model Flow Lines and Linear Velocities

	WWC-10 4615.48 WWC-14 4618.37 WWC-15 4616.93 Source: Esri, DigitalGlobe, AeroGRID, IGN, and the GIS	WWC-17 4618.06 WWC-12 4616.91 WWC-13 4616.24 GeoEye, Earthstar Geographics, CNES/Airbus DS, USE S User Community	DA, USGS,
Image: Second system MONITORING WELL TIME STEP 4577.22 GROUNDWATER ELEVATION (FT) 10 YEARS INFERRED GROUNDWATER CONTOUR 20 YEARS PARTICLE FLOW LINE 30 YEARS MINIMUM VELOCITY MAXIMUM VELOCITY		NOTE: 1) DATA COLLECTED APRIL 2021 2) ALL ELEVATIONS ARE FEET ABOVE M LEVEL	EAN SEA
0 1,300 2,600 Stantec	FOR: INTERMOUNTAIN POWER SERVICE CORP. INTERMOUNTAIN GENERATION FACILITY DELTA, UTAH OB NUMBER: 203709098 DRAWN BY: CK	GROUNDWATER FATE AND TRANSPORT FLOW LINES AND LINEAR VELOCITIES CHECKED BY: JT	FIGURE: 6 DATE: 05/19/21

SELECTION OF REMEDY REPORT

June 16, 2021

TABLE 1 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS

Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

MONITOR WELL I.D.	DATE COMPLETED	WELL DIAMETER / MATERIAL	TOTAL DEPTH (feet BGS)	WELL SCREENING INTERVAL (feet BGS)	TOP OF PVC CASING ELEVATION (feet MSL)
	I Con	nbustion By-Proc	lucts Landfill V	Vells	
CLW-1	5/12/2015	4-inch PVC	65	55-65	4653.46
CLW-2	5/14/2015	4-inch PVC	80	70-80	4648.17
CLW-3	5/13/2015	4-inch PVC	80	70-80	4644.03
CLW-4	5/26/2015	4-inch PVC	82	72-82	4642.88
CLW-5	7/27/2015	4-inch PVC	82	72-82	4640.99
CLW-6	7/26/2015	4-inch PVC	88	78-88	4639.63
CLW-7	7/24/2015	4-inch PVC	72	52-72	4659.34
CLW-8	7/24/2015	4-inch PVC	72	62-72	4655.63
CLW-9	3/25/2018	4-inch PVC	97	87-97	4615.615
CL-U-1	7/23/2015	4-inch PVC	80	68-78	4657.48
CL-U-2	7/22/2015	4-inch PVC	80	70-80	4663.48
CL-U-3	3/27/2018	4-inch PVC	77	67-77	4665.367
		Bottom Ash	Basin Wells		
BAC-1	7/31/2015	4-inch PVC	70	60-70	4668.70
BAC-2	7/29/2015	4-inch PVC	65	55-65	4668.72
BAC-3	7/28/2015	4-inch PVC	72	52-72	4668.84
BAC-4	8/10/2015	4-inch PVC	75	55-75	4649.45
BAC-5	8/9/2015	4-inch PVC	68	58-68	4649.67
BAC-6	8/8/2015	4-inch PVC	65	55-65	4648.15
BAC-7	8/7/2015	4-inch PVC	67	57-68	4650.09
BAC-8	4/29/2019	6-inch PVC	77	52-77	4626.42
BAC-9	5/1/2019	6-inch PVC	77	52-77	4626.27
BAC-10	5/3/2019	6-inch PVC	87	62-87	4626.27
BAC-11	12/7/2019	6-inch PVC	75	50-75	4624.96
BAC-12	12/6/2019	6-inch PVC	78	53-78	4625.055
BAC-13	11/18/2019	6-inch PVC	90	65-90	4629.834
BAC-14	12/4/2019	6-inch PVC	78	53-78	4627.506
BAC-15	12/9/2019	6-inch PVC	75	50-75	4626.494
BAC-16	11/21/2019	6-inch PVC	89	64-89	4630.426

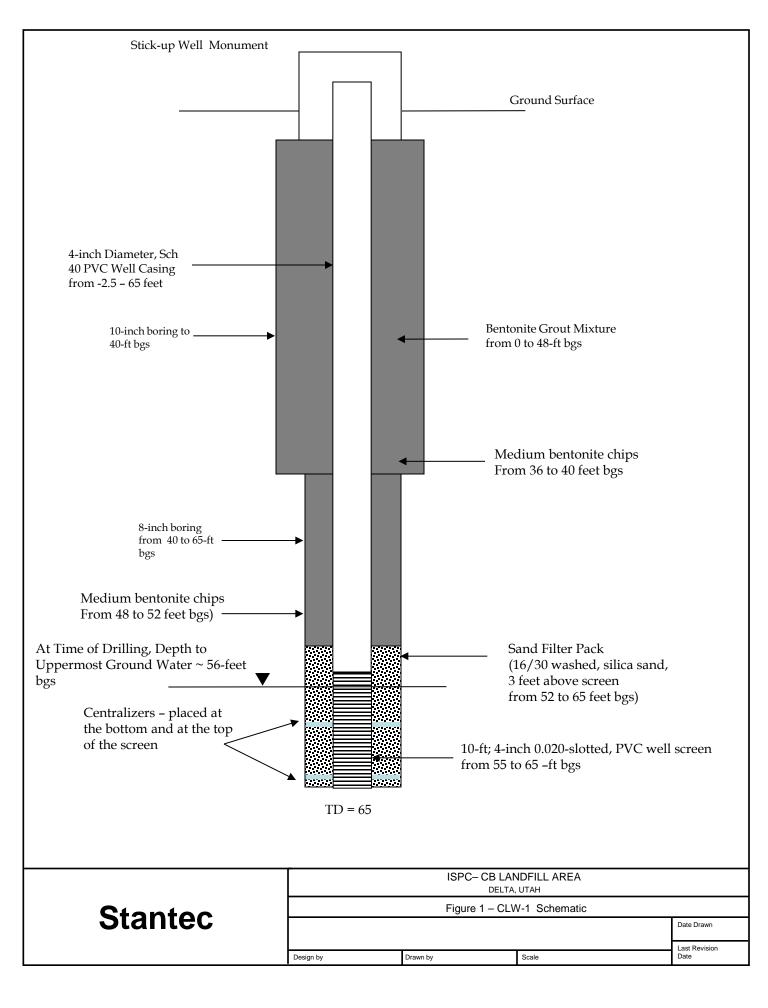
Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

		,			
MONITOR WELL I.D.	DATE COMPLETED	WELL DIAMETER / MATERIAL	TOTAL DEPTH (feet BGS)	WELL SCREENING INTERVAL (feet BGS)	TOP OF PVC CASING ELEVATION (feet MSL)
BAC-17	12/10/2019	6-inch PVC	81	56-81	4629.648
BAC-18	5/8/2020	6-inch PVC	78	53-78	4621.504
BAC-19	5/9/2020	6-inch PVC	78	58-78	4615.62
BAC-20	5/9/202	6-inch PVC	78	53-78	4617.848
BAC-21	5/10/2020	6-inch PVC	88	61-88	4619.625
BAC-22	5/10/2020	6-inch PVC	78	53-78	4619.905
BAC-23	5/11/2020	6-inch PVC	78	53-78	4619.582
BAC-24	5/12/2020	6-inch PVC	76	51-76	4619.207
BAC-25	5/12/2020	6-inch PVC	78	53-78	4619.327
BAC-26	5/13/2020	6-inch PVC	78	53-78	4627.704
BAC-27	5/13/2020	6-inch PVC	78	53-78	4627.355
BAC-28	5/14/2020	6-inch PVC	78	53-78	4625.411
BAC-29	5/15/2020	6-inch PVC	78	53-78	4625.29
BAC-30	5/142020	6-inch PVC	78	53-78	4624.88
BAC-31	5/15/2020	6-inch PVC	78	53-78	4625.024
BAC-32	5/192020	6-inch PVC	78	53-78	4626.583
BAC-33	5/18/2020	6-inch PVC	78	53-78	4626.629
BAC-34	5/21/2020	6-inch PVC	78	53-78	4624.702
BAC-35	5/282020	6-inch PVC	78	53-78	4624.805
BAC-36	5/30/2020	6-inch PVC	78	53-78	4619.231
BAC-37	5/29/2020	6-inch PVC	78	53-78	4618.397
BAC-38	5/31/2020	6-inch PVC	78	53-78	4619.593
BA-U-1	7/24/2015	4-inch PVC	55	45-55	4665.73
BA-U-2	7/25/2015	4-inch PVC	70	60-70	4661.33
F				•	

Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

MONITOR WELL I.D.	DATE COMPLETED	WELL TOTAL DIAMETER / DEPTH MATERIAL (feet BGS)		WELL SCREENING INTERVAL (feet BGS)	TOP OF PVC CASING ELEVATION (feet MSL)	
		Wastewater	Basin Wells			
WWC-1	7/26/2015	4-inch PVC	60	48-58	4644.72	
WWC-2	7/27/2015	4-inch PVC	70	60-70	4645.11	
WWC-3	7/30/2015	4-inch PVC	65	55-65	4638.90	
WWC-4	7/29/2015	4-inch PVC	75	65-75	4640.58	
WWC-5	7/28/22015	4-inch PVC	74	64-74	4641.75	
WWC-6	3/24/2018	4-inch PVC	87	67-77	4635.945	
WWC-7	3/22/2018	4-inch PVC	87	77-87	4630.487	
WWC-8	4/25/2019	6-inch PVC	96	71-96	4647.799	
WWC-9	4/28/2019	6-inch PVC	87	62-87	4642.58	
WWC-10	4/26/2019	6-inch PVC	87	62-87	4633.72	
WWC-11	11/16/2019	6-inch PVC	90	65-90	4641.919	
WWC-12	11/12/2019	6-inch PVC	90	65-90	4636.661	
WWC-13	11/15/2019	6-inch PVC	90	65-90	4635.128	
WWC-14	5/6/2020	6-inch PVC	85	60-85	4635.927	
WWC-15	5/6/2020	6-inch PVC	88	63-88	4636.864	
WWC-16	5/7/2020	6-inch PVC	88	63-88	4635.921	
WWC-17	5/8/2020	6-inch PVC	88	63-88	4641.487	
SI-U-1	8/12/2015	4-inch PVC	79	69-79	4664.59	
WW-U-1	8/11/2015	4-inch PVC	70	60-70	4665.03	
WW-U-2	8/11/2015	4-inch PVC	75	65-75	4665.46	
	I Groundwater D	l I Discharge Permit	Groundwater	Recovery Wells	<u> </u>	
WR-101	2/11/2007	6-inch PVC	66	46-66	4646.28	
WR-102	3/3/2009	6-inch PVC	57	37-57	4637.62	
WR-103	3/31/2009	6-inch PVC	55	35-55	4649.82	

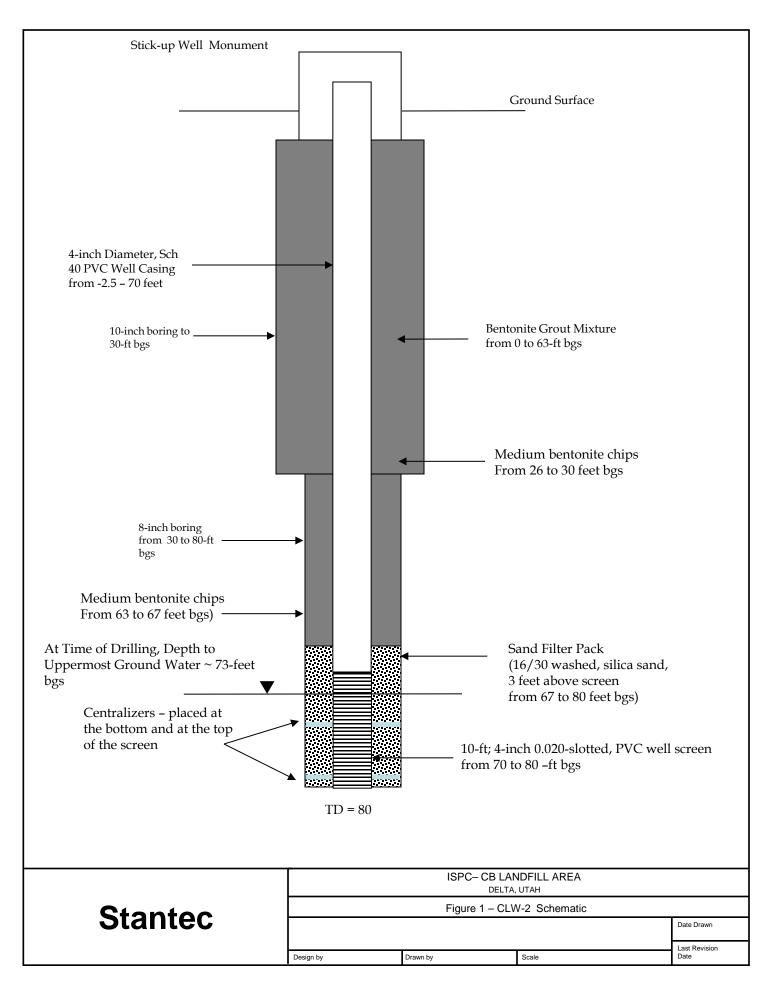
Below Ground Surface


MSL = Mean Sea Level

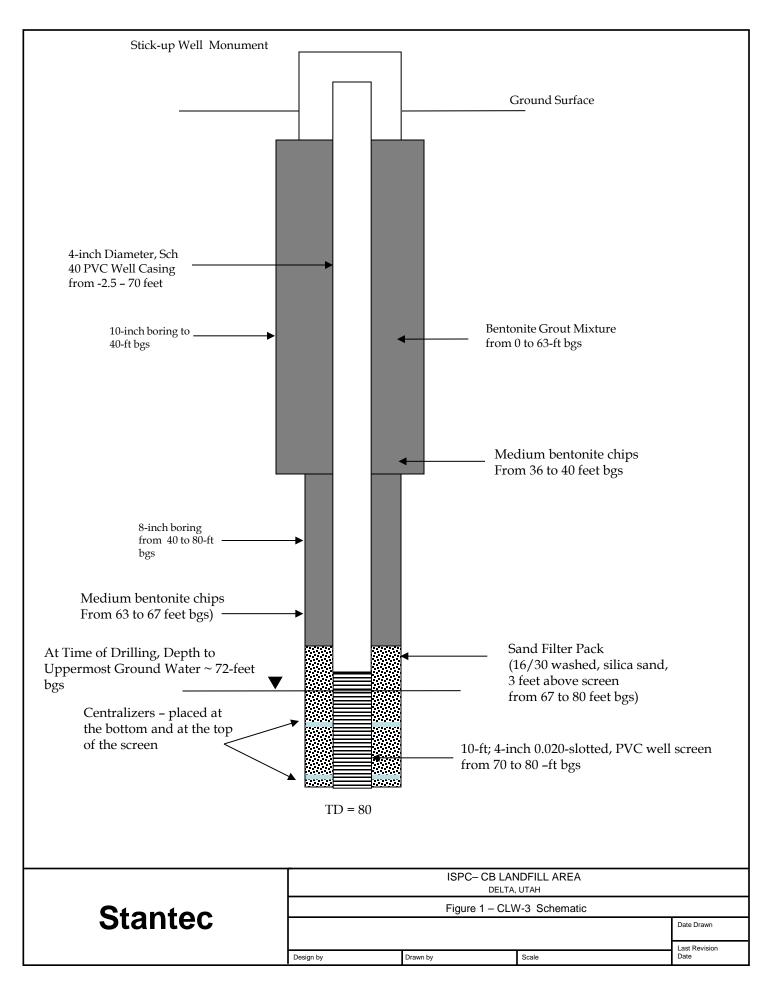
SELECTION OF REMEDY REPORT

APPENDIX A DRILLING LOGS AND WELL SCHEMATIC DIAGRAMS June 16, 2021

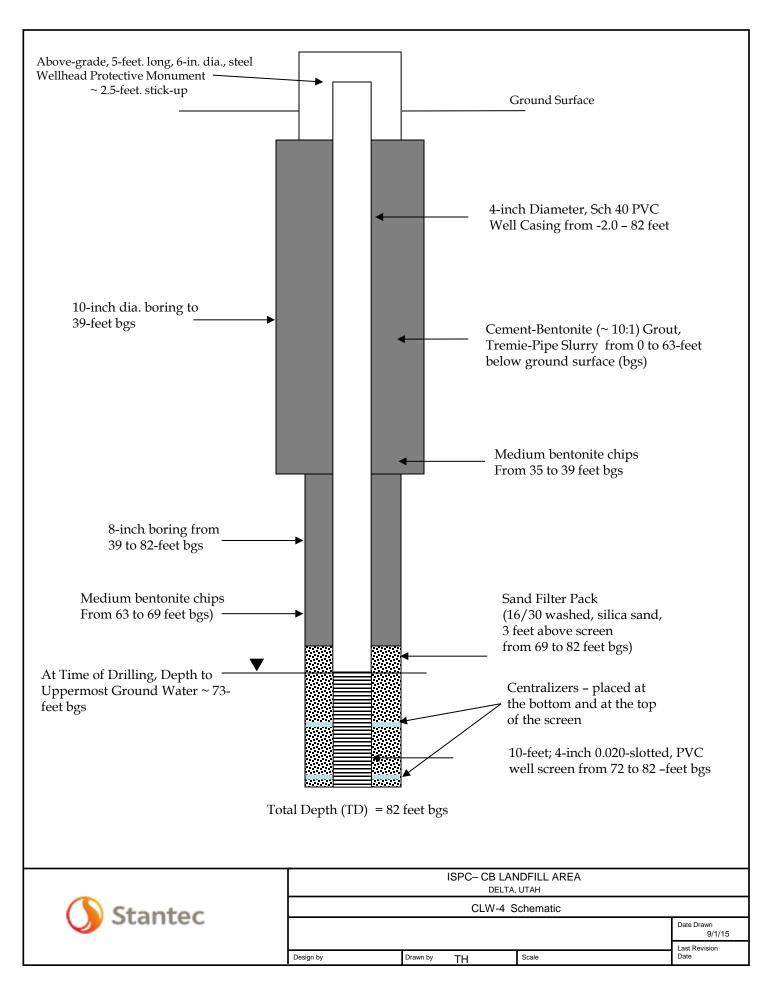
APPENDIX A DRILLING LOGS AND WELL SCHEMATIC DIAGRAMS


	CLW-1				
Interval (feet)	Drilling Method	Sample Description			
		5/11/2015			
0-3	10" Sonic	Brown fine grained Sand with gravel, dry			
3-6	10" Sonic	Light to Dark Brown fine to medium grained Sand, no gravel present, dry			
6-8	10" Sonic	Light Brown fine grained Sand			
8-11.5	10" Sonic	Grayish white fine grained Sand, gravels present, rounded, dry			
11.5-13.5	10" Sonic	Tan SILT with clay matrix, slightly moist			
13.5-17	10" Sonic	Grayish Tan CLAY with small amount of silt present, slightly moist			
17-23	10" Sonic	Grayish Tan SILT with fine grain sand present, trace amounts of clay, slightly moist			
23-27	10" Sonic	Tannish Gray CLAY, denser, dry			
27-32	10" Sonic	Tan CLAY, slightly moist			
32-35	10" Sonic	Tan CLAY, denser material, slightly moist			
		5/12/2015			
35-48	10" Sonic to 40 feet	Tannish gray CLAY, moist			
48-51	8" Sonic	Tannish gray CLAY, moist, softer			
51-52	8" Sonic	Orangish, Brown, black fine grained Sand, moist			
52-54	8" Sonic	Orangish, Brown , Red CLAY, slightly moist			
54-56	8" Sonic	Orangish Brown CLAY with a fine grained sand matrix, slightly moist			
56-62	8" Sonic	Light Brown fine grained Sand, saturated			
62-63	8" Sonic	Light Brown CLAY, slightly moist			
63-63.5	8" Sonic	Fine to medium grained Sand, slightly moist			
63.5-64	8" Sonic	Light Brown CLAY, dry to slightly moist			

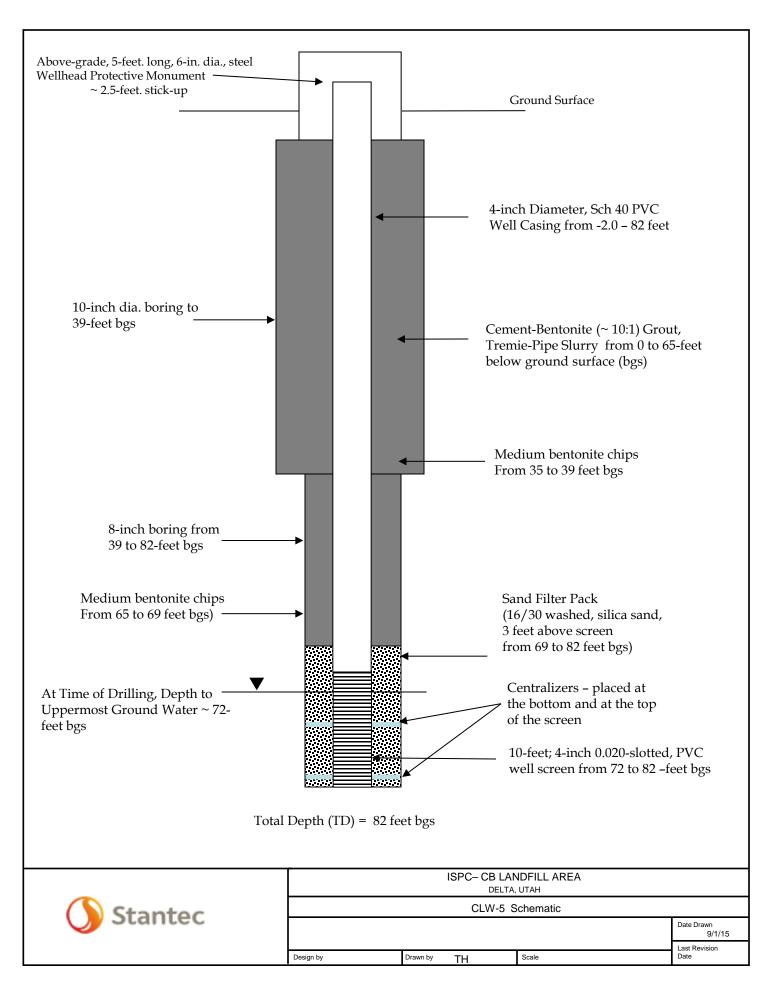
CLW-2


Interval (feet)	Drillin a Mathad	Cample Description
(reet)	Drilling Method	Sample Description
		5/14/2015
0-8	10" Sonic	Brown fine grained Sand, clay present with gravel, dry
8-10	10" Sonic	Light to Dark Brown medium to course grained SAND, gravel present, dry
10-17	10" Sonic	Light Brown to Brown clayey SILT, slightly moist
17-25	10" Sonic	Light Brown Silty CLAY, moist
25-46	10" Sonic to 30 feet	Brown CLAY, slightly moist, from 40 to 45 feet transitioned to a Tan to Light Gray color
46-46.5	8" Sonic	Very moist to saturated zone, very soft clay , very sticky
46.5-50	8" Sonic	Light Gray CLAY, moist
50-51	8" Sonic	Tan to Light Gray with Orange zones, CLAY, slightly moist
51-51.5	8" Sonic	Very moist zone, CLAY
62	8" Sonic	Transitioning to a Orangish Red CLAY, Slightly moist
66-66.5	8" Sonic	Moist zone, transitioning from an Orangish Red to a Brown CLAY
66.5-73	8" Sonic	Reddish brown fine grained Sand with a clay matrix, very moist
73-80	8" Sonic	Brown fine gained Sand, trace amounts of clay, saturated.

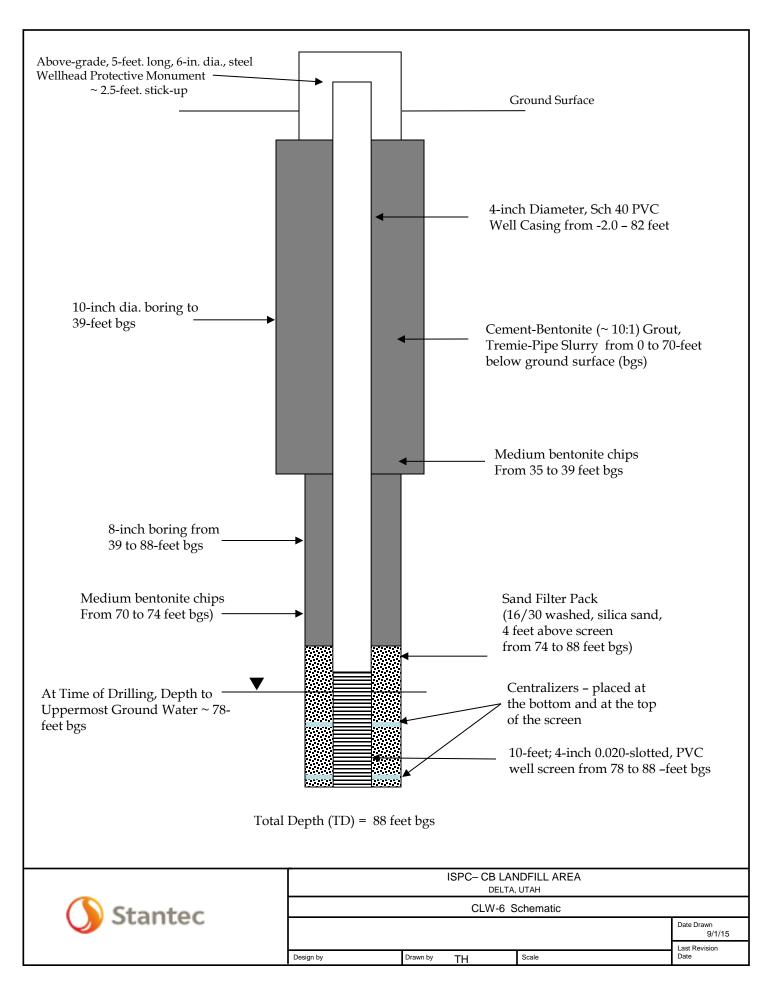
TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70


	CLW-3				
Interval (feet)	Drilling Method	Drill Time	Sample Description		
			5/13/2015		
0-3	10" Sonic		Brown fine grained Sand , clay present with gravel, dry		
3-6	10" Sonic		Light to Dark Brown fine to medium grained Sand, no gravel present, dry		
6-11	10" Sonic		Grayish White fine grained Sand, gravels present, rounded, dry		
11-13	10" Sonic		Brownish Orange SILT, with fine grained sand present, soft		
13-16	10" Sonic		Tannish Gray SILT with a clay present, very moist, sticky		
16-21	10" Sonic		Tannish Gray SILT with a clay matrix, very moist, sticky		
21-24	10" Sonic		Light Gray CLAY, with silt present, very moist		
24-33	10" Sonic		Light Gray to Orange CLAY, with silt present, slightly moist		
32-40	10" Sonic to 40 feet		Tan CLAY, denser material, slightly moist		
40-66	8" Sonic		Tan to Light Brown CLAY, slightly moist to Dry		
63	8" Sonic		Transiting into a Darker Gray CLAY, Moist		
66-72	8" Sonic		Very moist to saturated, clay very plastic, firm and sticky		
72-73	8" Sonic		Dark Gray fine to medium grained Sand, saturated		
73-74	8" Sonic		Dark Gray CLAY, sticky firm, very moist		
74-80	8" Sonic		Dark Gray fine to medium grained Sand, saturated		

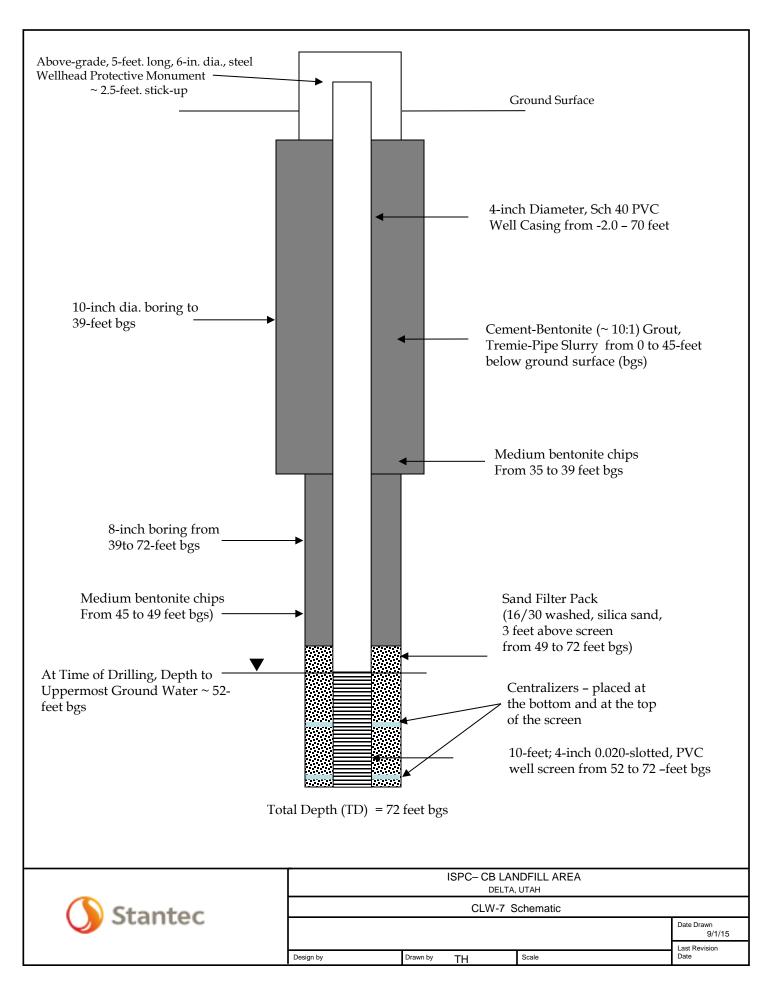
TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70


Interval (feet)	Drilling Method	Sample Description
(reet)	Dining incurou	7/24/2015
0-2	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry
2-5	10" Sonic	Light Brown fine grained Sands, dry
5-11	10" Sonic	Light Brown to gray fine grained SAND, dry to slightly moist
11-13	10" Sonic	Light Brown silty CLAY, slightly moist, good plasticity
13-14	10" Sonic	Light Brown fine grained SAND, with clays present, poor plasticity, dry
14-16	10" Sonic	Light Brown clayey SILT, dry
16-18	10" Sonic	Light Brown to Brown silty CLAY, slightly moist, good plasticity
18-21	10" Sonic	Light Brown to Gray silty CLAY, slightly moist to moist, good plasticity
21-24	10" Sonic	Brownish Gray CLAY, moist, high plascity
34-32	10" Sonic	Browninsh Gray CLAY, moist to very moist, high plasticity
32-53	10" Sonic to 39 feet	Brownish Gray CLAY, dencer, slightly moist,
		44 - thin layer of brownish orange fine grained sand
		47 - transitioning into a gray clay
		49 - thin layer of brownish orange fine grained sand
53-55	8" Sonic	Brownish Gray CLAY, dense, very plastic, slightly moist
55-73	8" Sonic	Brown CLAY, very plastic, slightly moist
73-82	8" Sonic	Brown fine grained SAND with a clay matrix, saturated
	•	TD = 82; PVC 4-inch screen from 72 to 82; PVC 4-inch riser from -2.5 to 72

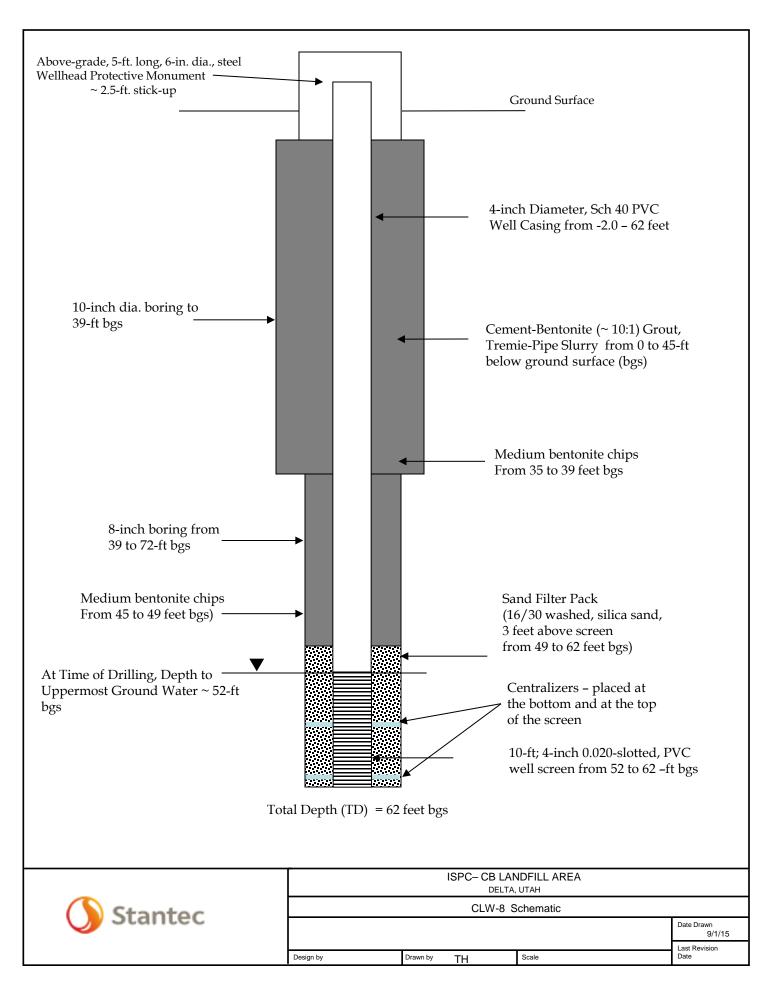
TD = 82; PVC 4-inch screen from 72 to 82; PVC 4-inch riser from -2.5 to 72


	CLW-5
Drilling Method	Sample Description
	7/26/2015
10" Sonic	Light Brown fine grained Sands with silts and gravel, dry
10" Sonic	Gravels with medium to fine grand sands, moist
10" Sonic	Light Brown sitly CLAY, slightly moist, good plasticity
10" Sonic	Light Brown fine to medium grained SAND, dry
10" Sonic	Light Brown to Gray fine to medium grained SAND, gravels present, slightly moist
10" Sonic	Light Brown clayey SILT, slightly moist,
10" Sonic	Brown fine to medium grained SAND, wht clays and silts, slightly moist
	7/27/2015
10" Sonic	Brown silty CLAY, slightly moist, good plasticity
10" Sonic	Light Brown CLAY, moistgood plasticity
10" Sonic	Brown CLAY, slightly moist, high plasticity
10" Sonic to 39 feet	Light Gray CLAY, slightly moist, hight plasticity
8" Sonic	Light Brown to Brown CLAY, slightly moist, high plasticity
8" Sonic	Light Gray CLAY, hight plasticity, slighly moist
8" Sonic	Brown CLAY, high plasticity, slightly moist
8" Sonic	Gray CLAY, high plasticity, slightly moist
8" Sonic	Gray CLAY, high plasticity, moist
8" Sonic	Gray fine grained SAND, with clay matrix, moist to saturated
8" Sonic	Gray CLAY with fine grained sandy matrix, poor plasticity, moist
8" Sonic	Gray fine grained SAND wht a clayey matrix, poor plasticity, saturated
8" Sonic	Gray CLAY with fine grained sandy matrix, poor plasticity, moist
8" Sonic	Gray fine grained SAND wht a clayey matrix, poor plasticity, saturated
	10" Sonic 10" Sonic 8" Sonic

TD = 82; PVC 4-inch screen from 72 to 82; PVC 4-inch riser from -2.5 to 72


	CLW-6				
Interval (feet)	Drilling Method	Sample Description			
(reet)	Drining Wieutou	7/26/2015			
0-3	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry			
3-5	10" Sonic	Light Brown silty fine grained SAND, dry			
5-7	10" Sonic	Light Brown fine grained sandy SILT, dry			
7-12	10" Sonic	Light Brown fine to medium grained SAND, dry			
12-15	10" Sonic	Light Brown fine grained sand, with a clay matrix, dry			
15-21	10" Sonic	Light Brown to Brown clayey SILT, slightly moist, poor plasticity			
21-22	10" Sonic	Light Brown fine grained sand, with a clay matrix, dry			
21-23		Light Brown to Brown clayey SILT, slightly moist, poor plasticity			
23-32	10" Sonic	Light Brown CLAY, moist, sticky, high plasticity			
32-38	10" Sonic	Light Brown to Gray CLAY, moist, high plasticity			
38-47	10" Sonic	Light Gray to Gray CLAY, slightly moist, high plasticity			
47-55	10" Sonic to 39 feet	Transitioned to a Brownish gray CLAY, high plasticity, slight moist			
55-72	8" Sonic	Brown CLAY, high plasticity, slightly moist			
		58 - 58.5 very moist to saturated, 59 - slightly moist			
72-78	8" Sonic	Gray CLAY, very moist, high plasticity			
78-82	8" Sonic	Gray fine grained SAND with a clay matrix, poor plasticity, saturated			
82-84	8" Sonic	Gray CLAY, high plasticity, very moist			
84-85	8" Sonic	Gray fine grained SAND with a clay matrix, poor plasticity, saturated			
85-88	8" Sonic	Gray CLAY, high plasticity, very moist			
		TD = 88: PVC 4-inch screen from 78 to 88: PVC 4-inch riser from -2.5 to 78			

TD = 88; PVC 4-inch screen from 78 to 88; PVC 4-inch riser from -2.5 to 78

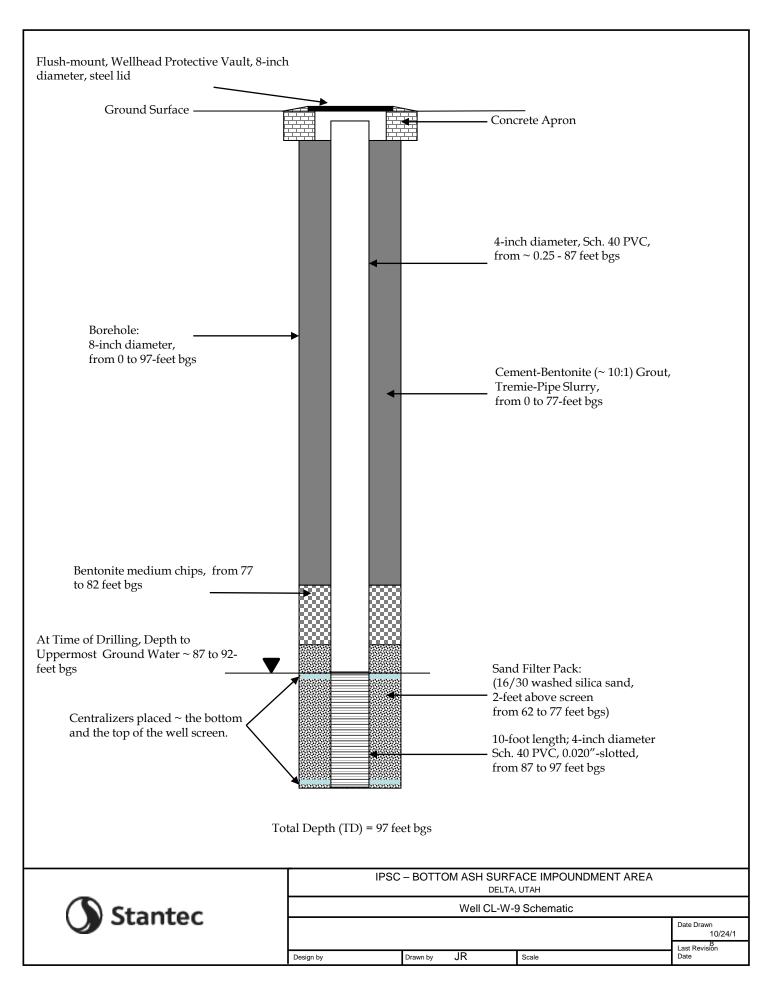

Interval	r	
(feet)	Drilling Method	Sample Description
		7/24/2015
0-8	10" Sonic	Light Brown fine grained Sands with silts and gravel, angular, Dry
8-12	10" Sonic	Light Brown fine grained Sands with silts and clay, No gravel, Dry
12-15	10" Sonic	Tan SILT with a clay matrix, Dry
15-17	10" Sonic	Light Brown to Gray CLAY, medium plasticity, silty present, Dry
17-22	10" Sonic	Light Brown Clayey SILT, slightly moist
22-24	10" Sonic	Light Brown to Grayish silty CLAY, Dry
24-32	10" Sonic	Light Brown to Grayish CLAY, Brown silts and fine grained sands present, , Dry
32-40	10" Sonic to 39 feet	Light Brown CLAY, slightly moist, became denser at 35 feet
40-43	8" Sonic	Light Brown to Grayish CLAY, very dense, slightly moist
43-48	8" Sonic	Gray CLAY, slightly moist, some layers of a brown fine grained sand present every 3 to 4 inches alone the core
48-50	8" Sonic	Gray CLAY, slightly moist, some Iron Oxide present
50-51.5	8" Sonic	Brown fine to medium grained SANDS, saturated
51.5-58	8" Sonic	Brown CLAY, moist to slightly moist
58-58.5	8" Sonic	Brown fine grained SANDS, with a clay matrix, saturated
58.5-61	8" Sonic	Brown CLAY, moist to slightly moist
61-68	8" Sonic	Brown fine to medium grained SANDS, saturated
68-70	8" Sonic	Brown CLAY, moist to slightly moist
70-72	8" Sonic	Brown fine to medium grained SANDS, saturated
	•	TD = 72' PVC 4-inch screen from 52 to 72' PVC 4-inch riser from -2.5 to 52

TD = 72; PVC 4-inch screen from 52 to 72; PVC 4-inch riser from -2.5 to 52

Interval (feet)	Drilling Method	Sample Description
. ,	0	7/24/2015
0-3	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry
3-5	10" Sonic	Light Brown fine grained Sands, slightly moist
5-7	10" Sonic	Tannish white fine grained Sand, with smooth, rounded pebbles, slightly moist
7-10	10" Sonic	Tannish white silty, fine grained Sand, slightly moist
10-13	10" Sonic	Tan SILT with a clay matrix, slightly most, slightly plastic
13-15	10" Sonic	Tan Clayey SILT, dry, plastic
15-18	10" Sonic	Light Brown to tan silty CLAY, slightly moist, good plasticity
18-24	10" Sonic	Light Brown CLAY with silts present, slightly moist, good plasticity
24-32	10" Sonic	Brown silty CLAY, slightly moist, good plasticity
32-37	10" Sonic	Brown CLAY, dence, dry to slihgtly moist, very plastic
37-52	10" Sonic to 39 feet	Transitioned fomrthe Brown CLAY to a Gray CLAY, with interbeds of brown fine gran sand layers, highly plastic, slihglty moist
52-62	8" Sonic	Brown fine grained SAND with a clay matrix, saturated
	•	TD = 62: PVC 4-inch screen from 52 to 62: PVC 4-inch riser from -2.5 to 52

TD = 62; PVC 4-inch screen from 52 to 62; PVC 4-inch riser from -2.5 to 52

Boring Logs ISPC


Delta, Utah

	CL-W-9					
Interval (feet)	Drilling Method	USCS	Sample Description			
	03/24/2018 - 03/25/2018					
0-1	8" Sonic	MW	Sandy silt			
1-3.5	8" Sonic	SW	Sand, silt and grvel			
3.5-4.5	8" Sonic	MH	Silt			
4.5-7	8" Sonic	SW	Sand, silt and gravel			
7-8.5	8" Sonic	SW	Sand and gravel			
8.5-11.5	8" Sonic	SP	Sand, fine, dry			
11.5-12.5	8" Sonic	SW	Sand and gravel			
12.5-17	8" Sonic	SP	Sand, fine, dry			
17-21	8" Sonic	SP	Sand, fine, dry			
21-21.5	8" Sonic	CH	Clay, gray			
21.5-22.5	8" Sonic	SP	Fine, sand, dry			
22.5-27	8" Sonic	СН	Silty clay, red mottling in silt zones			
27-37	8" Sonic	CH	Fat clay, firm, moist			
37-38.5	8" Sonic	CH	Fat clay, firm moist			
			$38.5 \rightarrow 47$ drop out of cole barrel			
38.5-49	8" Sonic	СН	Fat clay, firm, moist			
49-55	8" Sonic	CH	Clay, firm; moist, gray			
55-57	8" Sonic	СН	Silty clay, gray with black silt mottling			
57-61	8" Sonic	CH	Silty clay, saturated			
61-67	8" Sonic	CH	Clay, firm, moist			
67-68.5	8" Sonic	MH	Silt, wet			
68.5-75	8" Sonic	CH	Silty clay, moist			
75-76	8" Sonic	MH	Silty, moist			
76-77	8" Sonic	CH	Silty clay			
77-78.5	8" Sonic	MH	Clay, firm, moist			
78.5-84	8" Sonic	CH	Silty clay, moist			
84-86.5	8" Sonic	CH	Clay, moist			
86.5-87	8" Sonic	SP	Sand, coarse, saturated			
87-89	8" Sonic	SP	Sandy, coarse, saturated			
89-90	8" Sonic	CH	Silty clay			
90-96.5	8" Sonic	MH	Silt with clay stringers, saturated			
96.5-97	8" Sonic	CH	Clay			

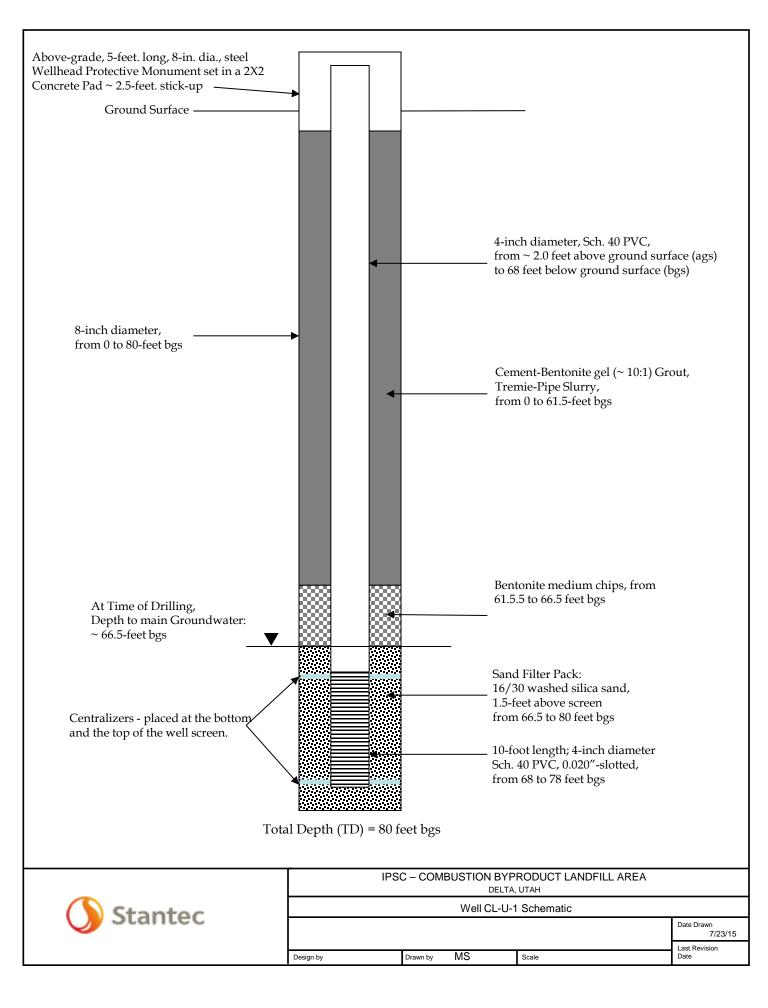
CL-W-9

TD = 99; PVC sump 87-77; screen 77-67; sand 87-62 centralizers 67.5 and 76.5 Drilling Method: Sonic

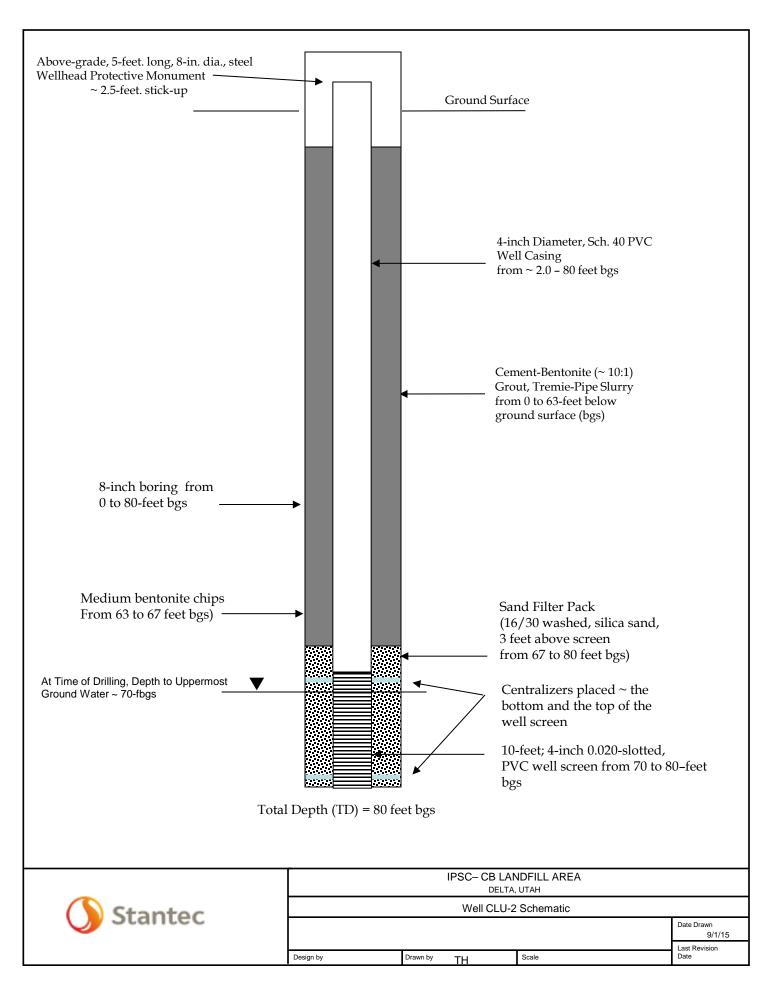
Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler

CL-U-1					
Interval (feet)	Drilling Method	USCS	Sample Description		
7/22/2015					
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.		
0.5-2	8" Sonic	SP/SM	SAND with silt:		
2-2.5	8" Sonic	SM/ML	Silty SAND/Sandy Silt:		
2.5-5	8" Sonic	SM	Silty SAND:		
5-6	8" Sonic	CL	CLAY:		
6-7.5	8" Sonic	SM/ML	Silty SAND/Sandy SILT with clay:		
7.5-10	8" Sonic		CLAY:		
10-11	8" Sonic	CII	CLAY:		
11-12.5	8" Sonic	СН	CLAY:		
12.5-13.5	8" Sonic	İ	CLAY:		
13.5-15	8" Sonic	ML	Sandy SILT:		
15-16.5	8" Sonic	SP/SM	SAND with silt:		
16.5-17.5	8" Sonic	SM	Silty SAND:		
17.5-20	8" Sonic		SAND:		
20-21	8" Sonic	SP	SAND:		
21-22	8" Sonic	ML	Sandy SILT:		
22-23	8" Sonic	SP	SAND:		
23-24	8" Sonic	ML	Sandy SILT:		
24-25	8" Sonic	SP	SAND:		
25-26	8" Sonic		Sandy SILT:		
26-28	8" Sonic	19	Sandy SILT:		
28-30	8" Sonic	ML	SILT with clay:		
30-32	8" Sonic		Sandy SILT:		
32-34	8" Sonic	SP	SAND:		
34-35	8" Sonic	ML	Sandy SILT with clay:		
35-40	8" Sonic	CL	CLAY:		
40-42	8" Sonic	ML	SILT with clay:		
42-45	8" Sonic		CLAY:		
45-55	8" Sonic	СН	CLAY:		
55-65	8" Sonic		CLAY:		
			7/23/2015		
65-66.5	8" Sonic	СН	Sandy CLAY:		
66.5-67.5	8" Sonic	SP/SM	SAND with silt:		
67.5-72.5	8" Sonic	51 / 511	SAND with silt:		
72.5-73.5	8" Sonic	SP	SAND:		
73.5-75	8" Sonic	SC	Clayey SAND:		
75-76.5	8" Sonic	SW	SAND:		
76.5-79	8" Sonic	SP	SAND:		
79-80	8" Sonic	СН	CLAY:		

CL-U-1


TD = 80'; PVC 4-inch screen from 68 to 78; PVC 4-inch riser from -2.5 to 68

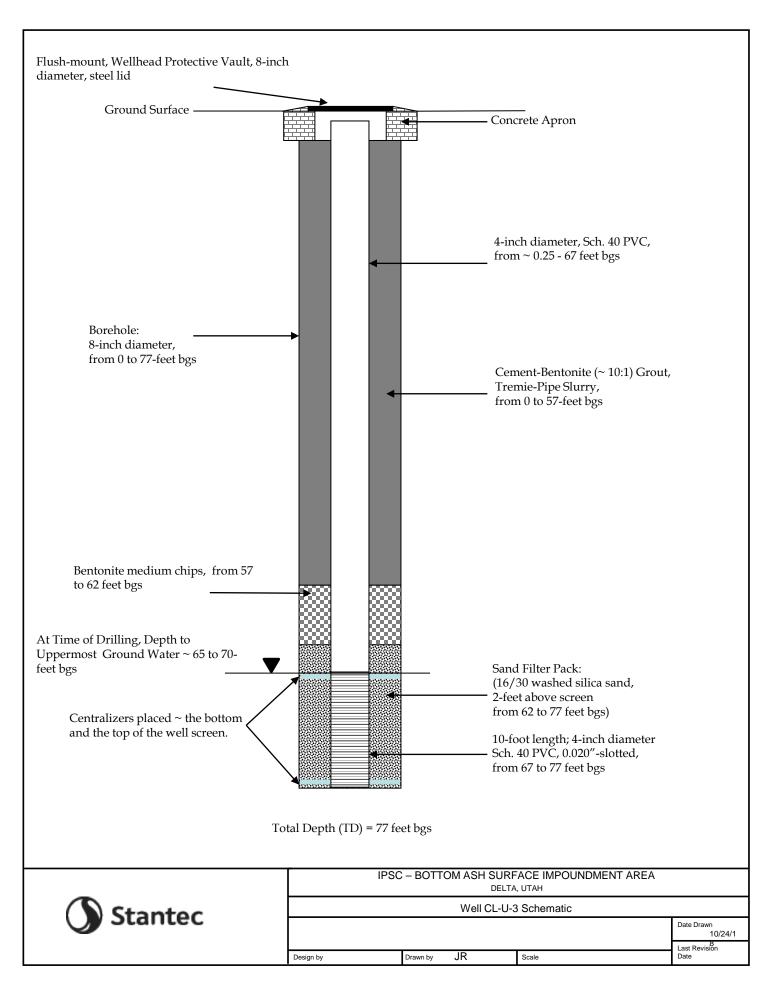
Drilling Method: Guspech GS24-300RS 8" Rotosonic


Drilling Company - Cascade Drilling

Driller - Daniel Dodge

Geologist - Michael Sauerwein

TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70

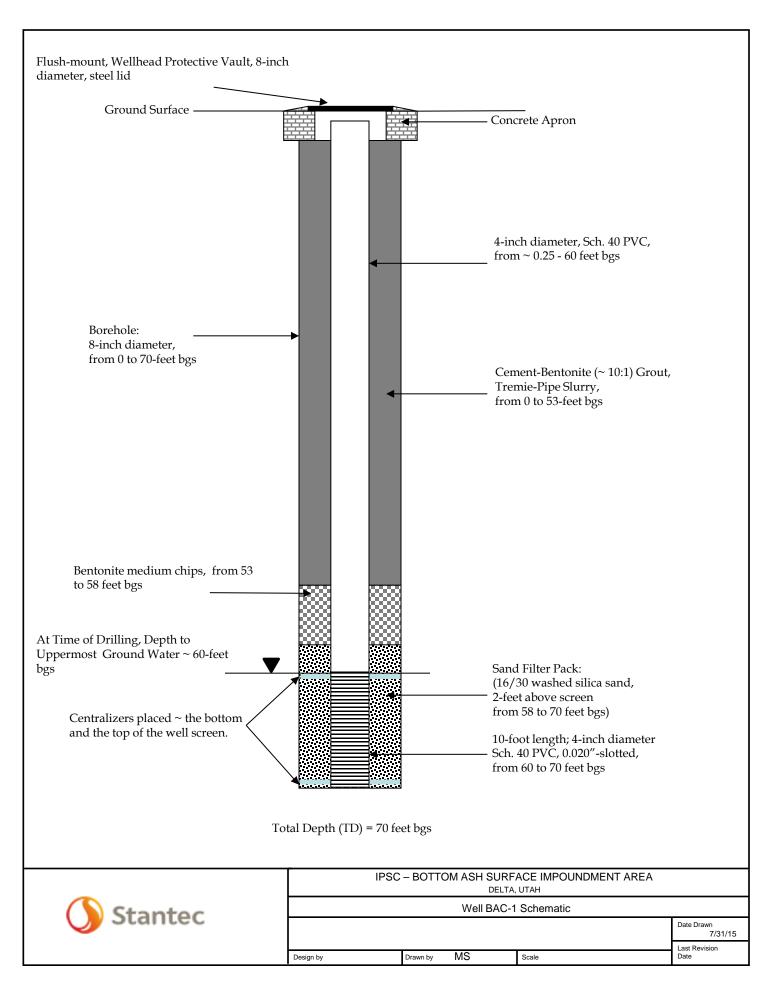


CL-U-3 USCS Interval (feet) Drilling Method Sample Description 3/26/2018 Sand, silt and clay 0-2 8" Sonic SW 2-14 8" Sonic SP Sand, poorly graded, dry 14-17 8" Sonic MH Silt, dry 17-18 8" Sonic MH Silt with trace clay, dry 18-27.5 8" Sonic MH Silt, dry 27.5-37 8" Sonic CH Clay, silt stringers every 3-10", red mottling, moist 37-48 8" Sonic CH Clay, distance between silt stringers increasing to 10-18" 48-57 CH Clay, massively bedded 8" Sonic 57-64 8" Sonic CH Clay, massively bedded 64-65 8" Sonic SP Sand, medium-grain, saturated 65-66 8" Sonic MH Silt, saturated 66-67 8" Sonic SP Sand, saturated 67-74 8" Sonic SP Sand, saturated 74-75 8" Sonic CH Clay 75-77 8" Sonic SP Sand, saturated

TD = 77; screen 67-77; sand 62-7; plug 57-62; grout to surface; centralizers 66.5 and 76.5

Drilling Method: Sonic

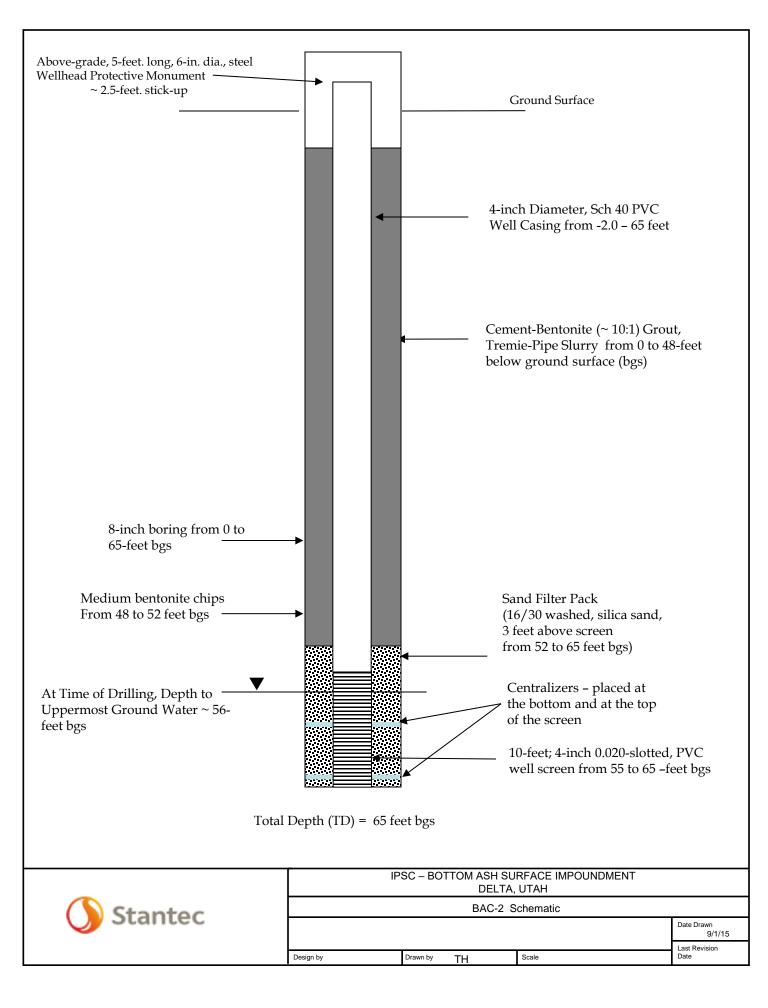
Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler



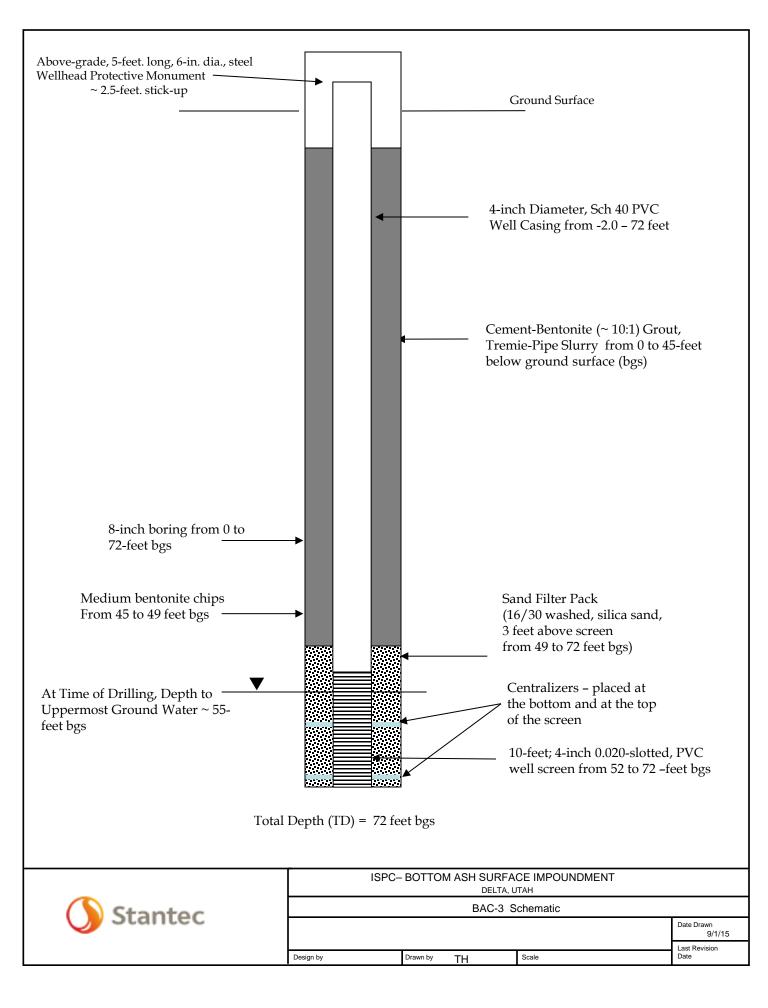
			BAC-1	
Interval (feet)	Drilling Method	USCS	Sample Description	
			7/31/2015	
0-0.75	8" Sonic	Concrete	Surface - concrete soil mixture	
0.75-2.5	8" Sonic	SM	Silty SAND:	
2.5-3.25	8" Sonic		Silty SAND:	
3.25-5	8" Sonic		SAND with silt:	
5-12.5	8" Sonic	SP/SM	SAND with silt:	
12.5-13.5	8" Sonic	,	SAND with silt:	
13.5-14.5	8" Sonic		Sandy SILT:	
14.5-15	8" Sonic	ML	Sandy SILT:	
15-17.5	8" Sonic	SP	SAND:	
17.5-19	8" Sonic	SP/SW	SAND:	
19-20	8" Sonic	SP/SM	SAND with silt:	
20-21.5	8" Sonic	SP	SAND:	
21.5-22.5	8" Sonic	51	Sandy SILT:	
22.5-24	8" Sonic	ML	Sandy SILT:	
22.3-24	8 Sonic 8" Sonic	SP	SAND:	
25-26.75	8" Sonic	SM		
26.75-27.5	8 Sonic 8" Sonic	SIVI	Silty SAND: SAND:	
26.75-27.5	8 Sonic 8" Sonic	SP	SAND: SAND:	
27.5-28.5 28.5-30	8" Sonic 8" Sonic	SM		
			Silty SAND:	
30-31.5	8" Sonic	SP	SAND:	
31.5-32.25	8" Sonic	SM	Silty SAND:	
32.25-33.75	8" Sonic	SP/SM	SAND with silt:	
33.75-35	8" Sonic	SM	Silty SAND:	
35-36	8" Sonic	SP/SM	SAND with silt:	
36-37.5	8" Sonic	SM	Silty SAND:	
37.5-38	8" Sonic	SP/SM	SAND with silt:	
38-38.5	8" Sonic	SM	Silty SAND:	
38.5-40	8" Sonic	ML	Sandy SILT:	
40-42.5	8" Sonic	SC	Clayey SAND:	
42.5-43.5	8" Sonic		Sandy CLAY:	
43.5-44.5	8" Sonic		Sandy CLAY:	
44.5-45	8" Sonic	CL	Sandy CLAY:	
45-46	8" Sonic		Sandy CLAY:	
46-47	8" Sonic		Sandy CLAY:	
47-47.75	8" Sonic	SW	SAND:	
47.75-48.5	8" Sonic		Sandy CLAY:	
48.5-50	8" Sonic		Sandy CLAY:	
50-51.5	8" Sonic	СН	CLAY:	
51.5-53.5	8" Sonic	Сп	Sandy CLAY:	
53.5-56	8" Sonic		CLAY:	
56-57.5	8" Sonic		Sandy CLAY:	
57.5-58	8" Sonic	SC	Clayey SAND:	
58-59.5	8" Sonic	CH	CLAY:	
59.5-60	8" Sonic	SC	Clayey SAND:	
60-64.5	8" Sonic	SM	Silty SAND with clay:	
64.5-65.5	8" Sonic	SC	Clayey SAND:	
65.5-67.5	8" Sonic	SP	SAND:	
67.5-70	8" Sonic	SW	SAND:	

TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from 0 to 60

Drilling Method: Guspech GS24-300RS, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Daniel Dodge Geologist - Michael Sauerwein

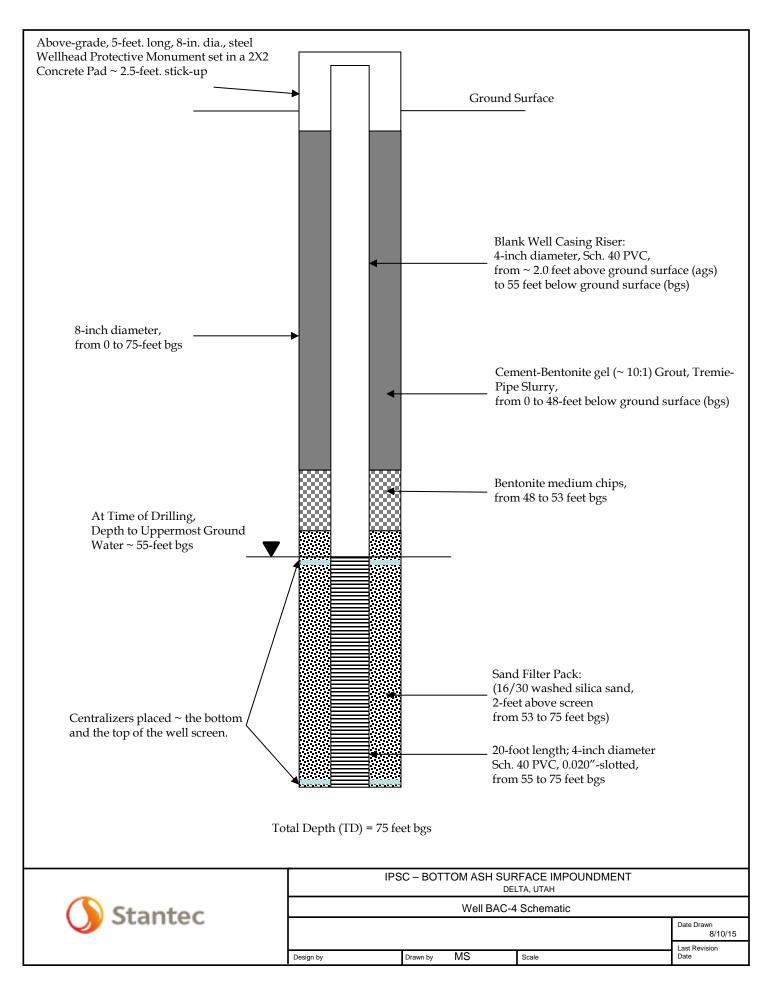
BAC-2			
Interval	Defilies Method	Const. Description	
(feet)	Drilling Method	Sample Description	
		7/29/2015	
0-6	8" Sonic	Light Brown fine grained Sand, gravels, dry	
6-12	8" Sonic	Light Brown fine grained SAND, moist	
12-18	8" Sonic	Light Brown fine to medium grained sand, dry	
18-23	8" Sonic	Light Brown fine to medium grained sand, with a clay matrix, dry	
23-24	8" Sonic	Light Brown fine to medium grained sand, very moist, trace amount of clay	
24-26	8" Sonic	Brown fine to medium grained sand, slightly moist	
26-30	8" Sonic	Brown fine to medium grained sand, with gravels present, slightly moist	
30-33	8" Sonic	Light Brown fine grained sand, slightly moist	
33-34	8" Sonic	Light Brown CLAY, very moist, high plasticity	
34-36	8" Sonic	Light Brown fine grained sand, with a clay matrix, moist	
36-38	8" Sonic	Light Brown Silty CLAY, moderately plastic, slightly moist	
38-40	8" Sonic	Brownish Red silty CLAY, good plasticity, slightly moist	
40-41	8" Sonic	Brown fine grained SAND, saturated	
41-42	8" Sonic	Brown SILT with a clay matrix, slightly moist	
42-52	8" Sonic	Reddish brown CLAY, high plasticity, dry to slightly moist	
52-55	8" Sonic	Reddish brown CLAY, high plasticity, dry to slightly moist, very dense	
55-56	8" Sonic	Brown fine grained SAND with a clay matrix very moist to saturated	
56-57	8" Sonic	Reddish brown CLAY, high plasticity, slightly moist to moist	
57-65	8" Sonic	Brown fine grained SAND with a clay matrix, saturated	
		TD = 65; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55	


Drilling Company - Cascade Drilling Driller - Rick Mallett

Geologist - Thomas Hedrick

	BAC-3				
Interval (feet)	Drilling Method	Sample Description			
(rect)	Dining incuroa	7/28/2015			
0-8.5	8" Sonic	Light Brown fine grained Sand, dry			
8.5-11	8" Sonic	Light Brown fine to medium grained SAND, moist			
11-14	8" Sonic	Light Brown fine grained sand, with a clay matrix, dry			
14-17	8" Sonic	Gravels with fine to medium grained SAND, slightly moist			
17-20	8" Sonic	Brown fine grained sand, slightly moist			
20-22	8" Sonic	Brown fine to medium grained sand, with a clay matrix, slightly moist			
22-26	8" Sonic	Brown fine to medium grained sand, with a clay matrix, moist			
26-30	8" Sonic	Brown fine grained sand, moist			
30-43	8" Sonic	Light Brown CLAY, slightly moist to moist, high plasticity			
		30-33 Silty CLAY, poor plasticity			
		33-35 Silty CLAY, moderately plastic			
		35-43 very little silt present, high plasticity			
43-45	8" Sonic	Transitioned to a Reddish Brown CLAY, dry, high plasticity			
45-50	8" Sonic	Transitioned to a Brown CLAY, dry, high plasticity			
50-55	8" Sonic	Light Brown CLAY, moist, high plasticity			
55-58	8" Sonic	Light Brown fine grained SAND, with a clay matrix, slightly moist to moist			
58-72	8" Sonic	Light Brown CLAY, with a sandy matrix medium to poor plasticity, moist			

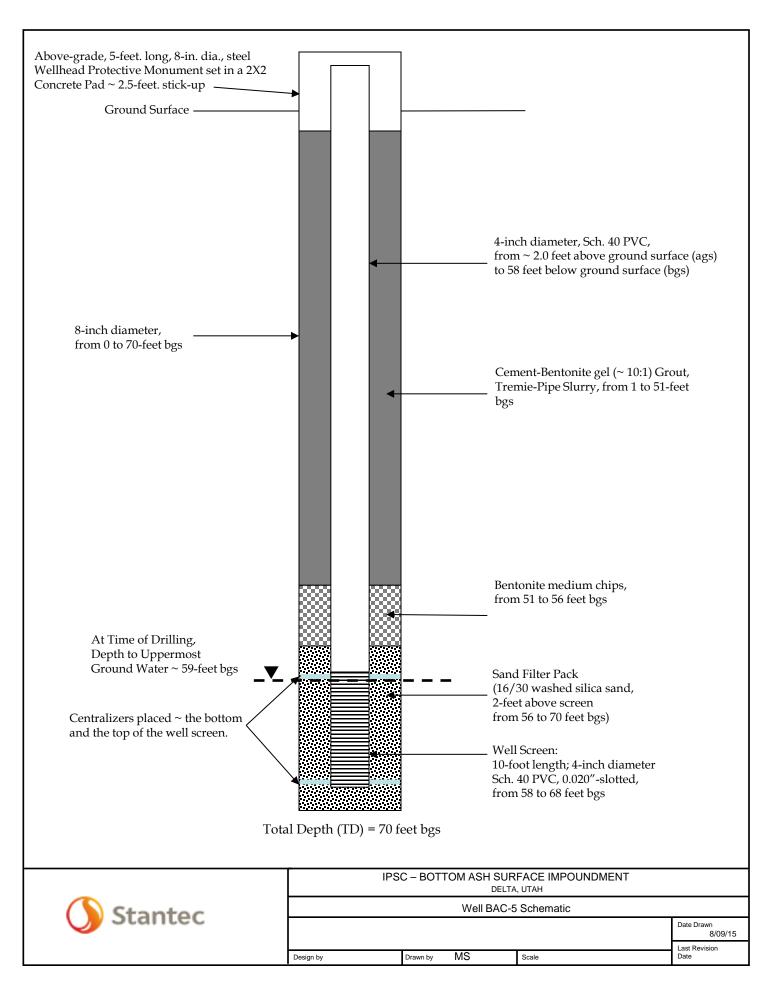
TD = 72; PVC 4-inch screen from 52 to 72; PVC 4-inch riser from -2.5 to 52



			BAC-4
Interval (feet)	Drilling Method	USCS	Sample Description
			8/10/2015
0-0.5	8' Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-2.5	8' Sonic	SP/SM	SAND with silt:
2.5-5	8' Sonic		SAND:
5-9	8' Sonic	SP	SAND:
9-10	8' Sonic	SP/SM	SAND with silt:
10-15	8' Sonic	SP	SAND:
15-17.5	8' Sonic		SAND with silt:
17.5-19	8' Sonic	SP/SM	SAND with silt:
19-2	8' Sonic		Clayey SAND:
20-21	8' Sonic	SC	Clayey SAND:
20-21	8' Sonic	CL	Sandy CLAY:
22-22.5	8' Sonic	ML	Sandy SILT:
22-22.5	8' Sonic	CL	Sandy CLAY:
25-32.5	8' Sonic	СН	CLAY:
32.5-33.75	8' Sonic	SP	SAND:
33.75-35	8' Sonic	SM	SAND: Silty SAND:
35-36.5	8' Sonic	3111	SAND with silt:
36.5-37.5	8' Sonic	SP/SM	SAND with silt:
37.5-38	8 Sonic 8' Sonic	SM	SAND with sit: Silty SAND:
38-38.75	8' Sonic	CH	Sandy CLAY:
38.75-39		SP/SM	SAND with silt:
38.75-39	8' Sonic 8' Sonic	CH SP/SM	SAND with sit: Sandy CLAY:
40-42.5	8' Sonic 8' Sonic	ML	
40-42.5		SM	Sandy SILT with clay:
42.5-43.5 43.5-45	8' Sonic	SIM	Silty SAND and clay: CLAY:
43.5-45 45-47.5	8' Sonic 8' Sonic	СН	CLAY: CLAY:
	8' Sonic 8' Sonic	СП	CLAY: CLAY:
47.5-48.5 48.5-50			
	8' Sonic	ML	Clayey SILT with sand:
50-51.25	8' Sonic		Clayey SILT:
51.25-52.5	8' Sonic	CH	CLAY:
52.5-55	8' Sonic	SC	Clayey SAND:
55-56.5	8' Sonic	SM	Silty SAND:
56.5-57	8' Sonic	ML	Clayey SILT with sand:
57-57.5	8' Sonic	CH	CLAY:
57.5-58.5	8' Sonic		CLAY:
58.5-59.5	8' Sonic		Clayey SILT with sand:
59.5-61	8' Sonic	ML	Clayey SILT with sand:
61-64	8' Sonic		Clayey SILT with sand:
64-65	8' Sonic		Clayey SILT with sand:
65-65.5	8' Sonic	SM	Silty SAND:
65.5-67	8' Sonic	CL	Silty CLAY:
67-67.5	8' Sonic	ML	Clayey SILT:
67.5-69	8' Sonic	СН	CLAY:
69-69.5	8' Sonic		CLAY:
69.5-70	8' Sonic		CLAY:
70-72.5	8' Sonic	ML	Sandy SILT with clay:
72.5-74	8' Sonic	CH	Silty CLAY:
74-75	8' Sonic	SM	Silty SAND:

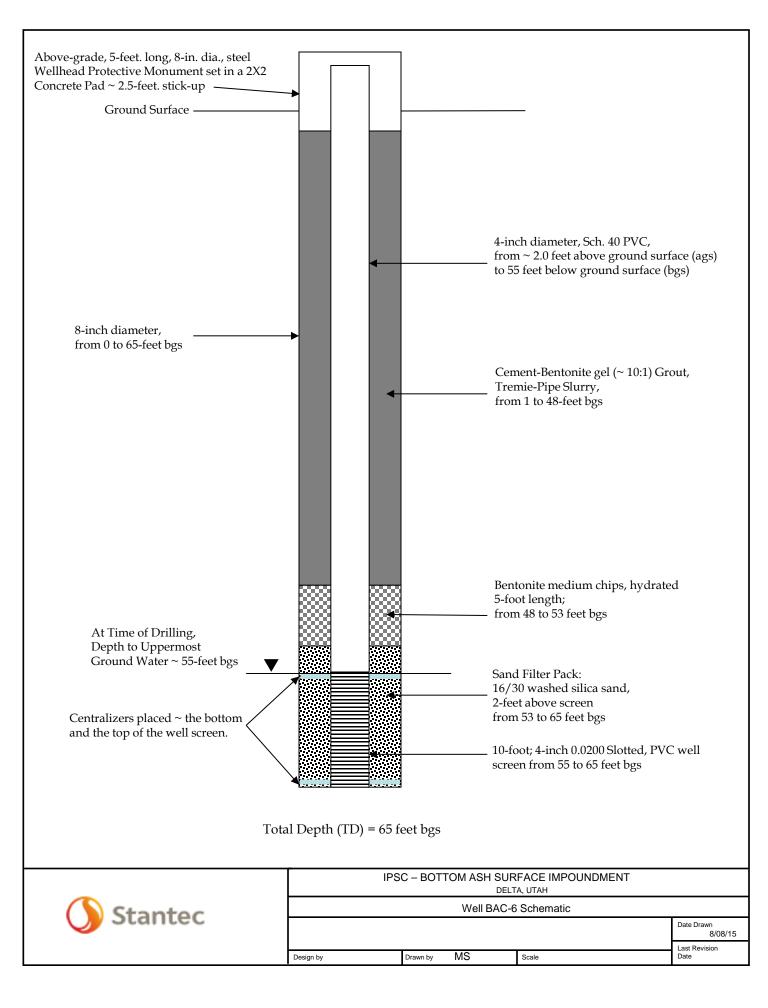
TD = 75'; PVC 4-inch screen from 55 to 75; PVC 4-inch riser from -2.5 to 55

Drilling Method: Prosonic T600, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

			BAC-5			
Interval (feet)	Drilling Method	USCS	Sample Description			
	8/9/2015					
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
0.5-2.5	8" Sonic	SP/SM	Gravelly SAND with silt:			
2.5-3	8" Sonic		SAND:			
3-6.5	8" Sonic	SP	SAND:			
6.5-10	8" Sonic	51	SAND:			
10-12.5	8" Sonic		SAND:			
12.5-15	8" Sonic	SP/SM	SAND with silt:			
15-19	8" Sonic	SM	Silty SAND:			
19-19.5	8" Sonic	SC	Clayey SAND:			
19.5-20	8" Sonic	SP/SM	SAND with silt:			
20-22.5	8" Sonic		Sandy CLAY:			
22.5-23.75	8" Sonic		Sandy CLAY:			
23.75-25	8" Sonic	CL	Sandy CLAY:			
25-27.5	8" Sonic		Sandy CLAY:			
27.5-30	8" Sonic		CLAY:			
30-32.5	8" Sonic	CL/CH	CLAY:			
32.5-33.5	8" Sonic	SP	SAND:			
33.5-35	8" Sonic	51	SAND:			
35-36	8" Sonic	SC	Clayey SAND:			
36-37.5	8" Sonic	ML	Sandy SILT:			
37.5-38.5	8" Sonic	ML	Sandy SILT:			
38.5-40	8" Sonic		Silty SAND with clay:			
40-42.5	8" Sonic	SM	Silty SAND:			
42.5-44.25	8" Sonic		Silty SAND with clay:			
44.25-45	8" Sonic		CLAY:			
45-46.5	8" Sonic	СН	CLAY:			
46.5-47.5	8" Sonic	СП	CLAY:			
47.5-49	8" Sonic		CLAY:			
49-50.75	8" Sonic	SM	Silty SAND:			
50.75-52.5	8" Sonic	CH	CLAY:			
52.5-53.5	8" Sonic	СП	CLAY:			
53.5-55.5	8" Sonic	SP	SAND:			
55.5-57.5	8" Sonic	СН	CLAY:			
57.5-59	8" Sonic	СП	CLAY:			
59-60	8" Sonic	SM	Silty SAND with clay:			
60-62.5	8" Sonic	SP	SAND:			
62.5-63	8" Sonic	SC	Clayey SAND:			
63-65	8" Sonic	SP	SAND:			
65-65.75	8" Sonic	SC	Clayey SAND:			
65.75-66.5	8" Sonic	CH	CLAY:			
66.5-67.5	8" Sonic	SC	Clayey SAND:			
67.5-69	8" Sonic	CH	CLAY:			
69-70	8" Sonic	СП	CLAY:			

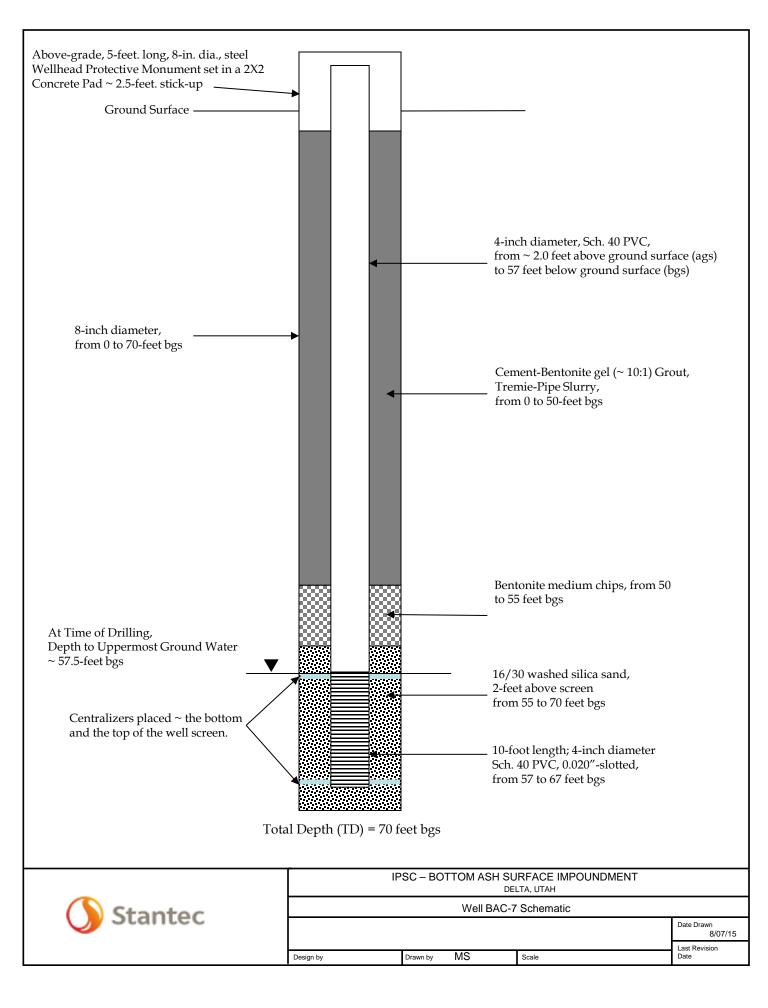
TD = 70'; PVC 4-inch screen from 58 to 68; PVC 4-inch riser from -2.5 to 58 Drilling Method: Prosonic T600, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

	BAC-6					
Interval (feet)	Drilling Method	USCS	Sample Description			
	8/8/2015					
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
0.5-2.5	8" Sonic	SP/SM	Gravelly SAND with silt:			
2.5-5	8" Sonic	SP	SAND:			
5-6.5	8" Sonic	SP/SM	SAND with silt:			
6.5-7.5	8" Sonic		SAND:			
7.5-10	8" Sonic	SP	SAND:			
10-13.5	8" Sonic		SAND:			
13.5-15	8" Sonic	SM	Silty SAND:			
15-16	8" Sonic	SP	SAND:			
16-17.5	8" Sonic	SM	Silty SAND:			
17.5-18.25	8" Sonic	SP/SM	SAND with silt:			
18.25-18.75	8" Sonic	CL	Sandy CLAY:			
18.75-20	8" Sonic	SC	Clayey SAND:			
20-21.5	8" Sonic	CH	Sandy CLAY:			
21.5-23	8" Sonic	SM	Silty SAND:			
23-25	8" Sonic	CL	CLAY:			
25-27.5	8" Sonic		CLAY:			
27.5-30	8" Sonic	СН	CLAY:			
30-32.5	8" Sonic	СП	CLAY:			
32.5-33.5	8" Sonic		CLAY:			
33.5-35	8" Sonic	SW	SAND:			
35-36	8" Sonic	SM	Silty SAND:			
36-37.5	8" Sonic	SP/SM	SAND with silt:			
37.5-38.5	8" Sonic	CH	CLAY:			
38.5-40	8" Sonic	0.4	Silty SAND with clay:			
40-42.5	8" Sonic	SM	Silty SAND:			
42.5-43.5	8" Sonic	CLL	Sandy CLAY:			
43.5-45	8" Sonic	CH	CLAY:			
45-45.5	8" Sonic	SC	Clayey SAND:			
45.5-47.5	8" Sonic	CH	CLAY:			
47.5-48	8" Sonic	SP	SAND:			
48-49.5	8" Sonic	SM	Silty SAND with clay:			
49.5-50	8" Sonic		Sandy CLAY:			
50-52.5	8" Sonic	СН	CLAY:			
52.5-55	8" Sonic		CLAY:			
55-56	8" Sonic	SM	Silty SAND:			
56-60	8" Sonic	C147	SAND:			
60-61	8" Sonic	SW	SAND:			
61-62.5	8" Sonic	CLI	Sandy CLAY:			
62.5-63.5	8" Sonic	СН	CLAY:			
63.5-65	8" Sonic	SC	Clayey SAND:			

TD = 65'; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55 Drilling Method: Guspech GS24-300R5, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Daniel Dodge Geologist - Michael Sauerwein


Boring Logs ISPC Delta, Utah

Interval (feet)	Drilling Method	USCS	Sample Description
			8/7/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-2	8" Sonic	SP/SM	Gravelly SAND:
2-2.5	8" Sonic	,	Gravelly SAND:
2.5-5	8" Sonic	CD	SAND:
5-7	8" Sonic	SP	SAND:
7-8.5	8" Sonic		SAND:
8.5-9	8" Sonic	SP/SM	SAND with silt:
9-9.5	8" Sonic	SP	SAND:
9.5-11	8" Sonic	SP/SM	SAND with silt:
11-13	8" Sonic	5P/5M	SAND with silt:
13-17	8" Sonic	SM	Silty SAND:
17-18.5	8" Sonic	SIM	Silty SAND:
18.5-19	8" Sonic	ML	Sandy SILT:
19-20.25	8" Sonic	SP/SM	SAND with silt:
20.25-22	8" Sonic	CL	Sandy CLAY:
22-24	8" Sonic	CL	Sandy CLAY:
24-25	8" Sonic	SC	Clayey SAND:
25-27.5	8" Sonic	CH	CLAY:
27.5-36.5	8" Sonic	СП	CLAY:
36.5-40	8" Sonic	SP	SAND:
40-41.25	8" Sonic	SF	SAND:
41.25-43.75	8" Sonic	SP/SM	SAND with silt:
43.75-45	8" Sonic		CLAY:
45-47.5	8" Sonic	CH	CLAY:
47.5-49	8" Sonic		CLAY:
49-50	8" Sonic	SM	Silty SAND:
50-57.5	8" Sonic	CH	CLAY:
57.5-60	8" Sonic	SW	SAND:
60-62.5	8" Sonic	311	SAND:
62.5-64	8" Sonic	SP	SAND:
64-65	8" Sonic		CLAY:
65-66.25	8" Sonic	СН	Sandy CLAY:
66.25-67.5	8" Sonic	CII	CLAY:
67.5-70	8" Sonic		CLAY:

TD = 70'; PVC 4-inch screen from 57 to 67; PVC 4-inch riser from -2.5 to 57

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Daniel Dodge Geologist - Michael Sauerwein

Project Name: Intermountain Power Service Corporation Boring Monitor Well: BAC-8

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-04-29

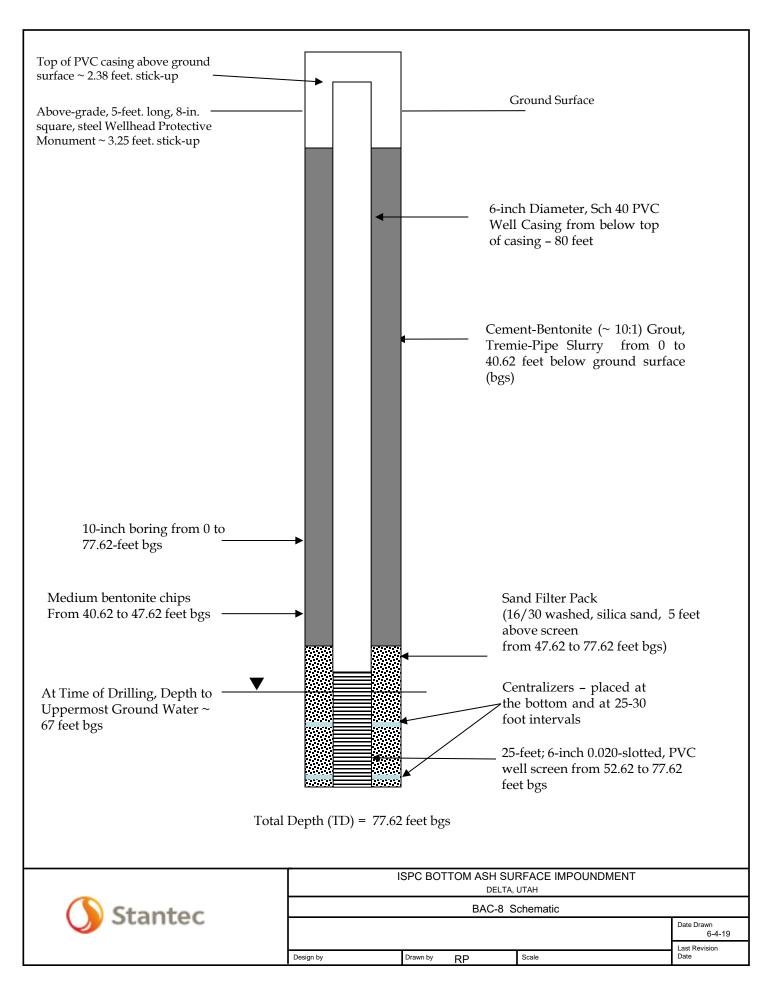
Driller: Ryan Miller Logged by: Rich Pratt Depth to Water at Drilling: 67 feet Depth to Water at Drilling (static at 24 hours): 45.59 feet

BAC-8

Interval (feet)	Description
0 - 1	Light brown fine-grained sand with clay, dry
1 - 13	Light brown clay with silt, dry
13 - 17	Light brown fine-grained sand with clay, dry
17 - 18	Light brown clay with sand, moist
18 - 19	Medium brown sand, saturated
19 - 21	Light brown clay with sand, moist
21 - 27	Light brown clay with sand, dry
27 - 28	Brown with red clay, moist
28 - 31	Brown clay, moist
31 - 34	Gray clay, moist
34 - 43	Brown clay, moist
43 - 56	Medium brown medium-grained sand, moist
56 - 56.5	Medium brown medium-grained sand with pebbles, moist
56.5 - 57	Medium brown medium-grained sand, moist
57 - 63	Brown clay, moist
63 - 65	Medium brown fine-grained sand, moist
65 - 66.5	Brown clay, moist
66.5 - 67	Medium brown fine-grained sand, moist
67 - 68	Medium brown fine-grained sand, saturated
68 - 69.5	Medium brown fine-grained sand
69.5 - 77	Red and brown clay

Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up


Casing, solid (6-inch PVC): 0-52.62 feet

Screen (6 inch, 0.02 slotted, PVC): 52.62-77.62 feet Sand Pack: 16/30 sand, 47.62-77.62 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal 40.62-47.62 feet

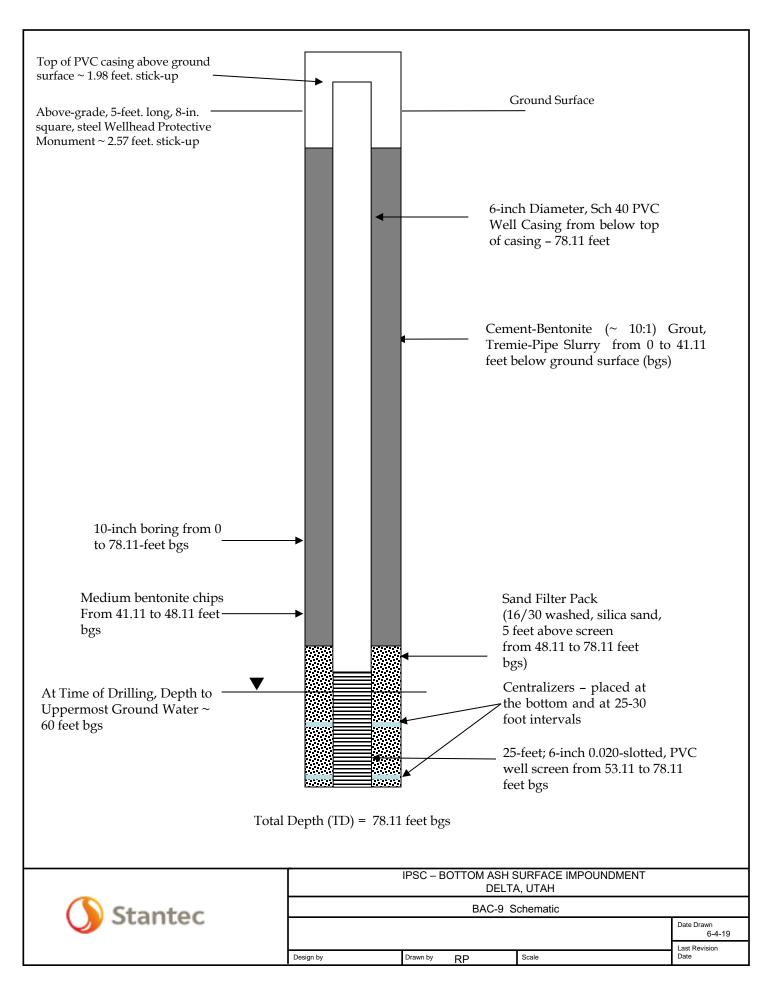
Top of 6 in. PVC Casing Elevation (Relative Datum Survey): NA

Top of Manhole Cover (Relative Datum Survey): NA

Project Name: Intermountain Power Service Corporation Boring Monitor Well: BAC-9

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-05-1

Driller: Ryan Miller Logged by: John Russell Depth to Water at Drilling: 60 feet Depth to Water at Drilling (static at 24 hours): 44.82 feet


BAC-9

Interval (feet)	Description
0 - 10	Light gray to brown silt with clay to clay with silt, dry
10 - 20	Light gray to brown silt, dry
20 - 30	Light brown silt, dry
30 - 44	Light brown silt, dry
44 - 50	Medium brown clay, dry
50 - 54	Light brown silt to clay with silt, moist
54 – 54.5	Medium brown silt with clay, moist
54.5 - 60	Light brown clay with silt, moist
60 - 77	Medium brown silt with clay and silt stringers, saturated

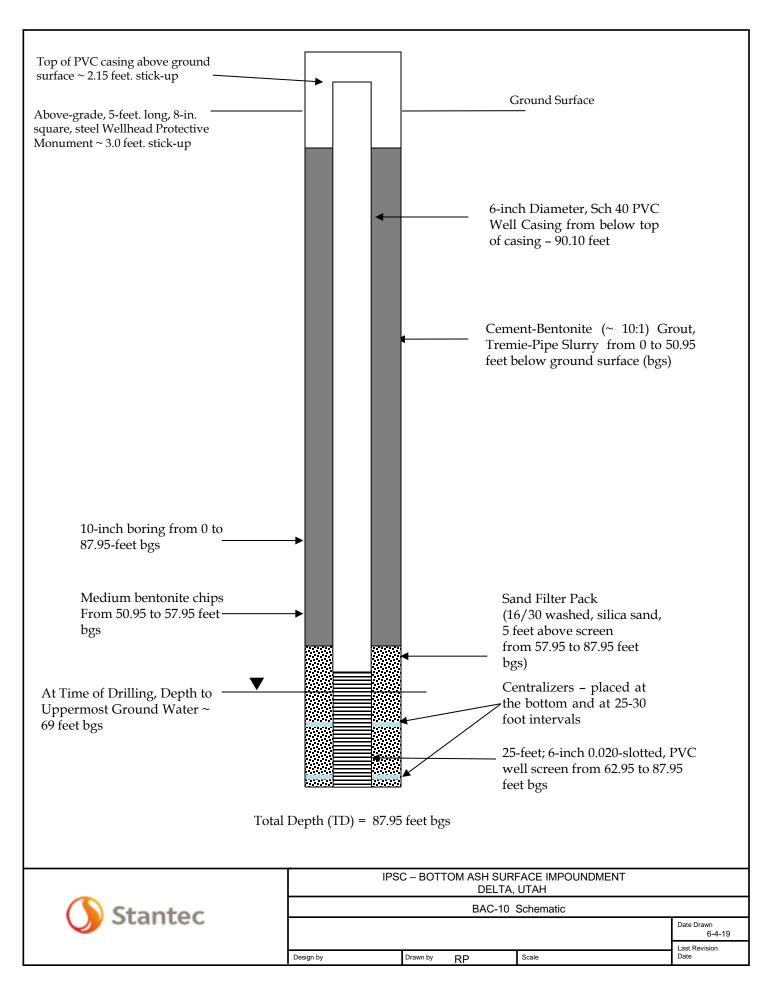
Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up Casing, solid (6-inch PVC): 0-53.11 feet Screen (6 inch, 0.02 slotted, PVC): 53.11-78.11 feet Sand Pack: 16/30 sand, 48.11-78.11 feet Bentonite Seal: Hydrolyzed bentonite pellet seal 41.11-48.11 feet Top of 6 in. PVC Casing Elevation (Relative Datum Survey): NA

Top of Manhole Cover (Relative Datum Survey): NA

Project Name: Intermountain Power Service Corporation Boring Monitor Well: BAC-10

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-05-3


Driller: Ryan Miller Logged by: Rich Pratt Depth to Water at Drilling: 69 feet Depth to Water at Drilling (static at 24 hours): 63.1 feet

BAC-10

Interval (feet)	Description
0 - 1	Light brown silt, dry
1 - 3	Light brown silt with clay, dry
3 - 14	Light brown clay with silt, dry
14 - 17	Light brown fine-grained sand, dry
17 - 19	Light brown fine-grained sand with clay, moist
19 - 21	Light brown fine-grained sand with clay, moist
21 - 23	Light brown fine-grained sand, moist
23 - 25	Light brown fine-grained sand with clay, moist
25 - 26	Light brown fine-grained sand, moist
26 - 27	Light brown fine-grained sand with clay, moist
27 - 28	Light brown fine-grained sand, moist to moist
27 - 34	Light brown fine-grained sand, moist
34 - 34.5	Light brown silt with clay, dry
34.5 - 40.5	Red brown clay, dry
40.5 - 41	Medium brown medium grained sand, moist to moist
41 - 45	Medium brown clay, moist
45 - 46	Medium brown sand, moist to moist
46 - 48	Medium brown clay, moist
48 - 56.5	Red brown clay, moist
56.5 - 57	Gray clay, moist
57 - 62	Light brown clay, moist to moist
62 - 63	Medium brown medium grained sand, moist
63 - 64	Medium brown medium grained sand with clay, moist
64 - 69	Red, brown, and gray clay, moist
69 - 69.5	Medium brown sand, saturated
69.5 - 77	Red, brown, and gray clay
77 - 79	Medium brown clay with sand
79 - 81	Medium brown clay
81 - 85	Medium brown clay with sand

85 - 87	Medium brown clay, moist			
	Well Completion materials and Depth	Intervals (feet) Below Ground Surface		
Surface Comple	etion: Stick-up	Top of 6 in. PVC Casing Elevation (Relative Datun		
Casing, solid (6-inch PVC): 0-62.95 feet Screen (6 inch, 0.02 slotted, PVC): 62.95-87.95 feet		Survey): NA Top of Manhole Cover (Relative Datum Survey):		
Bentonite Seal: 50.95-57.95 feet	Hydrolyzed bentonite pellet seal			

INTERMOUNTAIN	POWER SERVICE CORP.	TORNG WELL ID: CLIENT PROJECT: SITE LOCATION	BAC-11 Intermountain Power Service C Monitoring Well Installation Southwest of Bottom Ash Basi		Stantec
DRILLING CONTRA DRILLING METHOE DRILLING EQUIPM SAMPLING METHO	Sonic ENT Pro Sonic 600 11-77	rel 0 to 91 ft bgs.,	ELEVATION:	DATE FINISHED:	LEVEL (ft. btoc.): 48.21
DEPTH (feet) ILITHOLOGICAL GRAPHIC		THOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
	y Graded Sand with Silt (SP-SI n (10 YR 7/3).	И), fine grained sand	I 100%, loose, soft, dry, very pal	e	Above ground monument with well cap
10—6/2). Poorl		C), fine grained san	ty, moist, light brownish gray (10 d 85%, loose, medium dense, m edium dense.		Borehole diameter 10 inches from 0 to 76 ft bgs., and 4 inches from 76 to 81 ft bgs.
	(CL), medium plasticity, mediun mottled with brownish yellow (1		noist, light brownish gray (10 YR		Grout 0 to 38 ft bgs.
yello∖	y Graded Sand with Clay (SP-5 vish brown (10 YR 6/4); clay lov as above, becoming brown (1	v plasticity, soft, nor	d 90%, loose, soft, moist, light cohesive.		0 to 50 ft bgs., 6 in dia., Sch. 40 PVC riser
40 Clay 6/4).	(CL), medium plasticity, mediu	n dense, cohesive, r	noist, light yellowish brown (10 Y	′R – Z	Bentonite 38 to 40 ft bgs.
5/3).		-	100%, loose, soft, wet, brown (10		
60 Clay 6/4). Clay Well	with Sand (CL), low plasticity, s	oft, wet, pale brown	noist, light yellowish brown (10 Y (10 YR 6/3). ə, soft, wet, brown (10 YR 5/3), tr		Filter Pack Sand 40 to 76 ft bgs.
65	e as above, increase in coarse e as 60 ft bgs.	grained sand betwee	en 65.2 to 65.8 ft bgs.		50 to 75 ft bgs., 6 in dia., Sch. 40 PVC screen with 0.02 inch slot
75-Clay 6/4).	(CL), medium plasticity, mediu	n dense, moist, coh	esive, light yellowish brown (10 Y	′R	aperture End Cap
	of borehole at 81 ft bgs. Installe	d monitoring well pe	r scope of work.		
Notes: bgs. = bel dia. = dia ft = feet	ow ground surface Sch. = Schedule neter YR = Yellow-Red				1

M A M	CLIENT: Intermountain Power Service Corporation OJECT: Monitoring Well Installation
DRILLING CONTRACTOR:Cascade DrillingDRILLING METHOD:SonicDRILLING EQUIPMENT:Pro Sonic 600 11-77287SAMPLING METHOD:4 inch sonic core barrel 0 to 91 f10 inch sonic core barrel 0 to 91 f	
 Poorly Graded Sand with Silt (SP-SM), fine grai (10 YR 6/3). Clay (CL), medium plasticity, medium dense, m Poorly Graded Sand with Clay (SP-SC), fine gra brownish gray (10 YR 6/2); clay 10%, low plasti Clay (CL), medium plasticity, medium dense, m mottled with brownish yellow (10 YR 6/8). Poorly Graded Sand with Silt (SP-SM), loose, s gray (10 YR 6/2), gravel 15%, small, subangula Poorly Graded Sand with Gravel (SW), fine to coa gray (10 YR 6/2), gravel 15%, small, subangula Poorly Graded Sand (SP), fine grained sand 95 5% clay. Clay with Sand (CL), medium plasticity, medium 6/3). Clay with Sand (CL), low plasticity, soft, non coi Clay with Sand (CL), Same as 38.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non coi Clay with Sand (CL), low plasticity, soft, non coi Clay with Sand (CL), Same as 34.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non coi Clay (CL), Same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non coi Clay (CL), same as 41.5 ft bgs. 	 oist, cohesive, light brownish gray (10 YR 6/2). oist, cohesive, light brownish gray (10 YR 6/2). inches sand 90%, loose, soft, dry, light oist, cohesive, very pale brown (10 YR 7/3), oist, cohesive, very pale brown (10 YR 7/3), oft, dry, pale brown (10 YR 6/3). oft, dry, pale brown (10 YR 6/3). oft to subrounded, assorted matrix. %, loose, soft, moist, pale brown (10 YR 6/3), oft dense, moist, light yellowish brown (10 YR 6/3), n dense, moist, light yellowish brown (10 YR 6/3). mesive, wet, brown (10 YR 5/3).
with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non co Well Graded Sand (SW) fine to coarse sand 98	nesive, wet, brown (10 YR 5/3).
Clay with Sand (CL), low to medium plasticity, r YR 5/3), mottled with light brownish gray (10 YF Well Graded Sand with Clay (SW-SC), fine grai 5/3): clay 10%, low plasticity, non cohesive.	R 6/2). ned sand 90%, loose, soft, wet, brown (10 YR 0.02 inch slot
Clay (CL), medium plasticity, medium dense, co 0 End of borehole at 81 ft bgs. Installed monitorin	End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet	1

INTERMO	MONITORNG WELL ID: CLIENT PROJECT: SITE LOCATION	BAC-13 Intermountain Power Service Corporation Monitoring Well Installation Southwest of Bottom Ash Basin Surface Impour	Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 11-77287 SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs.		COORDINATE SYSTEM:EASTING:NORTHING:ELEVATION:BOREHOLE ANDTOTAL DEPTH (ft.):91GROUNDWATERDATE STARTED:11/16/2019DATE FINISHED:	LEVEL (ft. btoc.): 45.38
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION	LOGGED BY: Michael Ward	WELL CONSTUCTION DIAGRAM
0 5 5	Poorly Graded Sand with Silt and Gravel (SP-SM), fine gravel 5%, loose, dry, light gray (10 YR 7/2). Same as above, becoming dense, consolidated. Well Graded Sand with Gravel (SW), sand fine to coars		Above ground monument with well cap
10- 15- 20- 25-	Vent Graded Sand with Grader (SW), sand line to coars pale brown (10 YR 6/3), gravel are subrounded. Same as above, no gravel, sand 100%. Clay with Sand (CL), low plasticity, dry to moist, non co clay interfingering, reddish yellow (5 YR 6/8). Same as above, moist. Same as above, medium plasticity. Poorly Graded Sand (SP), fine grained sand 100%, loo bedded. Clay with Sand (CL), low plasticity, moist, non cohesive interfingering, reddish yellow (5 YR 6/8).	hesive, brown (10 YR 5/3), with small se, dry, dark brown (10 YR 3/3), thinly	Grout 0 to 42 ft bgs. Borehole diameter 10 inches from 0 to 91 ft bgs.
30- 35- 	Well Graded Sand with Gravel (SW), sand fine to coars pale brown (10 YR 6/3), gravel are subrounded. Poorly Graded Sand (SP), medium grained sand 100%	, loose, soft, moist, brown (10 YR 5/3).	0 to 65 ft bgs., 6 in dia., Sch. 40 PVC riser
10- 15- 50-	Clay (CL), medium plasticity, medium dense, moist, bro Clay with Sand (CL), low plasticity, soft density, wet, no YR 6/4). Clay (CL), medium plasticity, medium dense, moist, col with mottled clay, brownish yellow (10 YR 6/8).	on cohesive, light yellowish brown (10	Bentonite 42 to 44 ft bgs.
50 _ 55 _ 60 _ 55 _	Clay with Sand (CL), low to medium plasticity, soft to m brown (10 YR 6/3). Clay (CL), medium plasticity, medium dense, moist to v YR 6/2). Clay with Sand (CL), low to medium plasticity, soft to m Clay (CL), high plasticity, stiff, moist, cohesive, pale bro	vet, cohesive, light brownish gray (10 redium dense, wet, brown (10 YR 6/3).	Filter pack sand 44 to 91 ft bgs.
70- 75-	Clay (CL), medium plasticity, medium dense, moist to v YR 6/2). Clay (CL), high plasticity, stiff, moist, cohesive, pale bro Poorly Graded Sand (SP), medium grained sand 95%, trace gravel 5%, rounded to subrounded, assorted mate	own (10 YR 6/3). loose, soft, wet, brown (10 YR 5/3),	65 to 90 ft bgs., 6 in dia., Sch. 40 PVC screen with 0.02 inch slot aperture
80- 85- 90-	Clay with Sand (CL), low plasticity, soft, wet, non cohes Clay (CL), medium plasticity, medium dense, moist to v End of borehole to 91 ft bgs., per scope of work.		End Cap
	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red		1

MONITORNG WELL ID: CLIENT INTERMOUNTAIN POWER SERVICE CORP. SITE LOCATION:	BAC-14 Intermountain Power Service Corporation Monitoring Well Installation Southwest of Bottom Ash Basin Surface	Stantec 🜔
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 11-77287 SAMPLING METHOD: 4 inch sonic core barrel 0 to 81 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.		DLE ANGLE: 90 degrees WATER LEVEL (ft. btoc.): 46.81
LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
 Well Graded Sand (SW), fine to coarse sand 95%, losse 5/4); 5% gravel, subrounded, small. Well Graded Sand with Clay (SW-SC), fine to coarse sand gray (10 YR 7/4). Clay with Sand (CL), low to medium plasticity, soft to me brown (10 YR 7/3). Clay (CL), medium plasticity, medium dense, moist, cohe trace mottled clay, brownish yellow (10 YR 6/8). Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand (SP), fine sand 100%, loose, soft, li Poorly Graded Sand with Clay (SP-SC), fine sand 90%, clay 10% low plasticity, medium to stiff dense, moit 6/3), mottled with reddish yellow (5YR 6/6). Poorly Graded Sand with Clay (SP-SC), fine sand 90%, clay 10% low plasticity, medium dense, wet, cohes 6/3, mottled with reddish yellow (5YR 6/6). Poorly Graded Sand with Clay (SP-SC), fine sand 85%, YR 5/3); clay 15% low plasticity, medium dense, wet, cohes Poorly Graded Sand with Clay (SP-SC), fine sand 85%, YR 5/3; clay 15% low plasticity, medium dense, wet, cohes Poorly Graded Sand (SP), fine grained, loose, soft, wet, Clay (CL), medium plasticity, soft, non cohesive. Poorly Graded Sand (SP), fine grained, loose, soft, wet, Clay 10%, low plasticity, soft, non cohesive. Poorly Graded Sand (SP), fine grained, loose, soft, wet, Clay 10%, low plasticity, soft, non cohesive. Poorly Graded Sand (SP), fine grained, loose, soft, wet, Clay 10%, low plasticity, soft, non cohesive. Poorly Graded Sand with Clay (SP-SC),	nd 95%, medium dense, dry, light edium dense, dry to moist, very pale esive, pale brown (10 YR 6/3), with ight brownish gray (10 YR 6/2). loose, soft, moist, light brownish gray esive, yellowish brown (10 YR 5/4). noist to wet, brown (10 YR 5/4). st, cohesive, light brownish red (5 YR loose, soft, moist, brown (10 YR 5/3); st, cohesive, light brownish red (5 YR loose, soft, moist, brown (10 YR 5/3); st, cohesive, light brownish red (5 YR brown (10 YR 5/3). sive, light yellowish brown (10 YR 6/4). loose medium dense, wet, brown (10 owish brown (10 YR 6/4). sive, light yellowish brown (10 YR 6/4). brown (10 YR 5/3). ve, brown (10 YR 5/3). loose, soft, wet, brown (10 YR 5/3); brown (10 YR 5/3). wn (10 YR 5/3).	 Above ground monument with well cap Borehole diameter 10 inches from 0 to 79 ft bgs. 4 inch borehole to 81 ft bgs. Grout 0 to 38 ft bgs., 6 in dia., Sch. 40 PVC riser Bentonite 38 to 40 ft bgs. Filter Pack Sand 40 to 79 ft bgs. 53 to 78 ft bgs., 6 in dia., Sch. 40 PVC screen with 0.02 inch slot aperture End Cap
85		
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT PROJECT: SITE LOCATION:	BAC-15 Intermountain Power Service Corporati Monitoring Well Installation Southwest of Bottom Ash Basin Surfac	() Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 11-77287 SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs.		OLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.): 46.03
DEPTH DEPTH DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Fill Poorly Graded Sand (SP), fine grained sand 98%, loose 5 Clay (CL), medium plasticity, medium dense, cohesive, i 10 trace white (10 YR 8/1), trace calcium carbonate betwee 10 Poorly Graded Sand (SP), fine grained sand 98%, loose 10 Poorly Graded Sand (SP), fine grained sand 98%, loose 20 Poorly Graded Sand with Clay (SP-SC), fine grained sand pale brown (10 YR 6/3), clay low plasticity, medium dense, cohesive, n 30 Clay (CL), medium plasticity, medium dense, cohesive, n 30 Clay (CL), medium plasticity, medium dense, cohesive, n 30 Same as above, becoming light yellowish brown (10 YR 35 Clay with Sand (CL), low plasticity, soft, non cohesive, light clay (CL), medium plasticity, medium dense, cohesive, n 40 G(4). 45 Well Graded Sand with Gravel (SW), fine to coarse sand 5/3), gravel 10%, subrounded. 50 Same as above, with trace black staining. 51 Clay with Sand (CL), low plasticity, soft, non cohesive, w 60 Poorly Graded Sand (SP), fine grained sand 100%, loos 53 Same as above, with some clay. 90 roly Graded Sand (SP), fine grained sand 100%, loos 54 Same as above, with some clay. 70	dry, light brownish gray (10 YR 6/2), en clay layering, effervesces with HCL. a, soft, dry, light gray (10 YR 7/1), end 90%, soft to medium dense, dry, se. moist, pale brown (10 YR 6/3). 6/4). ght yellowish brown (10 YR 6/4). moist, light yellowish brown (10 YR d 90%, loose, soft, wet, brown (10 YR 5/6). vet, light yellowish brown (10 YR 5/3). e, soft, wet, brown (10 YR 5/3). moist, yellowish brown (10 YR 5/4). vet, brown (10 YR 5/3). moist, yellowish brown (10 YR 5/4).	Above ground monument with well cap Borehole diameter 10 inches from 0 to 76 ft bgs., and 4 inches from 76 to 81 ft bgs. Grout 0 to 38 ft bgs. 0 to 50 ft bgs., 6 in dia., Sch. 40 PVC riser Bentonite 38 to 40 ft bgs. Filter Pack Sand 40 to 76 ft bgs. 50 to 75 ft bgs., 6 in dia., Sch. 40 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

INTERMOUNTAIN POWER S	MONITORNG WELL ID: CLIENT SERVICE CORP. PROJECT	BAC-16 Intermountain Power Service Corporation	on 🚺 Stantec
	SITE LOCATION	Southwest of Bottom Ash Basin Surface	e Impoundment
DRILLING CONTRACTOR: DRILLING METHOD: DRILLING EQUIPMENT: SAMPLING METHOD:	Cascade Drilling Sonic Pro Sonic 600 11-77287 4 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs.		DLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.): 47.45
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Fill. Clay with San	d (CL), low plasticity, soft to medium dens	e, dry, light gray (10 YR 7/1).	Above ground monument with well cap
	ved from sonic core barrel.		Grout 0 to 42 ft
15 Well Graded S YR 6/2), trace Clay with San	d (CL), low plasticity, soft to medium dens Sand (SW), fine to coarse grained sand 95 gravel 5%, subrounded, small. d (CL), low plasticity, soft to medium dens	%, loose, soft, light brownish gray (10	bgs. Borehole diameter 10 inches from 0 to
20			91 ft bgs.
Clay (CL).	d (CL), low to medium plasticity, soft to me	edium dense, dry, non cohesive, pale	0 to 65 ft bgs., 6
	d Sand (SP), fine grained 100%, loose to n	nedium dense, dry, light gray (10 YR ^{-/}	in dia., Sch. 40 PVC riser
40 \some interfine	dium plasticity, medium density, moist, lig gering clay, brownish yellow (10 YR 6/8).	ht yellowish brown (10 YR 6/4), with	
light yellowish	d Sand with clay (SP-SC), fine sand 90%, o brown (10 YR 6/4).		Bentonite 42 to 44 ft bgs.
50 Poorly Graded	dium plasticity, medium dense, cohesive, d Sand with clay (SP-SC), fine sand 90%, d brown (10 YR 6/4).	clay 10%, soft, loose, moist to wet,	
55 Clay (CL), me 6/4).	dium plasticity, medium dense, cohesive,	moist, light yellowish brown (10 YR	
interfingering	d Sand (SP), fine grained sand 95%, loose clay 5%, yellowish red (5 YR5/6).	e, soft, brown (10 YR 5/3), with trace	Filter Pack Sand 44 to 91 ft bgs.
gravel, small,		. ,	
gray (10 YR 6	dium plasticity, medium to stiff, cohesive,	moist, light yellowish gray (10 YR 6/2).	64 to 89 ft bgs., 6 in dia., Sch. 40
brown (10 YR	d Sand with Clay (SP-SC), fine grained sar 5/3). dium plasticity, stiff, cohesive, moist to we		PVC screen with 0.02 inch slot aperture
85 Clay (CL), sar	d Sand (SP), fine grained sand 100%, loos ne as 73 ft bgs.		
90 Clay (CL), sar	d Sand (SP), same as 82 ft bgs ne as 73 ft bgs d Sand with Clay (SP-SC), fine grained sar	nd 85%, clay 15% loose, soft, wet,	End Cap
End of boreho	5/3). me as 73 ft bgs., with mottled interbedded le at 91 ft bgs. Installed monitoring well pe		
Notes: bgs. = below ground	surface Sch. = Schedule		
dia. = diameter ft = feet	YR = Yellow-Red		1

~		CLIENT	BAC-17 Intermountain Power Service Corpo	pration	Stantec
INTERMOU	VIAIN PUWER SERVICE CURP.		Monitoring Well Installation Southwest of Bottom Ash Basin Sur	face Impoundm	
DRILLING CC	NTRACTOR: Cascade Drilling		COORDINATE SYSTEM:		
DRILLING ME	THOD: Sonic		EASTING: NOR	THING:	
DRILLING EQ				EHOLE ANGLE	0
SAMPLING M		-	()		/EL (ft. btoc.): 45.3
	10 inch sonic core barrel 0 to 9	91 ft bgs.	DATE STARTED: 12/12/9/2019ATE LOGGED BY: Michael Ward	FINISHED: 12	/10/2019
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGIC DESCRIPTI			WE	LL CONSTUCTION DIAGRAM
	Well Graded Sand with Silt (SW-SM), fine to c YR 6/3), fine silts, trace calcium carbonate.			_	Above ground monument with well cap
	Well Graded Sand (SW), fine to coarse sand ²	100%, IOOSE	a, soπ, pale brown (10 ΥΚ 6/3).		Borehole
10-					diameter 10 inches from 0 to 81 ft bgs.
15-	Well Graded Sand with Gravel and Clay (SW-	SC) loose	soft fine to coarse sand 90%	_	
	loose, soft, pale brown (10 YR 6/3), clay low p Well Graded Sand (SW), fine to coarse 98%, l gravel 2%, small, subrounded.	lasticity, sof	ft, gravel, small, subrounded.		Grout 0 to 40 ft bgs.
30-	Clay (CL), low plasticity, soft, wet, very pale bi Clay with Sand (CL), low plasticity, soft, moist	•			0 to 56 ft bgs., 6 in dia., Sch, 40
35-					PVC riser
	Clay (CL), medium plasticity, medium dense, o reddish yellow (5 YR 6/6).	cohesive, bi	rown (10 YR 5/3), mottled with some		Bentonite 40 to 42 ft bgs.
50-					Filter Pack Sand
55-	Clay with Sand (CL), low plasticity, soft, wet n	on cohesive	a, brown (10 YR 5/3).	_	42 to 81 ft bgs.
60-	Poorly Graded Sand with Clay (SP), fine grain 5/3), with trace gravel 2%, subrounded, small.	ed sand 98			56 to 81 ft bgs., 6 in dia., Sch. 40
65-	, <u> </u>		108% loose act wat how (10		PVC screen with 0.02 inch slot aperture
70-	Poorly Graded Sand with Clay (SP-SC), fine g YR 5/3), clay, medium plasticity, soft to low de YR 5/4).	ensity, non c	cohesive, light yellowish brown (10		
75	Clay (CL), medium plasticity, medium dense, i Poorly Graded Sand with Clay (SP-SC), fine g 5/3), clay are low plasticity, soft. Clay with Sand (CL), low to medium plasticity,	rained sand	l, loose, soft, wet, brown (10 YR		
80-	Poorly Graded Sand (SP), fine grained sand 1 End of borehole at 81 ft bgs. Installed monitor	00%, loose ing well per	, soft, wet, brown (10 YR 5/3). scope of work.		End Cap
Notes: bg	s. = below ground surface Sch. = Schedule . = diameter YR = Yellow-Red feet				1

INTERM	m A M	IENT: Intermountain Power So IECT: Monitoring Well Installa		() Stanted	
DRILLING CONTRACTOR:Cascade DrillingDRILLING METHOD:SonicDRILLING EQUIPMENT:Pro Sonic 600SAMPLING METHOD:4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		bgs., DATE STARTED: 5/8/2		DLE ANGLE: 90 degrees WATER LEVEL (ft. btoc.):	
(feet) (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION		W	ELL CONSTUCTION DIAGRAM	
0	Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap	
10—				Grout 0 to 41 ft bgs. Borehole	
15– -	Poorly graded Sand with Silt (SP), light brown, mo Well Graded Sand with Gravel (SW), light brown,			diameter 10 inches from 0 to 78 ft bgs.	
20	Well Graded Sand with Clay (SW-SC), light brown			70 h bgs.	
30	Well Graded Sand with Clay (SW-SC), light brown	i, moist		0 to 53 ft bgs., 6 in dia., Sch. 80	
35				PVC riser	
50-				E	
55-	Well Graded Sand with Gravel (SW), light brown, Well Graded Sand with Gravel (SW), light brown,	wet <u>moist</u>		Bentonite 41 to 48 ft bgs. Filter pack sand	
50	Clay (CL), light brown, moist			48 to 78 ft bgs.	
5- <u>///</u> 70-	Clay (CL), with sand, light brown, moist Well Graded Sand with Gravel (SW), light brown,		1	53 to 78 ft bgs., 6 in dia., Sch. 80	
75 	Well Graded Sand with Gravel (SW), light brown, Well Graded Sand with Gravel (SW), light brown, End of borehole at 78 ft bgs. Installed monitoring	moist		PVC screen with 0.02 inch slot aperture End Cap	
Notes:	bgs. = below ground surface Sch. = Schedule	· ·		1	

MON INTERMOUNTAIN POWER SERVICE CORP.	ITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-19 Intermountain Power Service Monitoring Well Installation Down Gradient South	Corporation	() Stanted
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core ba 10 inch sonic core b	U .	COORDINATE SYSTEM: EASTING: ELEVATION: TOTAL DEPTH (ft.): 78 DATE STARTED: 5/9/2020	NORTHING: BOREHOLE ANGLE GROUNDWATER LE ^V DATE FINISHED: 5/5	/EL (ft. btoc.):
	.ITHOLOGICAL DESCRIPTION	LOGGED BY: Michael Wa		LL CONSTUCTION DIAGRAM
0 Well Graded Sand with Silt (SP-SM (10 YR 7/3). 5), fine to coarse sand	ls, loose, soft, dry, very pale bro	wn	Above ground monument with well cap
Sand with Clay (SC), fine to coarse Poorly Graded Sand (SP) medium (YR 7/2). Clay (CL), moderate plasticity, mois	grained, loose, soft, u	nconsolidated, dry, light gray (1		Borehole diameter 10 inches from 0 to 78 ft bgs.
Poorly Graded Sand (SP) medium ((10 YR 5/3).	grained, loose, soft, u	nconsolidated, moist to dry, bro	wn	Grout 0 to 48 ft bgs.
30 Clay (CL), moderate plasticity, mois	t, soft to medium der	nse, cohesive, brown (7.5 YR 5/	4)	0 to 58 ft bgs., 6 in dia., Sch. 80 PVC riser
Same as above, becoming moist to Poorly Graded Sand (SP), fine grain Same as above, with trace white sta	ned sands, soft, loose aining.			Bentonite 48 to 53 ft bgs.
	ium to stiff, cohesive,	brown (7.5 YR 5/4).		Filter Pack Sanc 53 to 78 ft bgs.
5 Well Graded Sand (SW), fine to coa 5/3). 0 Class (OL) and casts all other and the state			₹	58 to 78 ft bgs.,
Clayey Sand (SC), fine to medium of With thin trace interbedded black ler Well Graded Sand (SW), fine to coa	grained sands, mediu	m dense, wet, brown (10 YR 5/3		6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
5/3). Clay (CL), moderate plasticity, med Well Graded Sand (SW), fine to coa 5/3). 0- End of borehole at 78 ft bgs. Installe	ium to stiff, cohesive, arse sands, soft, loos	brown (7.5 YR 5/4) e, unconsolidated, brown (10 YR	-/ =	End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red				1

MON INTERMOUNTAIN POWER SERVICE CORP.	TORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-20 Intermountain Po Monitoring Well I South Wells		Corporati	on	🚺 Stanteo
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		ELEVATION:BORETOTAL DEPTH (ft.):78GROU		BOREH GROUN	RTHING: REHOLE ANGLE: 90 degrees OUNDWATER LEVEL (ft. btoc.): FE FINISHED: 5/10/2020	
	ITHOLOGICAL DESCRIPTION					CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), li	ght brown, dry					 Above ground monument with well cap
10						Grout 0 to 41 ft bgs. Borehole
5 Well Graded Sand with Gravel (SW Clay (CL), light brown, moist), moist, dry					diameter 10 inches from 0 to 78 ft bgs.
30- Well Graded Sand with Gravel (SW Clay (CL), light brown, moist	<u>, moist,</u> li <u>g</u> ht <u>br</u> ow <u>n</u>			/		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
Well Graded Sand with Gravel (SW Clay (CL), light brown, moist	, moist, light brown					
5 Well Graded Sand with Gravel (SW Well Graded Sand with Gravel (SW Clay (CL), light brown, moist), wet, light brown), moist, light brown					Bentonite 41 to 48 ft bgs.
0-Well Graded Sand with Gravel (SW Clay (CL), light brown, moist Well Graded Sand with Gravel (SW Clay (CL) light brown moist						Filter pack sand 48 to 78 ft bgs.
0 Well Graded Sand with Gravel (SW), wet, light brown					53 to 78 ft bgs.,
Clay (CL), light brown, moist 5 Well Graded Sand with Gravel (SW Clay (CL), light brown, moist 0 End of borehole at 78 ft bgs. Installe						6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule		300p 3 0, 100m				1

INTERMOUNTAIN POWER SEA		CLIENT: Intermountain Power Servic OJECT: Monitoring Well Installation		() Stanted
	Cascade Drilling Sonic	COORDINATE SYSTEM: EASTING:	NORTHING:	
DRILLING EQUIPMENT:	Pro Sonic 600	ELEVATION:	BOREHOLE ANGLE	: 90 degrees
SAMPLING METHOD:	4 inch sonic core barrel 0 to 91 f	t bgs., TOTAL DEPTH (ft.): 88	GROUNDWATER LE	VEL (ft. btoc.):
	10 inch sonic core barrel 0 to 91	ft bgs., DATE STARTED: 5/10/202 LOGGED BY: Michael		10/2020
(feet) (feet) GRAPHIC	LITHOLOGICA DESCRIPTIO		WE	LL CONSTUCTION DIAGRAM
0 Poorly Graded S pale brown (10 5		oarse sand, loose, soft, unconsolidate	ed, very	Above ground monument with well cap
), fine to coarse sands, medium	dense, dry, pale brown (10 YR 7/3).		Grout 0 to 43 ft bgs. Borehole
5 Clay (CL), low to	o medium plasticity, cohesive, m	nedium dense, brown (10 YR 5/3).		diameter 10 inches from 0 to 88 ft bgs.
15-				
pale brown (10	YR 7/3).	ned sand, medium dense, dry to mois dense, light brownish gray (10 YR 6/2		0 to 61 ft bgs., 6 in dia., Sch. 80 PVC riser
Clay (CL), medi	nd (SW), fine grained sand, loos um to high plasticity, stiff, cohes , becoming yellowish red (10 YR	ive, pale brown (10 YR 6/3).		
Clay (CL), medi	nd (SW), fine grained sand, loos um to high plasticity, stiff, cohes (), fine grained sand, loose to me	se, soft, brown (10 YR 5/3). ive, pale brown (10 YR 6/3). edium dense, wet, yellowish brown (10	— — — — — — — — — — — — — — — — — — —	Bentonite 43 to
	um plasticity, stiff, cohesive, ligh	t yellowish brown (10 YR 6/4).		48 ft bgs. Filter pack sand 48 to 88 ft bgs.
		edium dense, wet, yellowish brown (10		
0				61 to 88 ft bgs., 6 in dia., Sch. 8(PVC screen with
				0.02 inch slot aperture
Well Graded Sa 5→	nd (SW), medium grained sand,	, soft, loose, brown (10 YR 5/4). nsity, cohesive, light yellowish brown (
0 6/4). End of borehole	at 88 ft bgs. Installed monitorin			End Cap
5	these Cale Cale dut			
Notes: bgs. = below ground sur dia. = diameter ft = feet	rface Sch. = Schedule YR = Yellow-Red			1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-22 Intermountain Power Service Corpo Monitoring Well Installation South Wells	ration Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,	ELEVATION: BORE	THING: EHOLE ANGLE: 90 degrees JNDWATER LEVEL (ft. btoc.): FINISHED: 5/10/2020
HITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), light brown, dry 5		Above ground monument with well cap
10–Poorly graded Sand with Silt and Clay (SP), light brown, 15–	dry .	Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to
20 Clay (CL), light brown, moist		78 ft bgs.
25 Poorly graded Sand with Silt (SP), light brown, dry 30 Well Graded Sand with Clay (SW), light brown, moist 35		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist	- 	
50		Bentonite 41 to
Well Graded Sand with Clay (SW), wet, light brown Well Graded Sand with Clay (SW), light brown, moist Go Well Graded Sand with Clay (SW), noist Well Graded Sand with Clay (SW), moist Clay (CL), light brown, moist Clay (CL), light brown, moist Clay (CL), light brown, moist	· · · · · · · · · · · · · · · · · · ·	48 ft bgs. Filter pack sand 48 to 78 ft bgs.
65 Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown 70 Well Graded Sand with Gravel (SW), moist, light brown (black sections)	53 to 78 ft bgs.,
75 Well Graded Sand with Gravel (SW), moist, light brown 76 Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe		6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
80 Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

MON INTERMOUNTAIN POWER SERVICE CORP.	IITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-23 Intermountain Po Monitoring Well South Wells		Corporation	n 🐧	Stanteo
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		ELEVATION:BCTOTAL DEPTH (ft.): 78GR		BOREHO GROUND	NORTHING: BOREHOLE ANGLE: 90 degre GROUNDWATER LEVEL (ft. btoc.): DATE FINISHED: 5/11/2020	
(feet) ITHOLOGICAL GRAPHIC GRAPHIC	LITHOLOGICAL DESCRIPTION					ISTUCTION GRAM
0 Poorly graded Sand with Silt (SP), 5	light brown, dry				N 12 1	Above ground nonument with well cap
10						Grout 0 to 41 ft ogs. Borehole diameter 10
20 25 25 Poorly graded Sand with Silt and C Clay (CL), light brown, dry 25 25 26 20 20 20 20 20 20 20 20 20 20	lay (SP), light brown,	dry			🛛 🕅 🕅 🕅	nches from 0 to 78 ft bgs.
					🛛 🛛 🖾 i) to 53 ft bgs., 6 n dia., Sch. 80 PVC riser
 Well Graded Sand with Clay (SW), Poorly graded Sand with Silt (SP), Poorly graded Sand with Silt (SP), Poorly graded Sand with Silt (SP), Clay (CL), light brown, moist 	light brown, dry					
Well Graded Sand with Gravel (SW Well Graded Sand with Gravel (SW Well Graded Sand with Gravel (SW Clay (CL), light brown, moist	/), wet, light brown /) <u>, moist</u> , li <u>g</u> ht <u>brown</u>					
Well Graded Sand with Gravel (SW Clay (CL), light brown, moist Well Graded Sand with Clay (SW), Well Graded Sand with Clay (SW), Well Graded Sand with Clay (SW), Clay (CL) light brown, maint						Bentonite 41 to 18 ft bgs.
0 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW Clay (CL), light brown, moist	/), <u>moist</u> , light brown			= _ //		Filter pack sand 18 to 78 ft bgs.
Well Graded Sand with Gravel (SW						52 to 70 4 h
Well Graded Sand with Clay (SW), Clay (CL), light brown, moist Well Graded Sand with Gravel (SW) Clay (CL), light brown, moist Clay (CL), light brown, moist End of borehole at 78 ft bgs. Install	/), moist, light brown					53 to 78 ft bgs., 5 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule						

	ntain Power Service Corporation g Well Installation
DRILLING METHOD: Sonic EASTING DRILLING EQUIPMENT: Pro Sonic 600 ELEVATIO SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., TOTAL DE	ION:BOREHOLE ANGLE:90 degreesEPTH (ft.):76.2GROUNDWATER LEVEL (ft. btoc.):ARTED:5/12/2020DATE FINISHED:5/12/2020
LITHOLOGICAL DESCRIPTION DESCRIPTION	WELL CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), light brown, dry 5 Well Graded Sand with Gravel (SW), dry, light brown	Above ground monument with well cap
10 Poorly graded Sand with Silt (SP), light brown, dry 15 Poorly graded Sand with Silt and Clay (SP), light brown, dry	Grout 0 to 41 ft bgs. Borehole diameter 10
20- Poorly graded Sand with Silt (SP), light brown, dry	
25 Clay with well graded sand (SW), light brown, moist Clay (CL), light brown, dry Well Graded Sand with Gravel (SW), moist, light brown 30 Clay (CL), light brown, moist	0 to 51 ft bgs., 6
35 Well Graded Sand with Gravel (SW), dry, light brown Well Graded Sand with Gravel (SW), moist, light brown	in dia., Sch. 80 PVC riser
	Bentonite 41 to 48 ft bgs.
50	
55 Clay with well graded sand (SW), light brown, moist Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown	- - - - - Filter pack sand - - - - - - - - - - - - - - - - - - - - - - - - - </td
65 Clay (CL), light brown, moist Clay with well graded sand (SW), light brown, moist Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown	
70 75 80 End of borehole at 78 ft bgs. Installed monitoring well per scope of w	work.
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet YR = Yellow-Red	1

MONITORNG WELL ID: BAC-25 CLIENT: Intermountain Power Service Corporation INTERMOUNTAIN POWER SERVICE CORP. PROJECT: Monitoring Well Installation SITE LOCATION: South Wells	on 🚺 Stantec
SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., TOTAL DEPTH (ft.): 78 GROUND 10 inch sonic core barrel 0 to 78 ft bgs., DATE STARTED: 5/12/2020 DATE FIN LOGGED BY: Rich Pratt	DLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.):
LITHOLOGICAL DESCRIPTION	WELL CONSTUCTION DIAGRAM
Poorly graded Sand with Silt (SP), light brown, dry Poorly graded Sand with Silt (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry Clay (CL) with sand, light brown, dry Clay (CL), light brown, moist Clay (CL), light brown, moist Clay (CL), light brown, moist U Vell Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist U Vell Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist Clay (CL), light brown, dry Vell Graded Sand with Clay (SW), light brown, moist Clay (CL), with sand, light brown, dry Clay (CL), with sand, light brown, dry Clay (CL), light brown, moist Clay (CL), light brown, moist	monument with well capGrout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to 78 ft bgs.0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riserBentonite 41 to 48 ft bgs.
90 End of borehole at 78 ft bgs. Installed monitoring well per scope of work. 95 Notes: bgs. = below ground surface dia. = diameter ft = feet Sch. = Schedule YR = Yellow-Red ft = feet YR = Yellow-Red	1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-26 Intermountain Power Service Corpor Monitoring Well Installation South Wells	ration Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,	ELEVATION: BORE	THING: THOLE ANGLE: 90 degrees JNDWATER LEVEL (ft. btoc.): FINISHED: 5/13/2020
H (feet) H (feet) H (feet) DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), light brown, dry		Above ground monument with well cap
10-Poorly graded Sand with Silt and Clay (SP), light brown, 15-Poorly graded Sand with Silt (SP), light brown, dry	, dry –	Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to
20 Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown, 25 Clay (CL), light brown, moist		78 ft bgs.
30- 35- 40-		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
45 50 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist		
55 Well Graded Sand with Gravel (SW), wet, light brown 60 Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown		Bentonite 41 to 48 ft bgs. Filter pack sand 48 to 78 ft bgs.
65-Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown 70-		53 to 78 ft bgs.,
Clay (CL), light brown, moist 75- Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well per 85-		6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

MONIT	FORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-27 Intermountain Por Monitoring Well In North Wells		Corporatio	on	🚺 Stantec
DRILLING CONTRACTOR: Cascade Drilling COORDINATE SYST DRILLING METHOD: Sonic EASTING: DRILLING EQUIPMENT: Pro Sonic 600 ELEVATION: SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., TOTAL DEPTH (ft.): 10 inch sonic core barrel 0 to 78 ft bgs., DATE STARTED: LOGGED BY:		NORTHING: BOREHOLE ANGLE: 78 GROUNDWATER LEV				
	THOLOGICAL ESCRIPTIO N					CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), lig	ht brown, dry					 Above ground monument with well cap
10 15 Poorly graded Sand with Silt and Cla 20	y (SP), light brown,	dry				Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to 78 ft bgs.
25 Clay (CL), light brown, moist 30 35 40 45						0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
50 Well Graded Sand with Gravel (SW), Clay (CL), light brown, moist	moist, light brown					Bentonite 41 to 48 ft bgs. Filter pack sand
Well Graded Sand with Gravel (SW), Well Graded Sand with Clay (SW), live Well Graded Sand with Gravel (SW), Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), Well Graded Sand with Gravel (SW), Well Graded Sand with Gravel (SW), Well Graded Sand with Gravel (SW),	moist, light brown moist, light brown moist, light brown wet, light brown					48 to 78 ft bgs.
Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist 75 B0		r scope of work.				53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red						1

MONITORNG WELL ID: CLIENT: INTERMOUNTAIN POWER SERVICE CORP. SITE LOCATION:	BAC-28 Intermountain Power Service Corpor Monitoring Well Installation North Wells	ation Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,	ELEVATION: BORE	HING: HOLE ANGLE: 90 degrees NDWATER LEVEL (ft. btoc.): FINISHED: 5/14/2020
LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), light brown, dry 5		Above ground monument with well cap
10 15 Poorly graded Sand with Silt and Clay (SP), light brown, of Poorly graded Sand with Silt (SP), light brown, dry	dry	Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to
Poorly graded Sand with Silt and Clay (SP), light brown, c	dry -	78 ft bgs.
Clay (CL), light brown, moist		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
45 Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist		
 Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Clay (SW), light brown, wet Well Graded Sand with Clay (SW), light brown, wet Clay (CL), light brown, moist 		Bentonite 41 to 48 ft bgs. Filter pack sand 48 to 78 ft bgs.
70 Well Graded Sand with Clay (SW), light brown, wet 70 Well Graded Sand with Clay (SW), light brown, wet 71 Clay (CL), light brown, moist 75 End of borehole at 78 ft bgs. Installed monitoring well per		53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet YR = Yellow-Red		1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-29 Intermountain Power Service Co Monitoring Well Installation North Wells	orporation	Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,	ELEVATION: E TOTAL DEPTH (ft): 78 G	NORTHING: BOREHOLE ANGLE: BROUNDWATER LEVE DATE FINISHED: 5/15	90 degrees EL (ft. btoc.): /2020
HITHOLOGICAL DESCRIPTION			CONSTUCTION DIAGRAM
0 Poorly graded Sand with Silt (SP), light brown, dry 5			Above ground monument with well cap
10 15 ••••••••••••••••••••••••••••••••••••			Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to 78 ft bgs.
30			0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40 Well Graded Sand with Gravel (SW), moist, light brown 45 Clay (CL), light brown, moist			
50 Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown			
55 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist 60 Well Graded Sand with Gravel (SW), moist, light brown			Bentonite 41 to 48 ft bgs. Filter pack sand 48 to 78 ft bgs.
Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist		- ⁷	40 to 70 it bys.
70 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist			53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
75 Well Graded Sand with Clay (SW), light brown, moist 80 Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well per			PVC screen with 0.02 inch slot aperture End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet YR = Yellow-Red			1

INTERMOUNTAIN POWER SERVICE CORP.	NG WELL ID: CLIENT: PROJECT: TE LOCATION:	BAC-30 Intermountain Power Service Monitoring Well Installation North Wells	e Corporati	on	() Stanted
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 10 inch sonic core barrel 0	U ,	COORDINATE SYSTEM: EASTING: ELEVATION: TOTAL DEPTH (ft.): 78 DATE STARTED: 5/14/2020 LOGGED BY: Joel Piers	GROUN DATE FIN	OLE ANGLE: DWATER LEV	EL (ft. btoc.):
	LOGICAL RIPTION			WEL	L CONSTUCTION DIAGRAM
0 Well Graded Sand with some Gravel (SP (10 YR 8/2), increasing fines from 11' 5), sand 90%, gra	avel 5%, fines 5%, dry, light bi	own		Above ground monument with well cap
10— 15—					Borehole diameter 10 inches from 0 to 78 ft bgs.
Sand (SP), sand 90%, fines 10%, loose. Poorly-Graded Clay (ML) increasing from medium plasticity, wet Silty Sand (SM), sand 80%, 20% fines, m		d 40% to fines 95%, sand 5%	/		Grout 0 to 41 ft bgs.
Poorly-Graded Silty Clay (CL), low plastic	sity, iron staining				0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
0 Poorly-Graded Silty Clay (CL), increasing Poorly-Graded Silty Clay (CL), decreasing		asing moisture			Bentonite 41 to 48 ft bgs.
Clay (CL), moist, low plasticity Silty Sand (SP), sand 90%, fines 10%, m	 oist, loose				Filter Pack Sand 48 to 78 ft bgs.
Silty Clay (CL), moist, medium-high plast Sandy Clay (CL) lense Silty Clay (CL), moist, medium-high plast	-				53 to 78 ft bgs., 6 in dia., Sch. 80
5 Silty Sand (SP), sand 90%, fines 10%, m Clay (CL), moist, hard, medium plasticity Silty Sand (SP), sand 90%, fines 10%, m					PVC screen with 0.02 inch slot aperture
5 - Sandy Clay (CL), hard, moist, dense, me End of borehole at 78 ft bgs. Installed mo		-			End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red					1

INTERM	AOUNTAIN POWER SERVICE CORP.	NG WELL ID: BAC-31 CLIENT: Intermountain PROJECT: Monitoring We TE LOCATION: North Wells	Power Service Corporation ell Installation	() Stanted
DRILLING METHOD: Sonic EASTING: DRILLING EQUIPMENT: Pro Sonic 600 ELEVATIO SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., TOTAL DEP 10 inch sonic core barrel 0 to 78 ft bgs., DATE STAF		U	NORTHING: BOREHOLE AN	R LEVEL (ft. btoc.):
(feet) (feet) <u>ITHOLOGICAL</u> GRAPHIC	LITHOL DESCI	LOGICAL RIPTION		WELL CONSTUCTION DIAGRAM
0	Silty Sand (SW), sand 50%, gravel 40%, f pinkish-gray (5YR 7/2)	fines 10%, dry to slightly moist,	, very loose,	Above ground monument with well cap
10- - 15-				Borehole diameter 10 inches from 0 to 78 ft bgs.
20 20 25	Silty Clay (ML), fines 90%, sand 10%, slic Silty Sand (SP), increasing fines from san Sandy Clay (CL), fines 60%, sand 40%, n (5YR 3/3)	nd 80%, fines 20% to sand 60%	· · · · · · · · · · · · · · · · · · ·	Grout 0 to 41 ft bgs.
30- 35-				0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40- 45-	Sand (SP), sand 90%, fines 10%, moist, I Clay (CL), fines 100%, moist, very hard, c	oose, decreasing sand live brown 2.5Y 4/3	= = = = = =	Bentonite 41 to 48 ft bgs.
50- 55-	Sandy Clay (CL), moist Silty Sand (SP), moist to very moist, incre Silty Clay (CH), fines 85%, sand 15% Silty Sand (SP), moist to very moist	asingly coarse sand		Filter Pack Sand 48 to 78 ft bgs.
50 	Clay (CH), fines 100%, very hard Silty Sand (SP), sand 90%, fines 10%, mo Clay (CL), fines 100%, moist, very hard, n	<u>Dist, loose</u> nedium-high plasticity		53 to 78 ft bgs., 6 in dia., Sch. 80
i5— '0—	Silty Sand (SP), fines vary from 10% to 30 clay lense at 65'	J%, moist to very moist, some i	iron staining, ~4-5"	PVC screen with 0.02 inch slot aperture
25- 	Clay (CH), moist to very moist, high plasti Silty Sand (SP), sand 80%, fines 20%, gra End of borehole at 78 ft bgs. Installed mo	ayish brown (2.5Y 5/2)		End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red			1

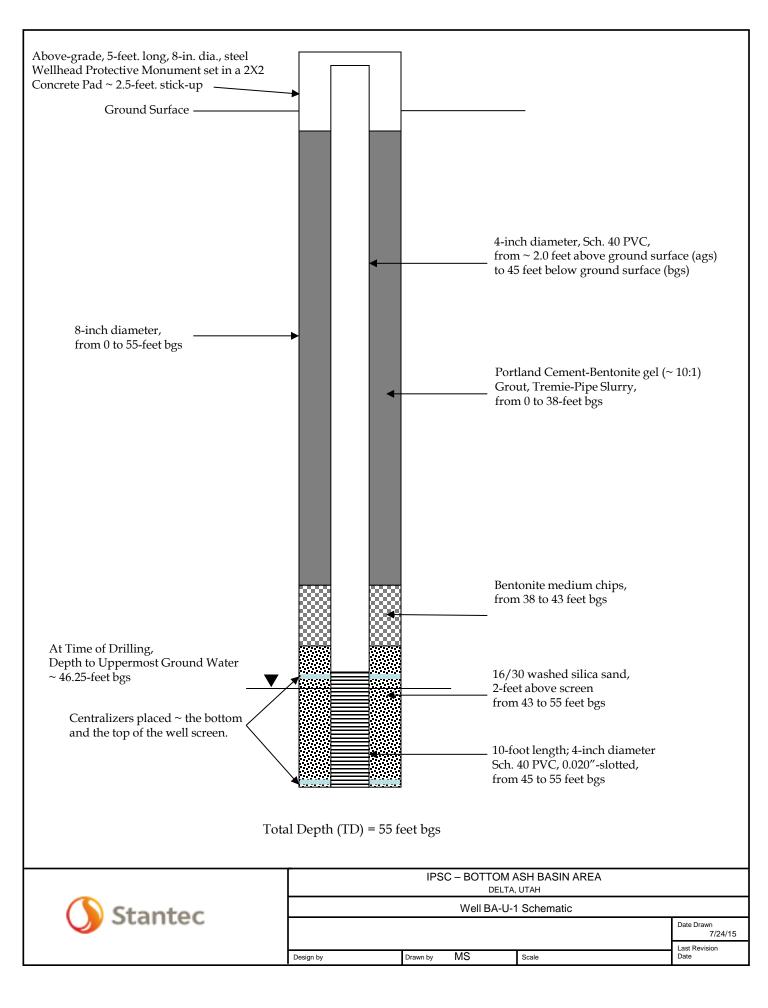
INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-32 Intermountain Power Service Corporati Monitoring Well Installation North Wells	on 🚺 Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		DLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.):
HITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Lithological Description infered from BAC-26. Poorly grac dry 5	led Sand with Silt (SP), light brown,	Above ground monument with well cap
10 Poorly graded Sand with Silt and Clay (SP), light brown, of 15 Doorly graded Sand with Silt (SD) light brown, dp/	dry	Borehole diameter 10 inches from 0 to 78 ft bgs.
Poorly graded Sand with Silt (SP), light brown, dry 20-Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown, r 25-	moist	Grout 0 to 41 ft bgs.
30 Clay (CL), light brown, moist 35		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40-40-45-		Bentonite 41 to 48 ft bgs.
50 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist		Filter Pack Sand 48 to 78 ft bgs.
Well Graded Sand with Gravel (SW), wet, light brown 60 Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown		53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
65 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown 70 Clay (CL), light brown, moist		0.02 inch slot aperture
75 Well Graded Sand with Clay (SW), light brown, moist 80 Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well per		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-33 Intermountain Power Service Corporat Monitoring Well Installation North Wells	ion Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		OLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.):
HITHOLOGICAL DESCRIPTION DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Lithological Description inferred from BAC-26. Poorly gra brown, dry 5	aded Sand with Silt (SP), light	Above ground monument with well cap
10 Poorly graded Sand with Silt and Clay (SP), light brown, 15 Poorly graded Sand with Silt (SP), light brown, dry	dry	Borehole diameter 10 inches from 0 to 78 ft bgs.
20 Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown, 25	moist	Grout 0 to 41 ft bgs.
30 Clay (CL), light brown, moist		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40		Bentonite 41 to 48 ft bgs.
50 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist		Filter Pack Sand 48 to 78 ft bgs.
60 Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown		53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
65 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown 70 Clay (CL), light brown, moist		0.02 inch slot aperture
75 Well Graded Sand with Clay (SW), light brown, moist 80 Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

MONITORNG WELL ID: CLIENT: INTERMOUNTAIN POWER SERVICE CORP. SITE LOCATION:	BAC-34 Intermountain Power Service Corporat Monitoring Well Installation North Wells	ion 🕥 Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		OLE ANGLE: 90 degrees DWATER LEVEL (ft. btoc.):
LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0 Lithological Description inferred from BAC-26. Poorly grad brown, dry 5-	ded Sand with Silt (SP), light	Above ground monument with well cap
Poorly graded Sand with Silt and Clay (SP), light brown, of 15––––––––––––––––––––––––––––––––––––	dry	Borehole diameter 10 inches from 0 to 78 ft bgs.
20 Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown, r 25 -	noist	Grout 0 to 41 ft bgs.
30 Clay (CL), light brown, moist		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40-45-		Bentonite 41 to 48 ft bgs.
50 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist		Filter Pack Sand 48 to 78 ft bgs.
Well Graded Sand with Gravel (SW), wet, light brown 60 Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), wet, light brown		53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
65 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown 70 Clay (CL), light brown, moist		0.02 inch slot aperture
75		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

INTERMOUNTAIN POWER SERVICE CORP. MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-35 Intermountain Power Service Corporat Monitoring Well Installation North Wells	ion Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., 10 inch sonic core barrel 0 to 78 ft bgs.,		IOLE ANGLE: 90 degrees
LITHOLOGICAL DESCRIPTION DESCRIPTION		WELL CONSTUCTION DIAGRAM
0	fine, dry, reddish gray (2.5 YR 7/1)	Above ground monument with well cap Borehole diameter 10 inches from 0 to 78 ft bgs.
20 Silty Sand (SM), fines 70%, very fine sand 30%, loose 21 Sandy Silt (ML), fines 70%, very fine sand 30%, medium oxidation, slightly moist, pale yellow (2.5Y 7/3)		Grout 0 to 41 ft bgs.
30 Sandy Silty Clay (CL), moist, medium plasticity, dense, gray (2.5 YR 6/2), yellow (2.5 YR 7/6), hard	moist, some oxidation, light brownish	0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40		Bentonite 41 to 48 ft bgs.
50 Sandy Silty Clay (CL), fines 60%, very fine sand 40%, s 55 gray (2.5 YR 6/2), yellow (2.5 YR 7/6), hard Fine Sand (SP), sand 90%, fines 10%, loose, weak, mo	moist, some oxidation, light brownish	Filter Pack Sand 48 to 78 ft bgs.
60 3/2), sand lense at 64.5' with medium sand 100% 65 Silty Sandy Clay (CL), fines 90%, sand 10%, moist, den	se, low to medium plasticity	53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
70 Silty Sand (SP), sand 80%, fines 20%, moist, loose, ver Clay lense (CL), very fine sand 90%, fines 10% Silty Sand (SP), sand 80%, fines 20%, moist, loose, ver 75 Sandy Silty Clay (CL), fines 90%, very fine sand 10%, moist	y dark grayish brown (2.5 Y 3/2),	
80 End of borehole at 78 ft bgs. Installed monitoring well pe		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

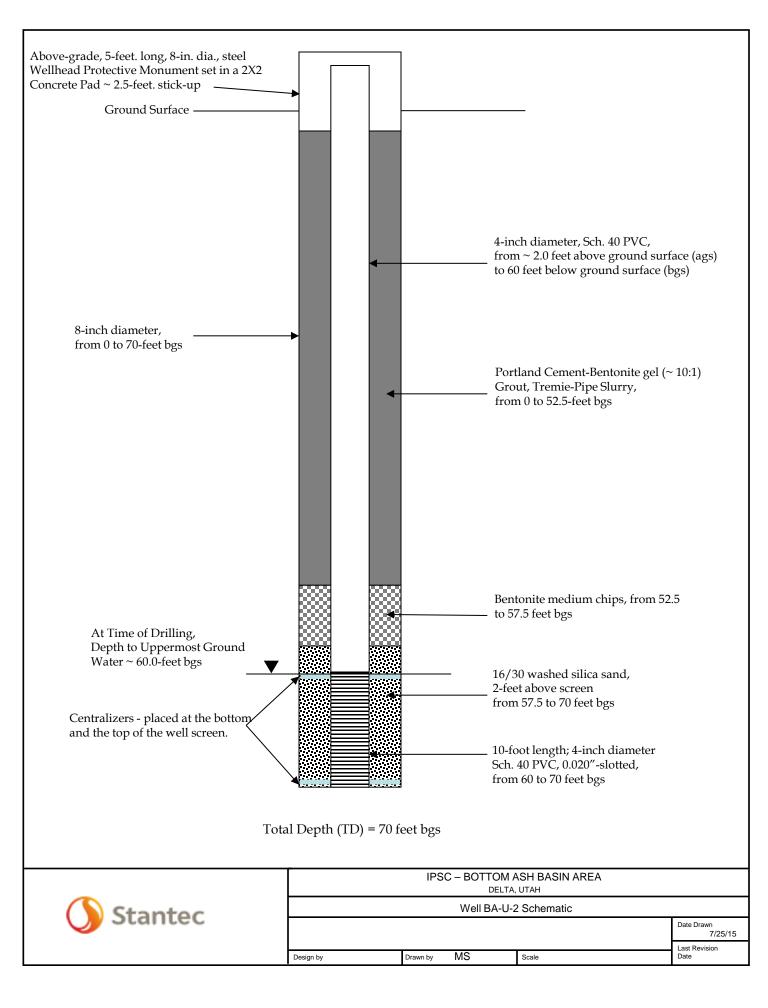
CLIENT: II INTERMOUNTAIN POWER SERVICE CORP. PROJECT: M	BAC-36 ntermountain Power Service Corporation Monitoring Well Installation South Wells	Stantec
DRILLING METHOD: Sonic E DRILLING EQUIPMENT: Pro Sonic 600 E SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs., T 10 inch sonic core barrel 0 to 78 ft bgs., E	COORDINATE SYSTEM: EASTING: NORTHING: ELEVATION: BOREHOLE ANGLE: FOTAL DEPTH (ft.): 78 GROUNDWATER LEV DATE STARTED: 5/30/2020 DATE FINISHED: 5/3 LOGGED BY: Joel Pierson	EL (ft. btoc.):
HITHOLOGICAL DESCRIPTION DESCRIPTION	WEL	L CONSTUCTION DIAGRAM
0	y loose, subangular clasts, light	Above ground monument with well cap
		Borehole diameter 10 inches from 0 to 78 ft bgs.
20 Silty Sandy Clay (CL), fines 80%, fine sand 20%, dense, multiple of the sand 20% in the san		Grout 0 to 41 ft bgs.
25		0 to 53 ft bgs., 6 in dia., Sch. 80
35- Silty Sand (SM), fine sand 70%, fines 30%, loose, moist, oli fines from 45' to 46' with sand 50%, fines 50%	ive brown (2.5Y 5/3), increasing	PVC riser Bentonite 41 to
45- Silty Clay (CL), fines 100%, dense, moist, medium plasticity	y, brown (7.5YR 5/3/)	48 ft bgs.
50 Silty Clay (CL), fines 70%, very fine sand 30% Silty Clay (CL), fines 100%, dense, moist, medium plasticity 55	y, brown (7.5YR 5/3/)	Filter Pack Sand 48 to 78 ft bgs.
60 Gravelly Silty Sand (SM), sand 80%, gravel 10%, fines 10% brown (2.5YR 6/4), gravel lense at 59', decreasing fines Silty Clay (CL), fines 90%, very fine sand 10%, moist, dens		53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
65-5/4). 70-Silty Sand (SM), very fine sand 70%, fines 30%, reddish ye	ellow (7.5YR 7/6), moist, loose	0.02 inch slot aperture
75- End of borehole at 78 ft bgs. Installed monitoring well per set 80- End of borehole at 78 ft bgs. Installed monitoring well per set	cope of work.	End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1


INTERMOUNTAIN POWER SERVICE CORP.	NG WELL ID: BAC-37 CLIENT: Intermountain PROJECT: Monitoring We TE LOCATION: South Wells	Power Service Corporation	Stantec
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 10 inch sonic core barrel	ũ ·	NORTHING: BOREHOLE ANGLI	EVEL (ft. btoc.):
	LOGICAL RIPTION	W	ELL CONSTUCTION DIAGRAM
0 Silty Fine Sand (SM), sand 80%, fines 20	%, dry, loose, light gray (2.5Y 7		Above ground monument with well cap
10- - 15-			Borehole diameter 10 inches from 0 to 78 ft bgs.
20- Silty Sandy Clay (CL), fines 90%, sand 1 yellow (2.5Y 7/3) Silty Sandy Clay (CL), fines 70%, fine sa	nd 30%, loose		Grout 0 to 41 ft bgs.
Silty Sandy Clay (CL), fines 90%, sand 1 staining, yellow (2.5Y 7/3) 30 35 35 35 35 35 35 35 35 35 35 35 35 35		, dense, hard, iron	0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40 Fine Gravel (GM), sand 60%, gravel 30% Silty Fine Sand (SM), fine sand 70%, fine Sandy Clay (CL) fines 90% sand 10%	, fin <u>es 10%, angular to subang</u> u s 30%, moist, loose		Bentonite 41 to 48 ft bgs.
45 gray (2.5 YR 6/2) 50 Fine Silty Sand (SM), sand 80%, fines 20 Silty Clay (CL), 100% fines, moist, hard,		======	Filter Pack Sand 48 to 78 ft bgs.
55 <u>Silty Sand (SP), sand 90%, fines 10%</u> , r Silty Sand (SP), sand 70%, fines 30%, re 60	ddi <u>sh gray (5YR 5/2)</u> ddish gray (5YR 5/2)		53 to 78 ft bgs.,
65 Fine Silty Sand (SM), sand 80%, fines 20			6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
70 Fine Silty Sand (SM), sand 60%, fines 40 75 Fine Silty Sand (SM), sand 80%, fines 20 80 End of borehole at 78 ft bgs. Installed model	%, moist, loose		End Cap
80 Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet YR = Yellow-Red			1

MO INTERMOUNTAIN POWER SERVICE CORP.	NITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION:	BAC-38 Intermountain Power Service Monitoring Well Installation South Wells	Corporation	Stantec
10 inch sonic core	arrel 0 to 78 ft bgs., barrel 0 to 78 ft bgs.,	COORDINATE SYSTEM: EASTING: ELEVATION: TOTAL DEPTH (ft.): 78 DATE STARTED: 5/31/2020 LOGGED BY: Joel Pierso		. ,
UEP IH (feet) GRAPHIC GRAPHIC	LITHOLOGICAL DESCRIPTION		WEL	CONSTUCTION DIAGRAM
0 Silty Fine Sand (SM), sand 70%, f	nes 30%, dry, very loc	ose, light yellowish brown $(2.5Y)$	6/3)	Above ground monument with well cap
10 Silty Sandy Clay (CL), fines 80%, (2.5Y 7/3). Fracture-like facies with		ist, low plasticity, dense, olive br	rown	Borehole diameter 10 inches from 0 to 78 ft bgs.
20 Gravel Sand (SP), sand 80%, grav 25	rel 20%, very loose, dr	y, light yellowish brown (2.5Y 6/	3) [—] –	Grout 0 to 41 ft bgs.
30 Silty Clay (CL), fines 100%, slight	y moist, low plasticity,	dense, red (2.5YR 5/8) — —		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40-Silty Sand (SP), sand 90%, fines 1	-			Bentonite 41 to 48 ft bgs.
				Filter Pack Sand 48 to 78 ft bgs.
55 Silty Sand (SM), sand 80%, fines 2 60 Silty Clay (CL), transitioning from f medium-high plasticity, dense, red	ines 90%, sand 10% t			53 to 78 ft bgs., 6 in dia., Sch. 80
55 Fine sand (SP), sand 100%, moist	, very loose, dark gray	vish brown (2.5Y 3/2)		PVC screen with 0.02 inch slot aperture
75 Bind of borehole at 78 ft bgs. Insta	led monitoring well pe	r scope of work.		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Rec				1

	BA-U-1			
Interval (feet)	Drilling Method	USCS	Sample Description 7/24/2015	
0-0.5	8" Sonic	TOPSOIL	//24/2015 Surface - Sand, Gravel, roots, coal ash.	
0-0.5	8" Sonic 8" Sonic	SM	Surface - Sand, Gravei, roots, coal asn. Silty SAND:	
1.5-2.5	8" Sonic	SC	Clayey SAND:	
2.5-3.5	8" Sonic	ML	Sandy SILT:	
3.5-5	8" Sonic	SM/ML	Silty SAND/Sandy Silt:	
5-6	8" Sonic	JIVI/ IVIL	SAND:	
6-9.5	8" Sonic	SP	SAND:	
9.5-11	8" Sonic		SAND:	
11-11.5	8" Sonic		Silty SAND:	
11.5-12	8" Sonic	SM	Silty SAND:	
12-13	8" Sonic	SP/SM	SAND with silt:	
13-17	8" Sonic	SP	SAND:	
17-17.5	8" Sonic	SP/SM	SAND with silt:	
17.5-20	8" Sonic		SAND:	
20-22.5	8" Sonic	SP	SAND:	
22.5-25	8" Sonic	SM	Silty SAND:	
25-26	8" Sonic	SP	SAND:	
26-27.5	8" Sonic	SP/SM	SAND with silt:	
27.5-28.25	8" Sonic	SM	Silty SAND with clay:	
28.25-29.25	8" Sonic	SP/SM	SAND with silt:	
29.25-30	8" Sonic	CL	CLAY:	
30-31.5	8" Sonic	CL	Sandy CLAY:	
31.5-33	8" Sonic	ML	Sandy SILT:	
33-35	8" Sonic	SM	Silty SAND with clay:	
35-36.25	8" Sonic	SP/SM	SAND with silt:	
36.25-40	8" Sonic	СН	CLAY:	
40-46.5	8" Sonic	CII	CLAY:	
46.5-47.5	8" Sonic	SP/SM	SAND with silt:	
47.5-50	8" Sonic	SM	Silty SAND with clay:	
50-51	8" Sonic	SC	Clayey SAND:	
51-51.75	8" Sonic	SW	SAND:	
51.75-52.5	8" Sonic	SP	SAND:	
52.5-53	8" Sonic	1	Sandy CLAY:	
53-54	8" Sonic	CH	Sandy CLAY:	
54-55	8" Sonic		CLAY:	

TD = 55'; PVC 4-inch screen from 45 to 55; PVC 4-inch riser from -2.5 to 45

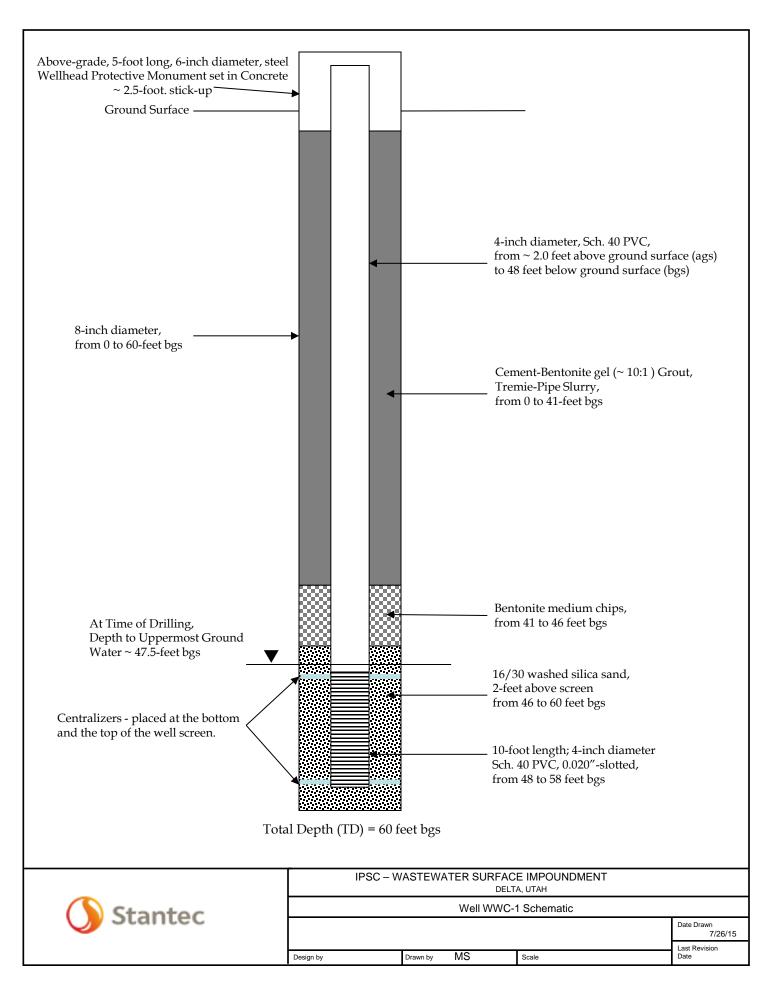

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Boring Logs ISPC Delta, Utah

			BA-U-2
Interval (feet)	Drilling Method	USCS	Sample Description
			7/25/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-1.5	8" Sonic	ML	Sandy SILT:
1.5-2.5	8" Sonic	SP/SM	SAND with silt:
2.5-4	8" Sonic		SAND with silt:
4-5	8" Sonic	ML	SILT with sand and clay:
5-6	8" Sonic	SP/SM	SAND with silt:
6-7	8" Sonic	SP	SAND:
7-9	8" Sonic	SW	Gravelly SAND:
9-9.75	8" Sonic		Gravelly SAND:
9.75-10.25	8" Sonic	SP	Gravelly SAND:
10.25-11	8" Sonic	SP/SM	SAND with silt:
11-12.5	8" Sonic	CL	CLAY:
12.5-13	8" Sonic		SAND:
13-15.5	8" Sonic		SAND:
15.5-18	8" Sonic	SP	SAND:
18-22.5	8" Sonic		SAND:
22.5-23	8" Sonic		SAND:
23-23.5	8" Sonic	SM	Silty SAND:
23.5-25	8" Sonic	SP/SM	SAND with silt:
25-30	8" Sonic	SM	Silty SAND:
30-32.5	8" Sonic	SC	Clayey SAND:
32.5-35	8" Sonic	SM	Silty SAND with clay:
35-37.5	8" Sonic	5111	Silty SAND:
37.5-40	8" Sonic	CL	Sandy CLAY:
40-42	8" Sonic	SC	Clayey SAND:
42-45	8" Sonic		CLAY:
45-47.5	8" Sonic	CH	Sandy CLAY:
47.5-51.75	8" Sonic		CLAY:
51.75-53	8" Sonic	SM	Silty SAND:
53-54	8" Sonic	SM	Silty SAND:
54-55	8" Sonic	SC/SM	Clayey SAND with silt:
55-56.5	8" Sonic	CLI	CLAY:
56.5-57.5	8" Sonic	СН	CLAY:
57.5-60	8" Sonic	SC	Clayey SAND:
60-60.75	8" Sonic	SM	Silty SAND with clay:
60.75-61.5	8" Sonic	SC	Clayey SAND:
61.5-62.5	8" Sonic	C D	SAND:
62.5-63.5	8" Sonic	SP	SAND:
63.5-65	8" Sonic	SW	SAND:
65-67.5	8" Sonic	CD	SAND:
67.5-70	8" Sonic	SP	SAND:
67.5-70	8" Sonic	5.	SAND:

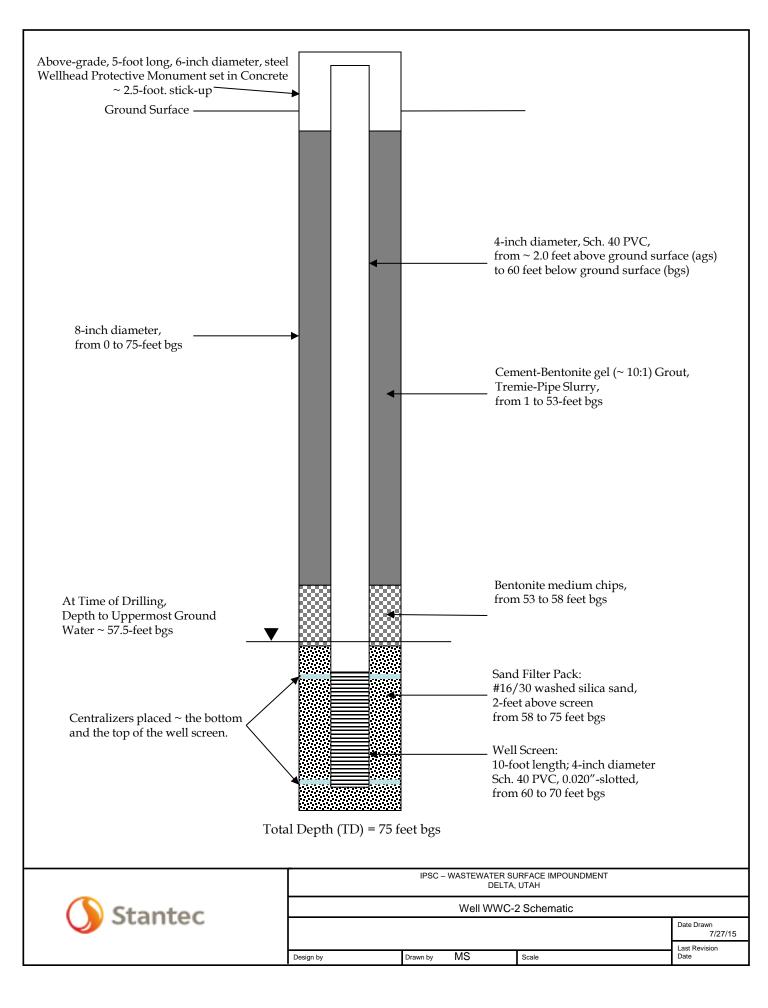
TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60 Drilling Method: Guspech GS24-300R5, 8" Rotosonic

Boring Logs IPSC Delta, Utah


	WWC-1		
Interval (feet)	Drilling Method	USCS	Sample Description
			7/26/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-2	8" Sonic	ML	Sandy SILT:
2-2.5	8" Sonic	SP	SAND:
2.5-5	8" Sonic	51	SAND:
5-6.75	8" Sonic	SM	Silty SAND:
6.75-7.5	8" Sonic		Sandy SILT:
7.5-10	8" Sonic	ML	Sandy SILT:
10-12	8" Sonic		Sandy SILT:
12-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13	8" Sonic	SM	Silty SAND:
13-15	8" Sonic		Silty CLAY:
15-17.5	8" Sonic		Silty CLAY:
17.5-18.5	8" Sonic	CL	Silty CLAY:
18.5-19	8" Sonic		Sandy CLAY:
19-20	8" Sonic		Silty CLAY:
20-22	8" Sonic		CLAY:
22-24.5	8" Sonic		Sandy CLAY:
24.5-25.5	8" Sonic		Sandy CLAY:
25.5-27	8" Sonic		Sandy CLAY:
27-31	8" Sonic	CH	CLAY:
31-31.5	8" Sonic		CLAY:
31.5-33	8" Sonic		CLAY:
33-34.5	8" Sonic		Sandy CLAY:
34.5-35	8" Sonic		Sandy CLAY:
35-37.5	8" Sonic	6 14	Silty SAND:
37.5-40	8" Sonic	SM	Silty SAND:
40-41.5	8" Sonic		SAND:
41.5-42.5	8" Sonic	CD	SAND:
42.5-44	8" Sonic	SP	SAND:
44-45	8" Sonic		SAND:
45-46.5	8" Sonic	CLI	CLAY:
46.5-47.5	8" Sonic	CH	Sandy CLAY:
47.5-50.5	8" Sonic	SC/SM	SAND with silt and clay:
50.5-52.5	8" Sonic		SAND:
52.5-53.5	8" Sonic	SW	SAND:
53.5-55	8" Sonic	CM	Silty SAND:
55-57	8" Sonic	SM	Silty SAND:
57-57.5	8" Sonic	CU	CLAY:
57.5-60		CH	CLAY:

TD = 60'; PVC 4-inch screen from 48 to 58; PVC 4-inch riser from -2.5 to 48 Drilling Method: Guspech GS24-300RS, 8" Rotosonic

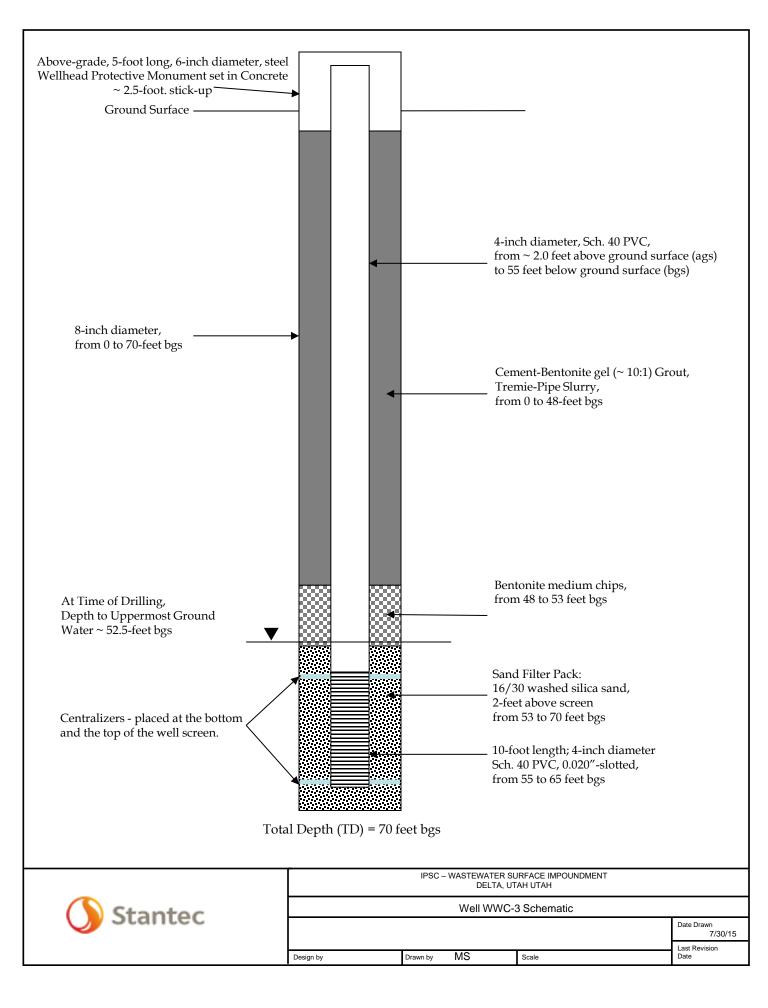
Drilling Company - Cascade Drilling


Driller - Daniel Dodge

Geologist - Michael Sauerwein

			WWC-2
Interval (feet)	Driling Method	USCS	Sample Description
			7/27/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-2.5	8" Sonic	SM	Silty SAND:
2.5-5	8" Sonic	SP	SAND:
5-7	8" Sonic	SF	SAND:
7-9.5	8" Sonic	SW	Gravelly SAND:
9.5-10	8" Sonic	SW/SP	SAND:
10-12	8" Sonic	SP	SAND:
12-12.5	8" Sonic	SP/SW	Gravelly SAND:
12.5-14.5	8" Sonic	SW	Gravelly SAND:
14.5-15	8" Sonic	CD	SAND with gravel:
15-16	8" Sonic	SP	SAND:
16-17.5	8" Sonic	CL	Sandy CLAY:
17.5-19	8" Sonic		Clayey SAND:
19-20	8" Sonic	SC	Clayey SAND:
20-21	8" Sonic		Clayey SAND:
21-22	8" Sonic	CU	CLAY:
22-24	8" Sonic	СН	CLAY:
24-25	8" Sonic	SM	Silty SAND with clay:
25-26.5	8" Sonic	SM/SC	Silty SAND and clay:
26.5-27.5	8" Sonic	SC	Clayey SAND with silt:
27.5-31.5	8" Sonic	CU	CLAY:
31.5-34	8" Sonic	СН	Silty CLAY:
34-35.5	8" Sonic	SP	SAND:
35.5-37	8" Sonic	ML	Sandy SILT with clay:
37-38.5	8" Sonic	CL	Silty CLAY:
38.5-40	8" Sonic	SM	Silty SAND:
40-42	8" Sonic	CH	CLAY:
42-42.5	8" Sonic	СН	Silty CLAY:
42.5-45	8" Sonic	SC	Clayey SAND:
45-46.25	8" Sonic	CH	CLAY:
46.25-46.75	8" Sonic	SW/SM	SAND with silt:
46.75-47	8" Sonic	ML	Sandy SILT:
47-47.5	8" Sonic	SM	Silty SAND:
47.5-50	8" Sonic	CH	CLAY:
50-51.5	8" Sonic	SM	Silty SAND:
51.5-52	8" Sonic	CH	Sandy CLAY:
52-52.5	8" Sonic	SM	CLAY:
52.5-53.5	8" Sonic	CH	Sandy CLAY:
53.5-55	8" Sonic	SM	Silty SAND:
55-56.25	8" Sonic	М	Sandy SILT:
56.25-57.5	8" Sonic	ML	SILT:
57.5-60	8" Sonic	SP/SM	SAND with silt:
60-61.5	8" Sonic	SM	Silty SAND:
61.5-62.5	8" Sonic	CH	CLAY:
62.5-63.75	8" Sonic	SP/SM	SAND with silt:
63.75-65	8" Sonic		SAND:
65-67.5	8" Sonic	SW	SAND:
67.5-70	8" Sonic		Gravelly SAND:
70-70.5	8" Sonic	SC/SM	Silty SAND and clay:
70.5-72.5	8" Sonic		CLAY:
72.5-75	8" Sonic	CH	CLAY:

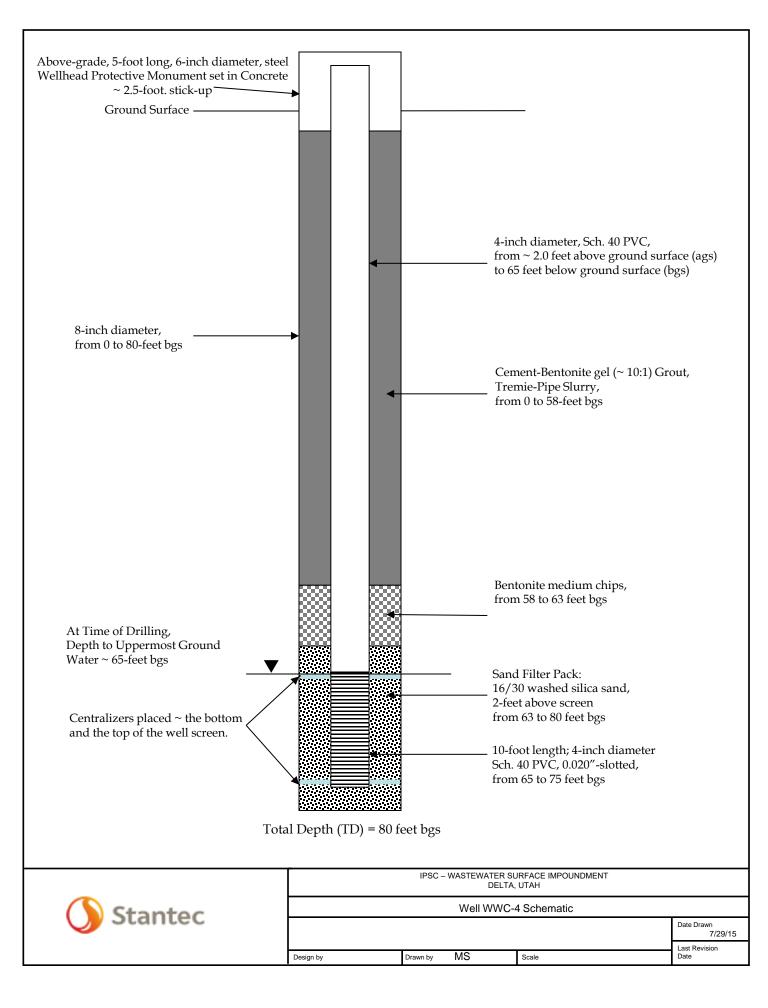
TD = 75'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60 Drilling Method: Guspech GS24-300RS, 8" Rotosonic


Boring Logs ISPC Delta, Utah

W	ТМ	IC	-3

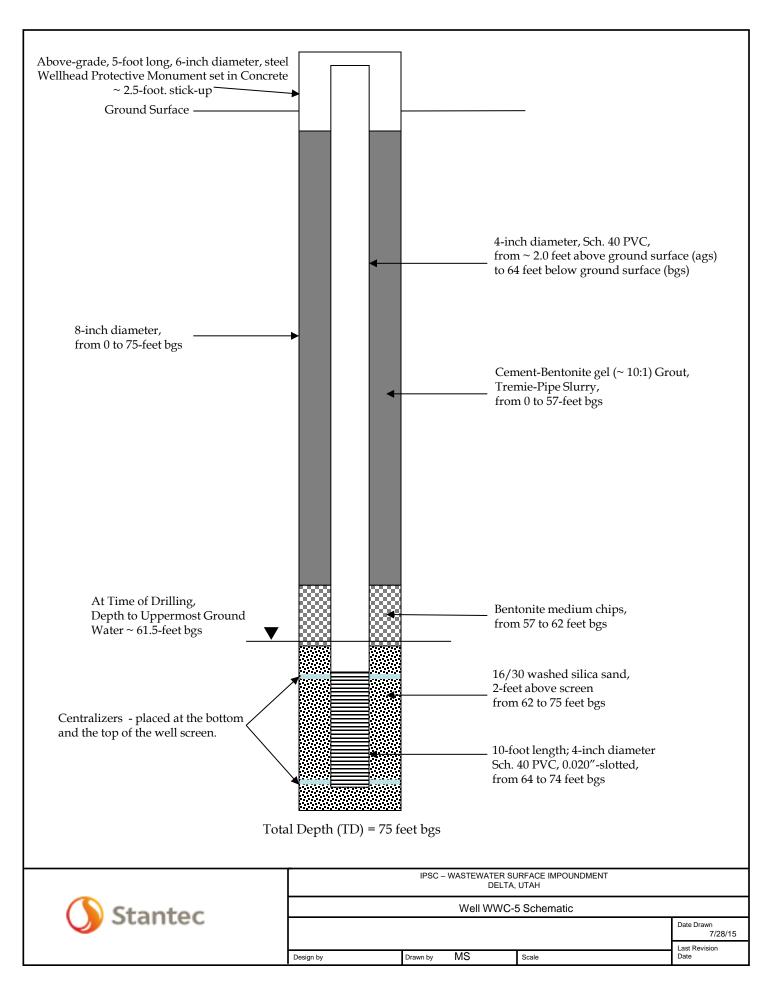
Interval (feet)	Drilling Method	USCS	Sample Description
			7/30/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.
0.5-1	8" Sonic	SP	Gravelly SAND:
1-2.5	8" Sonic	SM	Silty SAND:
2.5-3.5	8" Sonic	3111	Silty SAND:
3.5-5	8" Sonic	SP/SM	SAND with silt:
5-6.5	8" Sonic	ML	Sandy SILT:
6.5-7.5	8" Sonic	CL	Sandy CLAY:
7.5-8	8" Sonic	SM	Silty SAND:
8-10	8" Sonic	SC	Clayey SAND:
10-11	8" Sonic		Silty SAND:
11-12.5	8" Sonic	SM	Silty SAND with clay:
12.5-13.5	8" Sonic		Silty SAND:
13.5-14	8" Sonic	SC	Clayey SAND:
14-15	8" Sonic	SM	Silty SAND:
15-15.5	8" Sonic		CLAY:
15.5-16	8" Sonic		CLAY:
16-16.5	8" Sonic		Sandy CLAY:
16.5-17.5	8" Sonic	СН	Sandy CLAY:
17.5-20	8" Sonic		CLAY:
20-21	8" Sonic		CLAY:
21-22	8" Sonic		CLAY:
22-24	8" Sonic		CLAY:
24-25	8" Sonic	SM	Silty SAND:
25-26.25	8" Sonic	SP/SM	SAND with silt:
26.25-27	8" Sonic	SP	SAND:
27-29	8" Sonic	SM	Silty SAND:
29-30	8" Sonic	CH	CLAY:
30-31	8" Sonic		CLAY:
31-32.5	8" Sonic	SP	SAND:
32.5-34	8" Sonic		SAND:
34-36	8" Sonic	CH	CLAY:
36-37	8" Sonic		CLAY:
37-39.5	8" Sonic	SP/SM	SAND with silt:
39.5-40.5	8" Sonic	SP	SAND:
40.5-41.5	8" Sonic	СН	SAND: CLAY:
41.5-43 43-44	8" Sonic 8" Sonic	SP/SM	CLAY: SAND with silt:
43-44 44-45	8" Sonic 8" Sonic	SP/SM SM	SAND with silt: Silty SAND:
44-45	8" Sonic 8" Sonic	SM	SAND:
45-47.5	8" Sonic 8" Sonic		CLAY:
47.5-50 50-52.5	8 Sonic 8" Sonic	CH	CLAT: CLAY:
52.5-55	8 Sonic 8" Sonic		SAND:
55-61	8 Sonic 8" Sonic	SP	SAND: SAND:
61-62.5	8 Sonic 8" Sonic		SAND: SAND:
62.5-65	8 Sonic 8" Sonic	SW	SAND: SAND:
65-67.5	8 Sonic 8" Sonic	SP	SAND: SAND:
67.5-69.5	8" Sonic	SW	SAND: SAND:
69.5-70	8" Sonic	CH	CLAY:

TD = 70'; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55


Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Interval (feet)	Drilling Method	USCS	Sample Description		
			7/29/2015		
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.		
0.5-2.5	8" Sonic		SAND with silt:		
2.5-5	8" Sonic	SP/SM	SAND with silt:		
5-6.25	8" Sonic	ML	Sandy SILT:		
6.25-7.25	8" Sonic	CL	CLAY:		
7.25-8	8" Sonic	SC	Clayey SAND:		
8-9	8" Sonic	SP/SC	SAND with clay:		
9-10	8" Sonic	SP	SAND:		
10-11	8" Sonic	ML	SILT:		
11-12.5	8" Sonic	ML/CL	Clayey SILT:		
12.5-14	8" Sonic	CI	CLAY:		
14-15	8" Sonic	CL	Sandy CLAY:		
15-16	8" Sonic	60	Clayey SAND:		
16-18	8" Sonic	SC	Clayey SAND:		
18-19.5	8" Sonic	SM	Silty SAND:		
19.5-20	8" Sonic		CLAY:		
20-21.25	8" Sonic	СН	Sandy CLAY:		
21.25-22.5	8" Sonic	SM	Silty SAND:		
22.5-23.75	8" Sonic	CH	CLAY:		
23.75-25	8" Sonic	SM	Silty SAND:		
25-25.75	8" Sonic	SC	Clayey SAND:		
25.75-27.5	8" Sonic	CL	Sandy CLAY:		
27.5-29	8" Sonic		CLAY:		
29-30.5	8" Sonic	СН	CLAY:		
30.5-31.5	8" Sonic	SM	Silty SAND:		
31.5-32.25	8" Sonic		Sandy CLAY:		
32.25-32.5	8" Sonic	CL	Sandy CLAY:		
32.5-33	8" Sonic	CH	CLAY:		
33-36	8" Sonic	SP/SM	SAND with silt:		
36-37	8" Sonic	SM	Silty SAND:		
37-40	8" Sonic		SAND:		
40-42.5	8" Sonic	SP	SAND:		
42.5-45	8" Sonic		SAND:		
45-46	8" Sonic	SP/SW	ND:		
46-46.5	8" Sonic		CLAY:		
45.5-47.5	8" Sonic		Sandy CLAY:		
47.5-48.5	8" Sonic	CH	CLAY:		
48.5-50	8" Sonic		CLAY:		
50-50.5	8" Sonic		CLAY:		
50.5-52.5	8" Sonic	SM	Silty SAND:		
52.5-54	8" Sonic	СН	CLAY:		
54-55	8" Sonic	SP	SAND:		
55-57	8" Sonic	СН	Sandy CLAY:		
57-57.5	8" Sonic	SP	SAND:		
57.5-60	8" Sonic		Silty SAND:		
60-62	8" Sonic	SM	Silty SAND:		
62-62.5	8" Sonic	SC	Clayey SAND:		
62.5-63	8" Sonic	СН	Sandy CLAY:		
63-65	8" Sonic	SM	Silty SAND:		
65-67.5	8" Sonic	SW	SAND:		
67.5-69.5	8" Sonic	SP	SAND:		
69.5-70			SAND:		
09.3-70	8" Sonic				
	8" Sonic 8" Sonic	SW	SAND:		
70-72			SAND: SAND with silt:		
70-72	8" Sonic	SW SP/SM SM			

TD = 80'; PVC 4-inch screen from 65 to 75; PVC 4-inch riser from -2.5 to 65

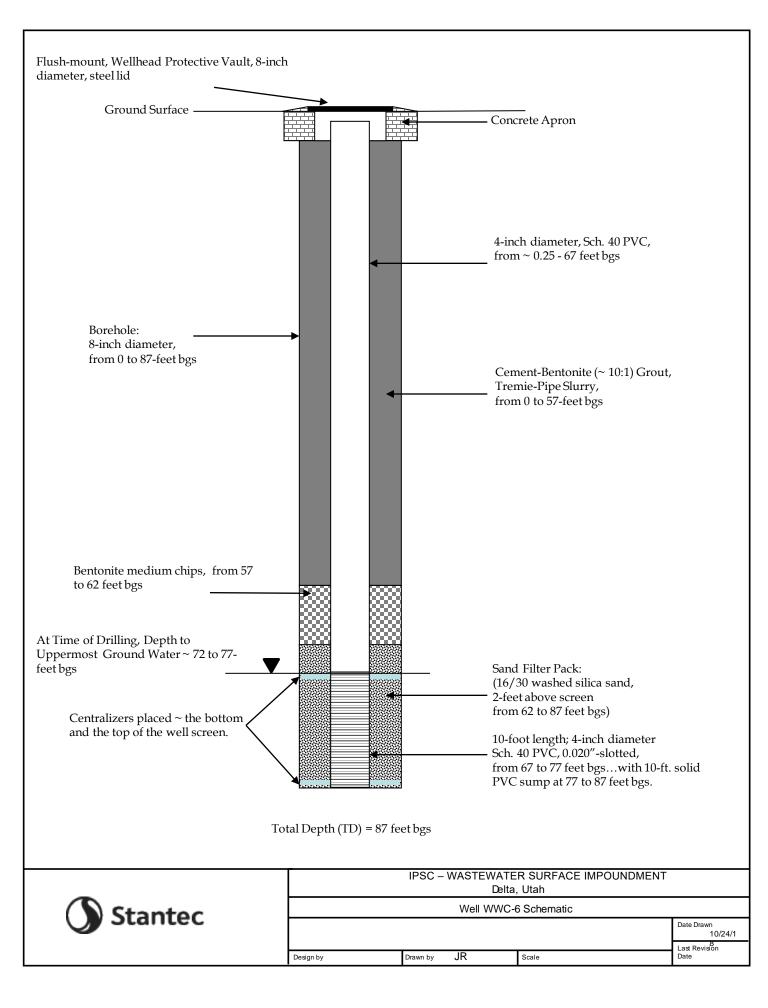

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

М	ī	C	-5

P32 P3800 P3700 B43 P3800 Miner Sector cols on one one one one one one one one one							
0-05 0*50mt MM Sardy Star. 0-52 0*50mt MM Sardy Star. 2-54 0*50mt 0% MM North sit. 2-54.5 0*50mt 0% MM North sit. 2-54.5 0*50mt 0% MM North sit. 2-54.7 0*50mt 0% MM North sit. 2-54.7 0*50mt 0% MM North sit. 100 0*50mt 0% MM North sit. 101 0*50mt 0% MM North sit. 101.11 0*50mt 0% 0% MM North sit. 101.12 0*50mt 0% 0% MM North sit. 101.12 0*50mt 0% 0% MM North sit. 101.12	Interval (feet)	Drilling Method	USCS	Sample Description			
6.5.2 9° Sonk 9% NA NA 2243 8° Sonk 9% NAN NA 2544 8° Sonk 9% NAN 2543 8° Sonk MA Carrent 2543 8° Sonk MA Carrent 7.50 8° Sonk MA Carrent 7.50 8° Sonk MA Single Carrent 7.50 8° Sonk Carrent Single Carrent 7.50 8° Sonk Carrent Single Carrent 7.51 8° Sonk Carrent Carrent 153.15 8° Sonk Carrent 153.16 8° Sonk				7/28/2015			
22.3 9 * Sonk 50% 50% 25.4.3 9 * Sonk 90% MAD veh slit 42.54 9 * Sonk 90 NAD veh slit 57.5 9 * Sonk 90 Sonk 10% 7.5.6 9 * Sonk 00 Sonk 10% 10.1185 9 * Sonk 50 Song VAD. 10.1185 9 * Sonk 50 Cong Sonk 11.25.125 9 * Sonk ML Cong Sonk 12.51.25 9 * Sonk ML Cong Sonk 12.52.25 9 * Sonk ML Cong Sonk 12.52.26 9 * Sonk ML Cong Sonk 12.52.37 9 * Sonk ML Cong Sonk 12.52.38 9 * Sonk ML Cong Sonk 12.52.49 9 * Sonk ML	0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
2.425 9 'Sonk SM SM/SAD 4256 9 'Sonk M. Cury 90.7. 7.59 9 'Sonk M. Sm(C) (A)'. 9.00 9 'Sonk C. Sm(C) (A)'. 9.01 9 'Sonk C. Cary SMD. 10.11 18 'Sonk C. Cary SMD. 10.12 18 'Sonk S. Cary SMD. 10.13 18 'Sonk S. Cary SMD. 12.13.15 9 'Sonk S. Cary SMD. 13.75.15 9 'Sonk C. Cary SMD. 13.75.17 9 'Sonk C. Cary SMD. 14.75 9 'Sonk C. Cary SMD. 15.75 9 'Sonk C. Cary SMD. 16.75 9 'Sonk C. Cary SMD. 17.750 9 'Sonk C. Cary SMD. 18.225 9 'Sonk C. Cary SMD. 12.522 9 'Sonk S. Cary SMD. 12.523 9 'Sonk S. Cary SMD. 12.524 9 'Sonk S. Cary SMD. 12.525 9 'Sonk S. Cary SMD. 12.524 9 'Sonk S. Cary SMD. 12.525 9 'Sonk <	0.5-2	8" Sonic	ML	Sandy SILT:			
4253 9° Sonk 90 SND 573 9° Sonk Ch Ch 754 9° Sonk Ch Snd (CA)* 100 8° Sonk SC Chyry SADD 101 8° Sonk Ch Ch/r 1125-125 8° Sonk Ch CA/r 1125-125 8° Sonk SC Chyry SADD 1125-125 8° Sonk SC Chyry SADD 1125-126 8° Sonk SC Chyry SADD 1125-127 8° Sonk SC Chyry SADD 1125-128 8° Sonk SC Chyry SADD 1125-129 8° Sonk SC Chyr SADD 1125-129 8° Sonk SC Chyr SADD 1125-129 8° Sonk Ch Chyr SADD 1125-129 8° Sonk Ch Chyr SADD 1125-129 8° Sonk SC Chyr SADD 1125-129 8° Sonk SC Chyr SADD 125-129 8° Sonk SC Sandy Chyr 125-20 8° Sonk	2-2.5	8" Sonic	SP/SM	SAND with silt:			
97.50 97.500 97.500 97.500 91.00 97.5000 97.5000 CL 91.01 97.5000 CL CL/W 91.01 97.5000 CL CL/W 91.01 97.5000 CL CL/W 91.01 97.5000 CL CL/M 125.12.12 97.5000 97.5000 CL 125.12.12 97.5000 CL CL/M 137.51 97.5000 CL/M CL/M 137.52 97.5000 CL/M Solop 137.51 97.5000 CL/M Solop 137.52 97.5000 CL/M Solop 137.53 97.5000 CL/M Solop 137.53 97.5000 Solop Solop 137.53	2.5-4.25	8" Sonic	SM	Silty SAND:			
759 9"Sonk Chay Solv 100105 9"Sonk Sonk (CAN: 101015 9"Sonk Chay Solv 1125125 9"Sonk Chay Solv 1125125 9"Sonk Chay Solv 1125125 9"Sonk Chay Solv 1125127 9"Sonk Chay Solv 1125128 9"Sonk Chay Solv 1125129 9"Sonk Chay Solv <	4.25-5	8" Sonic	SP	SAND:			
9-909-5onic92-5onicCLay Component103:1039-5onicCLCAN:103:11239-5onicCLCAN:113:12319-5onicCLCAN:113:12319-5onicCLCAN:113:1319-5onicCLCAN:113:1319-5onicCLCAN:113:1319-5onicCLCAN:113:1319-5onicCLCAN:113:1319-5onicCLCAN:113:1319-5onicCLCAN:113:1329-5onicCLCLAY:113:1329-5onicCLCLAY:114:1429-5onicCLAY:115:1239-5onicCLAY:115:1249-5onicCLAY:115:12549-5onicCLAY:115:12549-5onicCLAY:115:12559-5onicCLAY:115:12579-5onicCLAY:115:12579-5onicSAN:115:12589-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12599-5onicSAN:115:12509-5onicSAN:115:12509-5onicSAN:115:12509-5onicSAN:115:12509-5onicSAN:115:	5-7.5	8" Sonic	ML	Clayey SILT:			
9-10 9-5 Sonie Constraint 1041112 9-Sonie CL CLAY 1051123 9-Sonie CL CLAY 125123 9-Sonie Sonie Sonie 12513175 9-Sonie Sonie CLAY 125175 9-Sonie CLAY CLAY 12523 9-Sonie CLAY CLAY 12524 9-Sonie CLAY CLAY 12525 9-Sonie CLAY CLAY 12524 9-Sonie CLAY CLAY 12525 9-Sonie CLAY CLAY 12524 9-Sonie CLAY CLAY 12525 9-Sonie SONI CLAY 12524 9-Sonie SONI CLAY 12525 9-Sonie SONI CLAY 12526 9-Sonie SONI SONIE 12537 9-Sonie SONIE SONIE 12538 9-Sonie SONIE SONIE 12544 9-	7.5-9	8" Sonic	CI	Silty CLAY:			
103.1239° SenicCLCAÝ112-1239° SenicMCuy SID*112-1249° SenicSCCuy SAD1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1137-1379° SenicCLCLAY1132159° SenicCLCLAY1132159° SenicCLCLAY1132159° SenicCLCLAY1132229° SenicCLCLAY1132239° SenicCLCLAY1132249° SenicCLCLAY1132259° SenicCLCLAY1132359° SenicCLCLAY1132459° SenicCLCLAY1132559° SenicCLCLAY1132579° SenicCLCLAY1132589° SenicSIND1134	9-10	8" Sonic	CL	Sandy CLAY:			
11.35.125# SenicM.Copy SH1:11.35.137# SenicSCLorge SAD11.35.137# SenicSCLorge SAD11.35.137# SenicCLCLAY:11.35.137# SenicCLCLAY:11.35.137# SenicCLCLAY:11.35.137# SenicCLCLAY:11.35.137# SenicCLCLAY:11.35.137# SenicSCCLaye SAD11.35.137# SenicSCCLaye SAD11.35.137# SenicSCCLaye SAD12.35.22# SenicSCCLaye SAD22.35.1# SenicSCCLaye SAD22.35.1# SenicSCCLaye SAD22.35.1# SenicSCCLAY:23.35# SenicSCSC24.375# SenicSCSC24.375# SenicSCSC24.375# SenicSCSC35.352# SenicSCSC35.352# SenicS	10-10.5	8" Sonic	SC	Clayey SAND:			
125.152 9° Senke SM Biy SAND: 137.575 9° Senke CL CLAY: 151.61 9° Senke CL CLAY: 152.52 8° Senke CL CLAY: 252.52 8° Senke CL CLAY: 252.52 8° Senke CL CLAY: 252.54 8° Senke CL CLAY: 252.54 8° Senke CL CLAY: 252.54 8° Senke SAND SAND: 252.54 8° Senke SAND: SAND: 252.54 8° Senke SAND: SAND: 252.54 8° Senke SAND: SAND: <	10.5-11.25	8" Sonic	CL	CLAY:			
13.54.379 'SonicSCCompo SAND.13.74.509 'SonicCLCLAY.15.74.509 'SonicSCCLAY.15.75.908 'SonicSCCLAY.15.75.918 'SonicSCCLAY.15.21.258 'SonicCLAY.15.21.258 'SonicSCCLAY.22.25.28 'SonicSCCLAY.22.25.48 'SonicSCCLAY.22.25.58 'SonicSCCLAY.23.848 'SonicSCCLAY.24.858 'SonicSCCLAY.25.748 'SonicSCCLAY.25.758 'SonicSCCLAY.25.848 'SonicSCCLAY.25.848 'SonicSCCLAY.25.848 'SonicSCCLAY.25.858 'SonicSCCLAY.26.828 'SonicSCCLAY.27.538 'SonicSCSAND.28.538 'SonicSCSAND.29.548 'SonicSMSily SAND.29.548 'SonicSMSily SAND.29.548 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.558 'SonicSMSily SAND.29.55 <td< td=""><td>11.25-12.5</td><td>8" Sonic</td><td>ML</td><td>Clayey SILT:</td></td<>	11.25-12.5	8" Sonic	ML	Clayey SILT:			
137.5439" SonicCLCL/Y:16.17.59" SonicCICAY:175.309" SonicCCCAY:175.309" SonicCCCLAY:20.32.12.59" SonicCLCLAY:21.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.246" SonicCLCLAY:22.25.256" SonicCLCLAY:22.25.266" SonicCLCLAY:22.25.276" SonicSMSily SAND22.25.286" SonicSMSily SAND22.25.296" SonicSMSily SAND22.25.206" SonicSPSAND22.25.216" SonicSPSAND22.25.236" SonicSPSAND22.25.246" SonicSPSAND22.25.256" SonicSPSAND22.25.266" SonicSPSAND22.25.276" SonicSPSAND22.25.286" SonicSPSAND22.25.296" SonicSPSAND22.25.206" SonicSPSAND <t< td=""><td>12.5-13.25</td><td>8" Sonic</td><td>SM</td><td>Silty SAND:</td></t<>	12.5-13.25	8" Sonic	SM	Silty SAND:			
15-16 \mathcal{F} SonicCLCA:11-175 \mathcal{F} SonicSCClays SAND.125-28 \mathcal{F} SonicCLA:CLA:23-21.25 \mathcal{F} SonicCLA:CLA:22-252 \mathcal{F} SonicCLA:CLA:22-252 \mathcal{F} SonicSCClays SAND.22-254 \mathcal{F} SonicSCClays SAND.22-254 \mathcal{F} SonicSCClays SAND.22-254 \mathcal{F} SonicSCClays SAND.22-255 \mathcal{F} SonicSMSily SAND.22-252 \mathcal{F} SonicSMSily SAND.22-253 \mathcal{F} SonicCHCLA:22-254 \mathcal{F} SonicCHCLA:22-255 \mathcal{F} SonicCHCLA:22-252 \mathcal{F} SonicCHCLA:22-253 \mathcal{F} SonicCHCLA:22-254 \mathcal{F} SonicCHCLA:22-255 \mathcal{F} SonicCHCLA:22-254 \mathcal{F} SonicSily SAND.22-255 \mathcal{F} SonicSIN22-254 \mathcal{F} SonicSIN22-255 \mathcal{F} SonicCH22-254 \mathcal{F} SonicSily SAND.22-254 \mathcal{F} SonicSily SAND.22-254 \mathcal{F} SonicSily SAND.22-254 \mathcal{F} SonicSily SAND.22-255 \mathcal{F} SonicSily SAND.22-256 \mathcal{F} SonicSily SAND.22-257 \mathcal{F} SonicSily SAND.22-257 \mathcal{F} SonicSily SAND.<	13.25-13.75	8" Sonic	SC	Clayey SAND:			
15-16 ℓ^{S} SenkClAY:175-19 ℓ^{S} SenkClAY:175-19 ℓ^{S} SenkClAY:19-205 ℓ^{S} SenkClAY:21-2521 ℓ^{S} SenkClAY:21-2522 ℓ^{S} SenkClAY:22-255 ℓ^{S} SenkSCClayy: SAND:22-254 ℓ^{S} SenkSCClayy: SAND:22-255 ℓ^{S} SenkSCClayy: SAND:22-254 ℓ^{S} SenkSKSky SAND:22-255 ℓ^{S} SenkSKSky SAND:22-25 ℓ^{S} SenkSKSky SAND:22-254 ℓ^{S} SenkSKSky SAND:22-255 ℓ^{S} SenkCHClAY:22-252 ℓ^{S} SenkCHCLAY:22-253 ℓ^{S} SenkSKSky SAND:22-254 ℓ^{S} SenkSFSankD:22-255 ℓ^{S} SenkSFSanD:22-254 ℓ^{S} SenkSFSAND:22-255 ℓ^{S}	13.75-15	8" Sonic	CI	CLAY:			
175-99 8' Sonic C Carge SAND: 205-21.25 8' Sonic C Karge SAND: 21.252 8' Sonic CLAY: 21.252 8' Sonic CLAY: 22.252 8' Sonic SOC Clayey SAND: 23.242 8' Sonic SOC Clayey SAND: 24.253 8' Sonic SM Sily SAND; 24.254 8' Sonic CH CLAY: 25.266 8' Sonic CH CLAY: 25.275 8' Sonic CH CLAY: 27.275 8' Sonic CH CLAY: 28.28.00 8' Sonic SM Sily SAND / CLAY: 28.29.30 8' Sonic SM Sily SAND: 28.25.30 8' Sonic SAND Sily SAND: 28.25.30 8' Sonic SAND: 28.25.31 8' Sonic SAND: 28.25.31 8' Sonic CH 28.42.25 8' Sonic CH 28.42.25 8' Sonic CH	15-16	8" Sonic	CL	CLAY:			
19:03. 8''sonic CLAY 20.5:21.5 8''sonic CL 21.5:22 8''sonic SC 22.2:41 8''sonic SC 22.2:42 8''sonic SC 22.5:41 8''sonic SC 22.5:41 8''sonic SC 23.5:40 8''sonic CH 24.2:5 8''sonic CH 25.2:6 8''sonic SM/CH 25.2:6 8''sonic SM 25.2:6 8''sonic CH 25.2:6 8''sonic SM 25.2:6 8''sonic SM 25.2:6 8''sonic SM 25.2:6 8''sonic SM 25.2:7 8''sonic SM 25.2:7 8''sonic SM 25.2:7 8''sonic SM 24.2:7 8''sonic SM 24.2:4:2:7 8''sonic SM 24.2:4:2:7 8''sonic SM 24.2:4:2:7 8''sonic SM 25.3:2:8 8''sonic </td <td>16-17.5</td> <td>8" Sonic</td> <td>CH</td> <td>CLAY:</td>	16-17.5	8" Sonic	CH	CLAY:			
19-20.3 8 * Sonic CLA* 2125-22 8 * Sonic CL 2125-23 8 * Sonic SC Clayey SAND: 22224 8 * Sonic SC Clayey SAND: 2254 8 * Sonic SC Clayey SAND: 2254 8 * Sonic SK Slip SAND: 2425 8 * Sonic CH CLAY: 24275 8 * Sonic CH CLAY: 24275 8 * Sonic CH CLAY: 242825 8 * Sonic CH Suly CAY: 242825 8 * Sonic SM Slip SAND: 242825 8 * Sonic CH CLAY: 242825 8 * Sonic SM Slip SAND: 242825 8 * Sonic SM Slip SAND: 24284 8 * Sonic CH CLAY: 24284 8 * Sonic CH Sandy CLAY: 244445 8 * Sonic CH Sandy CLAY: 244455 8 * Sonic CH Sandy CLAY: 244455 8 * Sonic CH CLAY: 24445	17.5-19	8" Sonic	SC	Clayey SAND:			
2125.225 8 * Sonic CLA*: 2125.22 8 * Sonic SC CLAY: 222.25 8 * Sonic SM Sily SAND: 224.24 8 * Sonic SM Sily SAND: 232.34 8 * Sonic CH CLAY: 242.35 8 * Sonic CH CLAY: 242.52 8 * Sonic CH Sily SAND: 252.34 8 * Sonic CH CLAY: 282.35 8 * Sonic CH CLAY: 282.30 8 * Sonic CH CLAY: 282.31 8 * Sonic CH CLAY: 3032.51 8 * Sonic SN SAND: 30432.51 8 * Sonic SN SAND: 30432.51 8 * Sonic SN SAND: 30442.5 8 * Sonic CH CLAY: 30442.5 8 * Sonic CH CLAY: 424.42.5 8 * Sonic CH CLAY: 424.43 8 * Sonic CH SINS * SAND: 424.44.54 8 * Sonic CH SINS * SAND: 424.45.5 8 * Sonic CH SINS * SAND: 424.45.6 8 * Sonic CH SINS * SAND: 425.46.7 8 * Soni							
121222 8'Sonic CAY: 22225 8'Sonic SC Clayey SAND: 2425 8'Sonic CH CLAY: 2425 8'Sonic SMCI Sily SAND / CLAY: 24254 8'Sonic SM Sily SAND: 28253 8'Sonic SM Sily SAND: 282540 8'Sonic SM Sily SAND: 242541 8'Sonic SM Sily SAND: 24254275 8'Sonic SM Sily SAND: 24254275 8'Sonic SM Sily SAND: 24254275 8'Sonic SM Sily SAND: 2425437 8'Sonic SM Sily SAND: 242543 8'Sonic SM Sily SAND: 245545 8'Sonic SM	20.5-21.25		CH	Sandy CLAY:			
22.2.4 8° Sonic SM Silly SADD 24.25 8° Sonic CH CLY: 25.26 8° Sonic SM/CH Silly SADD / CLAY: 26.77 8° Sonic CH CLAY: 27.28 8° Sonic SM Silly SADD / CLAY: 28.825 8° Sonic SM Silly SADD 28.825 8° Sonic CH CLAY: 28.825 8° Sonic SM Silly SADD 28.825 8° Sonic CH CLAY: 39.325 8° Sonic SADD SADD: 28.827 8° Sonic SADD: SADD: 34.725 8° Sonic SADD: SADD: 34.725 8° Sonic SMD: SADD: 44.45 8° Sonic Silly SADD Silly SADD: 42.3-42.7 8° Sonic Silly SADD: Silly SADD: 44.45.4 8° Sonic Silly SADD: Silly SADD: 45.45.7 8° Sonic Silly SADD: Silly SADD: 45.45.7 8° Sonic CH Silly SADD: 55.51 8° Sonic CH Silly SADD: 55.52 8° Sonic CH CLAY: 55.52 8° Sonic Sulfy SADD:	21.25-22	8" Sonic		CLAY:			
22.2.4 8° Sonic SM Silly SADD 24.25 8° Sonic CH CLY: 25.26 8° Sonic SM/CH Silly SADD / CLAY: 26.77 8° Sonic CH CLAY: 27.28 8° Sonic SM Silly SADD / CLAY: 28.825 8° Sonic SM Silly SADD 28.825 8° Sonic CH CLAY: 28.825 8° Sonic SM Silly SADD 28.825 8° Sonic CH CLAY: 39.325 8° Sonic SADD SADD: 28.827 8° Sonic SADD: SADD: 34.725 8° Sonic SADD: SADD: 34.725 8° Sonic SMD: SADD: 44.45 8° Sonic Silly SADD Silly SADD: 42.3-42.7 8° Sonic Silly SADD: Silly SADD: 44.45.4 8° Sonic Silly SADD: Silly SADD: 45.45.7 8° Sonic Silly SADD: Silly SADD: 45.45.7 8° Sonic CH Silly SADD: 55.51 8° Sonic CH Silly SADD: 55.52 8° Sonic CH CLAY: 55.52 8° Sonic Sulfy SADD:			SC				
P4:25 8* Sonic CH CLAY: 25-26 8* Sonic SM/CH Sily SAD/ CLAY: 25-27.58 8* Sonic CH CLAY: 25-28.25 8* Sonic SM Sily SAD/ CLAY: 25-28.25 8* Sonic SM Sily SAD/ CLAY: 25-28.25 8* Sonic SM Sily SAD/ CLAY: 25-30 8* Sonic SM Sily SAD/ 25.31 8* Sonic SP SAND: 347.57 8* Sonic SP SAND: 25.42 8* Sonic SP/SM SAND: 25.42 8* Sonic SP/SM SAND: 34.75 8* Sonic SP/SM SAND: 25.42.7 8* Sonic SM Sily SAND 44.44.5 8* Sonic SM Sily SAND 42.54.27 8* Sonic SM Sily SAND 44.54.5 8* Sonic SM Sily SAND 45.54.57 8* Sonic SM Sily SAND 45.54.57 8* Sonic Sily SAND Sily SAND 55.51.5 8* Sonic CLAY: CLAY: 55.55 8* Sonic CLAY: CLAY: 55.55 8* Sonic CLAY: CLAY: C	22.5-24	8" Sonic	SM				
25.26 $8'' SonicSM/CHSilly SAD / CLAY:26.27.58'' SonicCLAY:275.288'' SonicSM28282508'' SonicSM2828308'' SonicSM304258'' SonicCLAY:304258'' SonicSAND:304258'' SonicSP347758'' SonicSP347758'' SonicSP347758'' SonicSP/CM347758'' SonicSM SII SAND:342758'' SonicSM422542758'' SonicSM42542758'' SonicSM42542758'' SonicSM42542758'' SonicSM444458'' SonicSM454558'' SonicSM45546758'' SonicSM45546758'' SonicCLAY:45546758'' SonicCLAY:45546758'' SonicCLAY:515528'' SonicCLAY:515528'' SonicCLAY:515528'' SonicCLAY:515528'' SonicCLAY:515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC515528'' SonicSM/SC$							
28-27.5 8 'Sonic CLY: 275-28 8 'Sonic SM 28-28.25 8 'Sonic SM 28-28.25 8 'Sonic SM 28-28.25 8 'Sonic CH 28-28.25 8 'Sonic SM 28-28.25 8 'Sonic SM 28-28.25 8 'Sonic SND 28-28.25 8 'Sonic SND 34-37.5 8 'Sonic SP/SM 34-37.5 8 'Sonic SM Sily SAND 40-42.5 8 'Sonic SM Sily SAND 42-42.75 8 'Sonic CH 42-42.75 8 'Sonic SM Sily SAND 42-42.75 8 'Sonic SM Sily SAND 44-45 8 'Sonic SIly SAND 44-45 8 'Sonic SIly SAND 44-45.5 8 'Sonic SIly SAND 45-45.7 8 'Sonic CH 45-54.75 8 'Sonic SIly SAND 45-54.75 8 'Sonic CH 51.55.15 8 'Sonic CH 52.51.5 8 'Sonic CH 5							
27.5-28 8 * Sonic CH Sandy CLAY: 28-28.25 8 * Sonic SM Silly SAND: 28-28.25 8 * Sonic CH CLAY: 30-32.5 8 * Sonic SND SAND: 30-32.5 8 * Sonic SP SAND: 34-37.5 8 * Sonic SP SAND: 34-37.5 8 * Sonic SP/SM SAND: 40-42.5 8 * Sonic SM Silly SAND: 40-42.5 8 * Sonic CH CLAY: 425-42.75 8 * Sonic SM Silly SAND: 444.5 8 * Sonic SM Silly SAND: 444.55 8 * Sonic SM Silly SAND: 45-45.7 8 * Sonic SM Silly SAND: 46-54.57 8 * Sonic SM Silly SAND: 46-55.8 8 * Sonic SM Silly SAND: 50-55.15 8 * Sonic SM Silly SAND: 52-53.5 8 * Sonic SM Silly SAND: 52-53.5 <td></td> <td></td> <td></td> <td></td>							
28.28.25 8° Sonic SM Silly SAND: 28.28.30 8° Sonic CLAY: CLAY: 30.32.5 8° Sonic SND: SAND: 34.37.5 8° Sonic SP SAND: 34.37.5 8° Sonic SP SAND: 34.37.5 8° Sonic SP SM SAND: 34.42.5 8° Sonic CH CLAY: 44.42.5 8° Sonic SM Silly SAND: 42.54.27.5 8° Sonic CH Sandy CLAY: 44.44.5 8° Sonic Silly SAND: Silly SAND: 45.45.7 8° Sonic CLA Silly SAND: 45.45.7 8° Sonic CLAY: Silly SAND: 46.75.47.5 8° Sonic CLAY: CLAY: 47.55.0 8° Sonic CLAY: CLAY: 51.5 8° Sonic CLAY: CLAY: 52.53.5 8° Sonic CLAY: CLAY: 53.54 8° Sonic SON SINSAND: 53.55.7 8° Sonic			CH				
28.25.30 8° Sonic CLAY: 30-32.5 8° Sonic SAND: 32.534 8° Sonic SND: 34.37.5 8° Sonic SP/SM 42.54.27.5 8° Sonic CH 42.75.44 8° Sonic SM 44.45.5 8° Sonic SM 51.5 8° Sonic Silty SAND: 44.45.45 8° Sonic Silty SAND: 45.45.7 8° Sonic Silty SAND: 45.45.7 8° Sonic Silty SAND: 45.45.7 8° Sonic CLAY: 45.45.7 8° Sonic Sulty SAND: 51.52 8° Sonic CLAY: 51.52 8° Sonic Sulty SAND: 51.52 8° Sonic Sulty SAND: 52.53.5 8° Sonic Sulty SAND: 52.53.5 8° Sonic </td <td></td> <td></td> <td>SM</td> <td></td>			SM				
30.32.58' SonicSAND: <b< td=""><td></td><td></td><td></td><td colspan="3"></td></b<>							
32.5.348° SonicSPSAND: CLAY: CLAY:<							
34.37.5 8* Sonic SAND. 37.5-40 8* Sonic SP/SM SAND. with silt: 404.25 8* Sonic CH CLAY: 42.542.75 8* Sonic SM Silty SAND: 44.74.45 8* Sonic CH Solity SAND: 444.45 8* Sonic Silty SAND: Silty SAND: 445.45 8* Sonic Silty SAND: Silty SAND: 45.45.67 8* Sonic Silty SAND: Silty SAND: 45.45.7 8* Sonic CLAY: Silty SAND: 45.45.7 8* Sonic CLAY: Silty SAND: 45.50 8* Sonic CLAY: Silty SAND: 45.51 8* Sonic CLAY: Silty SAND: 50.51.5 8* Sonic CLAY: Silty SAND: 51.52.5 8* Sonic SM Silty SAND: 52.53.5 8* Sonic SM Silty SAND: 52.53.5 8* Sonic SM Silty SAND: 52.53.5 8* Sonic SM Silty SAND: <			SP				
375-408° SonicSP/SMSAND with silt:40-258° SonicCHCLAY:42.5-42.758° SonicSMSilty SAND:42.75.448° SonicCHSandy CLAY:44.44.58° SonicSMSilty SAND:44.54.58° SonicSMSilty SAND:44.54.58° SonicSilty SAND:45.55.68° SonicSilty SAND:45.55.78° SonicCHCLAY:45.55.88° SonicCLAY:47.5508° SonicCLAY:50.50.58° SonicCLAY:51.528° SonicCLAY:52.52.558° SonicCLAY:52.53.58° SonicCLAY:53.55.58° SonicCLAY:53.55.58° SonicCLAY:53.55.58° SonicCLAY:53.55.58° SonicSM55.57.58° SonicSM55.57.58° SonicSM55.57.58° SonicSM55.57.58° SonicSM60.075 61.5SCClay SAND:60.075 61.5CHCLAY:60.075 61.5SF61.542.58° SonicSMD:61.542.58° SonicSMNC61.542.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic65.57.58° Sonic<							
40.42.5 8 * Sonic CH CLAY: 42.52.75 8 * Sonic SM Silly SAND: 42.75.44 8 * Sonic CH Sandy CLAY: 44.44.5 8 * Sonic Silly SAND: Silly SAND: 44.44.5 8 * Sonic Silly SAND: Silly SAND: 45.54.67 8 * Sonic Silly SAND: Silly SAND: 46.75.47.5 8 * Sonic Silly SAND: CLAY: 50.50.5 8 * Sonic CH CLAY: 50.40.5 8 * Sonic CLAY: CLAY: 50.51.5 8 * Sonic SM Silly SAND: 50.52.5 8 * Sonic CH CLAY: CLAY: CLAY: CLAY: 52.52.5 8 * Sonic SM Silly SAND: 53.55.5 8 * Sonic SC Clayy SAND: 54.55 8 * Sonic SC Clayy SAND: 55.57.5 8 * Sonic SM/SC Silly SAND: 60.60.70 8 * Sonic SAND: SAND:			SP/SM				
42.542.75 8" Sonic SM Silty SAND: 44.44.5 8" Sonic CH Sady CLAY: 44.44.5 8" Sonic Silty SAND: 44.54.5 8" Sonic Silty SAND: 45.56.75 8" Sonic Silty SAND: 45.56.75 8" Sonic Silty SAND: 45.56.75 8" Sonic Silty SAND: 45.54.75 8" Sonic Silty SAND: 46.75.47.5 8" Sonic CLAY: 46.75.47.5 8" Sonic CLAY: 50.50.5 8" Sonic CLAY: 50.50.5 8" Sonic CLAY: 51.55.2 8" Sonic SM 51.55.2 8" Sonic SM 52.53.5.5 8" Sonic SM 53.55.5 8" Sonic SM 53.55.5 8" Sonic CLAY: CLAY: CLAY: CLAY: CLAY: CLAY: CLAY: CLAY: CLAY: 53.55.7.5 8" Sonic 50.70 SM Sonic 50.71 8" Sonic 60.607.5 8" Sonic 60.67.50 8" Sonic 61.562.5 8" Sonic 62.564 8" Sonic 63.570 8							
42,7544 $8"$ SonicCHSandy CLAY: $44,44,5$ $8"$ Sonic $8"$ Sonic $8"$ Sonic $8"$ Sonic $45,455$ $8"$ Sonic $8"$ SonicSilly SAND: $45,546,75$ $8"$ Sonic $8"$ Sonic EL $46,75-47,50$ $8"$ Sonic R EL $46,75-47,50$ $8"$ Sonic R EL $50,50,51$ $8"$ Sonic R EL $50,55,51$ $8"$ Sonic R $ELAY:$ $51,552$ $8"$ Sonic R Silly SAND: $51,552$ $8"$ Sonic R Silly SAND: $51,552$ $8"$ Sonic R Silly SAND: $52,532,53$ $8"$ Sonic R Silly SAND: $52,532,53$ $8"$ Sonic R Silly SAND: $52,553,54$ $8"$ Sonic R Silly SAND: $54,55$ $8"$ SonicSMSilly SAND and clay: $55,57,5$ $8"$ SonicSPSAND: $60,60,73$ $8"$ SonicSPSAND: $60,75,1,55$ $8"$ SonicSPSAND: $60,75,15$ $8"$ SonicSP/SMSAND it $62,524$ $8"$ SonicSP/SMSAND with silt: $54,55$ $8"$ SonicSP/SMSAND it $62,544$ $8"$ SonicSNDSAND it $54,570$ $8"$ SonicSANDSAND it $62,570$ $8"$ SonicSANDSAND it $57,570$ $8"$ SonicSANDSAND: $57,575$ $8"$ SonicSANDSAND it $67,570$ <t< td=""><td></td><td></td><td></td><td colspan="2"></td></t<>							
4444.5 8° Sonic SM Silly SAND: 45.45.4 8° Sonic Silly SAND: Silly SAND: 45.45.7 8° Sonic Silly SAND: Silly SAND: 45.74.75 8° Sonic Silly SAND: Silly SAND: 46.75.47.5 8° Sonic Silly SAND: Silly SAND: 46.75.47.5 8° Sonic CLAY: Silly SAND: 50.50.5 8° Sonic Texp Sonic CLAY: 50.50.5 8° Sonic CLAY: CLAY: 51.5.52 8° Sonic SM Silly SAND: 52.53.5 8° Sonic CL CLAY: 53.55.4 8° Sonic SC CLAY: 53.55.4 8° Sonic SC CLAY: 53.55.4 8° Sonic SC SIly SAND and clay: 54.55 8° Sonic SP SAND: 54.55 8° Sonic SP SAND: 60.60.75 8° Sonic SP SAND: 60.75.61.5 8° Sonic SP/SM SAND: <tr< td=""><td></td><td></td><td></td><td></td></tr<>							
445.45 $8"$ SonicSMSulty SAND: Sitty SAND: Sitty SAND: Sitty SAND:45.54.675 $8"$ SonicSW SonicSitty SAND: Sitty SAND:46.75.47.5 $8"$ Sonic $LAY:$ CLAY: Sandy CLAY: CLAY:50.50.5 $8"$ SonicCHCLAY: Sandy CLAY: CLAY:51.5-52 $8"$ SonicSMSitty SAND: Sandy CLAY: CLAY:52.53.25 $8"$ SonicSMSitty SAND: CLAY: CLAY:53.5-54 $8"$ SonicSMSitty SAND: CLAY: CLAY:53.5-54 $8"$ SonicSCClayey SAND: CLAY:54.57.5 $8"$ SonicSCClayey SAND: CLAY:55.57.5 $8"$ SonicSCClayey SAND: CLAY:55.57.5 $8"$ SonicSPSAND: SAND:60.75 $8"$ SonicSPSAND: SAND: SAND:60.75.61.5 $8"$ SonicSP/SM SAND: SAND: SAND: SAND: SAND with silt: SAND SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND: SAND:							
45.45.5 8° SonicSMSMSII45.5.46.75 8° SonicSiII SAND:46.75.47.5 8° SonicCLAY:47.5.50 8° SonicCLAY:50.50.5 8° SonicCLAY:50.551.5 8° SonicSM51.5 8° SonicSM51.5.52 8° SonicSM51.5.52 8° SonicSM51.5.52 8° SonicSM51.5.52 8° SonicSM52.53.55 8° SonicSM52.53.5 8° SonicCLAY:53.5-54 8° SonicSC54.55 8° SonicSC54.55 8° SonicSM/SC55.7.5 8° SonicSP57.5-0 8° SonicSP60.60.75 8° SonicSP60.75.41.5 8° SonicSP/SM61.54.25 8° SonicSP/SM64.65 8° SonicSP/SM64.64 8° SonicSP/SM64.65 8° SonicSND65.7.5 8° SonicSND67.57.0 8° SonicSND70.72.5 8° Sonic70.72.5 8° Sonic<				,			
45.546.758° SonicSily SAND:46.75-47.58° Sonic \mathcal{C} LAY: Sandy CLAY:<			SM	·			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				·			
47.5.50 $8"$ Sonic CH $CLAY:$ Sandy CLAY: CLAY: CLAY: CLAY: $50.5.51.5$ $8"$ SonicSMSilty SAND: $51.5.52$ $8"$ SonicSMSilty SAND: $52.53.25$ $8"$ SonicCLAY: CLAY:CLAY: $53.25.53.5$ $8"$ SonicSCClayey SAND: $53.5.54$ $8"$ SonicSCClayey SAND: $53.5.54$ $8"$ SonicSCClayey SAND: 54.55 $8"$ SonicSM/SCSilty SAND and clay: $55.57.5$ $8"$ SonicSM/SCSilty SAND and clay: $55.57.5$ $8"$ SonicSPSAND: $607.6-1.5$ $8"$ SonicSPSAND: $607.6-1.5$ $8"$ SonicCHCLAY: $61.5-62.5$ $8"$ SonicSP/SM 64.65 $8"$ SonicSP/SM 64.65 $8"$ SonicSND: 64.65 $8"$ SonicSND: 67.70 $8"$ SonicSND: $67.75.75$ $8"$ SonicSND: $70.72.5$ $8"$ SonicSND: $70.72.5$ $8"$ SonicSAND: $70.72.5$ $8"$ Soni							
505.05 $8"$ Sonic CH $andy CLAY:$ CLAY: $50.551.5$ $8"$ SonicSMSilty SAND: 51.552 $8"$ SonicSMSilty SAND: $52.53.25$ $8"$ Sonic CH $CLAY:$ $52.53.25$ $8"$ SonicCHCLAY: $53.25.53.5$ $8"$ SonicSCClayey SAND: 53.554 $8"$ SonicSM/CSilty SAND and clay: 54.55 $8"$ SonicSM/SSilty SAND and clay: $55.57.5$ $8"$ SonicSPSAND: $57.5.60$ $8"$ SonicSPSAND: $60.60.75$ $8"$ SonicSPSAND: $60.75.61.5$ $8"$ SonicSPSAND: $61.5.62.5$ $8"$ SonicSP/SMSAND: $61.5.62.5$ $8"$ SonicSP/SMSAND with silt: $62.5.64$ $8"$ SonicSP/SMSAND with silt: 64.65 $8"$ SonicSND:SAND: $67.5.70$ $8"$ SonicSND: $67.5.70$ $8"$ SonicSND: $7.5.75$ $8"$ SonicSND: $7.5.75$ $8"$ SonicSND: $7.5.75$ $8"$ Sonic 67.570 $8"$ SonicSND: 67.570 $8"$ Sonic $70.72.5$ $8"$ Sonic<							
50.5-51.5 $8" Sonic$ $CLAY:$ $51.5-52$ $8" Sonic$ SM $Silty SAND:$ $52.53.25$ $8" Sonic$ CH $CLAY:$ $53.25-33.5$ $8" Sonic$ CH $CLAY:$ $53.25-33.5$ $8" Sonic$ SC $Clayy SAND:$ $53.5-34$ $8" Sonic$ SC $Clayy SAND:$ 54.55 $8" Sonic$ SM/SC $Silty SAND$ and clay: $54.57.5$ $8" Sonic$ SM/SC $Silty SAND$ and clay: $55.57.5$ $8" Sonic$ SP $SAND:$ $57.5-60$ $8" Sonic$ SP $SAND:$ $60-60.75$ $8" Sonic$ SP/SM $SAND:$ $60-60.75$ $8" Sonic$ SP/SM $SAND:$ $61.5-62.5$ $8" Sonic$ SP/SM $SAND:$ $62.5-64$ $8" Sonic$ SP/SM $SAND:$ $62.5-64$ $8" Sonic$ $SND:$ $64-65$ $8" Sonic$ $SAND:$ 67.570 $8" Sonic$ $SND:$ 67.570 $8" Sonic$ $SAND:$ $70-72.5$ $8" Sonic$ $SAND:$ $72.5-75$ $8" Sonic$ $SAND:$ $72.5-75$ $8" Sonic$ $SAND:$ $72.5-75$ $8" Sonic$ $SAND:$ $72.5-75$ $8" Sonic$ $SAND:$			CH				
51.5.52 $8"$ SonicSMSilty SAND: $52.53.25$ $8"$ Sonic CH $CLAY:$ $CLAY:$ $53.25-53.5$ $8"$ SonicSCClayey SAND: $53.5-54$ $8"$ SonicSM/SCSilty SAND and clay: 54.55 $8"$ SonicSM/SCSilty SAND and clay: $55.57.5$ $8"$ SonicSM/SCSilty SAND and clay: $57.5-60$ $8"$ SonicSPSAND: $60.60.75$ $8"$ SonicSPSAND: $60.75-61.5$ $8"$ SonicCHCLAY: $61.5-62.5$ $8"$ SonicSP/SMSAND with silt: $62.5-64$ $8"$ SonicSP/SMSAND with silt: 64.65 $8"$ SonicSP/SMSAND: 64.65 $8"$ SonicSAND: $67.5-70$ $8"$ SonicSAND: $70.72.5$ $8"$ SonicSAND: $70.72.5$ $8"$ SonicSND: $72.5-75$ $8"$ SonicSND: <tr< td=""><td></td><td></td><td></td><td></td></tr<>							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			SM				
53.25-53.5 8° SonicCLAY:53.5-54 8° SonicSCClayey SAND:54-55 8° SonicSM/SCSilly SAND and clay:55-57.5 8° SonicSM/SCSAND:57.5-60 8° SonicSPSAND:60-60.75 8° SonicSPSAND:60-60.75 8° SonicSPSAND:60-60.75 8° SonicSPSAND:60-60.75 8° SonicSPSAND:60-60.75 8° SonicSP/SMSAND:60-60.75 8° SonicSP/SMSAND:60-60.75 8° SonicSP/SMSAND with silt:61.5-62.5 8° SonicSP/SMSAND with silt:62-5-64 8° SonicSP/SMSAND with silt:64-65 8° SonicSND with silt:65-67.5 8° SonicSAND with gravel:67-57.0 8° SonicSAND:70-72.5 8° SonicSAND:72.5-75 8° SonicSAND:				r -			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			CH				
			SC				
55-57.5 8" Sonic SAND: 57.5-60 8" Sonic SAND: 60-60.75 8" Sonic SAND: 60-60.75 8" Sonic CH 60-50.75 8" Sonic CH 61.5-62.5 8" Sonic CH 62.5-64 8" Sonic SP/SM 64-65 8" Sonic SAND with silt: 64-65 8" Sonic SAND with silt: 64-65 8" Sonic SAND with silt: 67-57.0 8" Sonic SAND with gravel: 67-570 8" Sonic SAND: 70-72.5 8" Sonic SAND: 72.5-75 8" Sonic SAND:							
57.5-00 8" Sonic SAND: 60-60.75 8" Sonic SAND: 60.75-61.5 8" Sonic CH CLAY: 61.5-62.5 8" Sonic SP/SM SAND with silt: 62.5-64 8" Sonic SP/SM SAND with silt: 64-65 8" Sonic SP/SM SAND: 65-67.5 8" Sonic SAND: SAND with silt: 67.5-70 8" Sonic SAND: SAND: 70-72.5 8" Sonic SAND: SAND: 72.5-75 8" Sonic SAND: SAND:			JIVI/ SC				
60-60.75 8" Sonic SAND: 60.75-61.5 8" Sonic CH CLAY: 61.5-62.5 8" Sonic SP/SM SAND with silt: 62.5-64 8" Sonic SP/SM SAND with silt: 64-65 8" Sonic SAND with silt: SAND with silt: 65-67.5 8" Sonic SAND with silt: SAND with silt: 67.5-70 8" Sonic SAND with gravel: Gravely SAND: 70-72.5 8" Sonic SAND: SAND:			CD				
60.75-61.5 8" Sonic CH CLAY: 61.5-62.5 8" Sonic SP/SM SAND with silt: 62.5-64 8" Sonic SP/SM SAND with silt: 64-65 8" Sonic SAND with silt: SAND with silt: 65-67.5 8" Sonic SAND with silt: GAND: 67.5-70 8" Sonic SAND with gravel: Gravely SAND: 70-72.5 8" Sonic SAND: SAND:			эг				
61.5-62.5 8" Sonic SP/SM SAND with silt: SAND with silt: 62.5-64 8" Sonic SAND with silt: 64-65 8" Sonic SAND with silt: 65-67.5 8" Sonic SAND with silt: 67.5-70 8" Sonic SAND with gravel: 70-72.5 8" Sonic SAND: 72.5-75 8" Sonic SAND:			CU				
62.5-64 8" Sonic SAND with silt: 64-65 8" Sonic SAND with silt: 64-65 8" Sonic SAND with silt: 65-67.5 8" Sonic SAND with silt: 67.5-70 8" Sonic SAND with gravel: 70-72.5 8" Sonic SAND: 72.5-75 8" Sonic SAND:			CH				
64-65 8" Sonic SAND: 65-67.5 8" Sonic SAND with gravel: 67.5-70 8" Sonic SW 70-72.5 8" Sonic SAND: 72.5-75 8" Sonic SAND:			SP/SM				
65-67.5 8" Sonic SAND with gravel: 67.5-70 8" Sonic SW Gravelly SAND: 70-72.5 8" Sonic SAND. SAND: 72.5-75 8" Sonic SAND: SAND:							
67.5-70 8" Sonic SW Gravelly SAND: 70-72.5 8" Sonic SAND: SAND: 72.5-75 8" Sonic SAND: SAND:							
70-72.5 8" Sonic SAND: 72.5-75 8" Sonic SAND:							
72.5-75 8" Sonic SAND:			SW				
TD - TEL DVC A is the second form (A to TA DVC A is the size form (D E to (A	72.5-75	8" Sonic					

TD = 75'; PVC 4-inch screen from 64 to 74; PVC 4-inch riser from -2.5 to 64 Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Boring Logs ISPC


Delta, Utah

	WWC-6					
Interval (feet)	Drilling Method	USCS	Sample Description			
			03/23/2018 - 03/24/2018			
0-0.5	8" Sonic	SM	Silty sand			
0.7-7	8" Sonic	SP	Sand, poorly graded, dry			
7-12.5	8" Sonic	CH	Silty clay			
12.5-15.5	8" Sonic	SM	Sand, some silt			
15.5-19.5	8" Sonic	SP	Sand, poorly graded			
19.5-21.5	8" Sonic	SW/GW	Sand and gravel			
21.5-27	8" Sonic	SP	Sand, poorly graded, running sands @ ~26			
27-29.5	8" Sonic	SP	Sand, poorly graded, running sands			
29.5-30	8" Sonic	SW	Sand with gravel			
30.37	8" Sonic	CH	Clay, stiff			
37-41	8" Sonic	CH	Clay, trace silt, moist, stiff			
41-47	8" Sonic	CH	Clay, stiff, moist			
47-48	8" Sonic	SP	Sand			
48-57	8" Sonic	SW	Sand, silt and gravel			
57-59	8" Sonic	SP	Sand			
59-60.5	8" Sonic	CH	Clay wet			
60.5-64.5	8" Sonic	MH	Silt, trace clay			
64.5-67	8" Sonic	СН	Clay wet			
67-72	8" Sonic	CH	Clay wet			
72-77	8" Sonic	SP	Sand, saturated			
77-87	8" Sonic	CH	Clay			

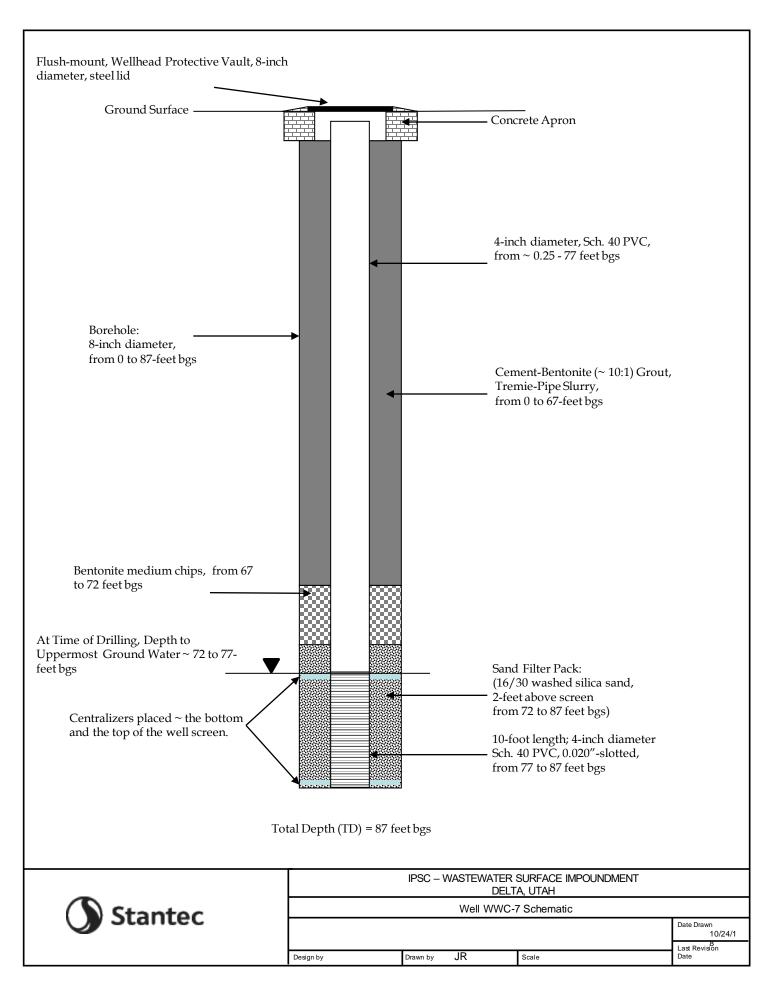
TD = 87'; PVC sump 87-77; 4" screen 77-67; sand 87-62 centralizers 67.5 and 76.5

Drilling Method: Sonic

Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler

Boring Logs ISPC

Delta, Utah


WWC-7

Interval (feet)	Drilling Method	USCS	Sample Description			
	03/20/2018 - 03/23/2018					
0-1.5	8" Sonic	SM	Silty sand, dry			
1.5-8.5	8" Sonic	SP	Sand, poorly graded, saturated at 7.5			
8.5-9	8" Sonic	CH	Sandy clay			
9-14	8" Sonic	SC	Clay with trace sand			
14-24	8" Sonic	SP	Sand, poorly graded, saturated with heaving sands at 17 '			
24-25	8" Sonic	SW/GW	Gravel/sand and gravel			
25-27	8" Sonic	CH	Clay, moist			
27-34.5	8" Sonic	SP	andy, wet			
34.5-35.5	8" Sonic	SW/GW	and, some gravel			
35.5-37	8" Sonic	CH	Clay, moist, stiff			
37-47	8" Sonic	CH	Clay, moist, stiff			
47-49.5	8" Sonic	CH	Clay, moist, stiff			
49.5-50.5	8" Sonic	SP	Sand, poorly softed, moist			
50.5-57	8" Sonic	CH	Clay, moist, stiff			
57-67	8" Sonic	СН	Clay, moist, stiff			
67-72	8" Sonic	CH	Clay, moist, stiff			
72-77	8" Sonic	SP	Sand, poorly graded, saturated @76.5			
77-87	8" Sonic	SP	Sand, poorly graded, saturated			

TD = 87'; PVC 4-inch screen from 77 to 87; sand pack 72-87; bentonite pellets 67-72; grout 67-grade

Drilling Method: Sonic

Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler

Project Name: Intermountain Power Service Corporation Boring Monitor Well: WWC-8

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-04-25

Driller: Ryan Miller Logged by: Rich Pratt Depth to Water at Drilling: 77 feet Depth to Water at Drilling (static at 24 hours): 27 feet

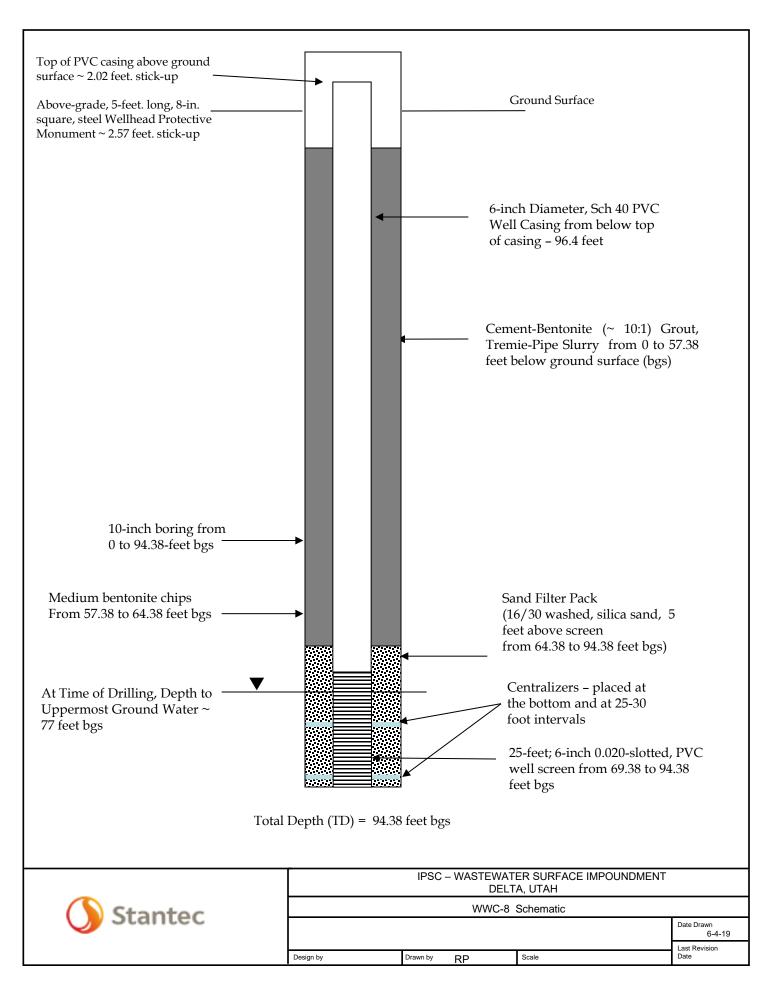
WWC-8

Interval (feet)	Description
0 - 3	Light brown sand, moist
3 - 7	Light brown sand with silt, dry
7 - 9	Medium brown clay with sand, moist
9 - 13	Medium brown clay, moist
13 - 15	Light brown clay, moist
15 - 17	Light brown clay, dry
17 - 26	Light brown clay, moist
26 - 35	Light brown clay with sand, moist
35 - 37	Light brown clay, moist
37 - 41	Medium brown medium grained sand, moist
41 - 43	Medium brown medium grained sand, moist
43 - 55	Medium brown medium grained sand, moist
55 - 59	Light brown clay, moist
59 - 63	Light brown clay with sand, moist
63 - 66	Light brown clay, moist
66 - 67	Light brown clay with sand, moist
67 - 68	Light brown sand, moist
68 - 77	Light brown clay with sand, moist
77 - 88	Medium brown sand, saturated
88 - 93	Light brown clay
93 - 94	Light brown clay with sand
94 - 96	Light brown clay
96 - 97	Medium brown sand

Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-69.38 feet


Screen (6 inch, 0.02 slotted, PVC): 69.38-94.38 feet

Sand Pack: 16/30 sand, 64.38-94.38 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal 57.38-64.38 feet

Top of 6 in. PVC Casing Elevation (Relative Datum Survey): NA

Top of Manhole Cover (Relative Datum Survey): NA

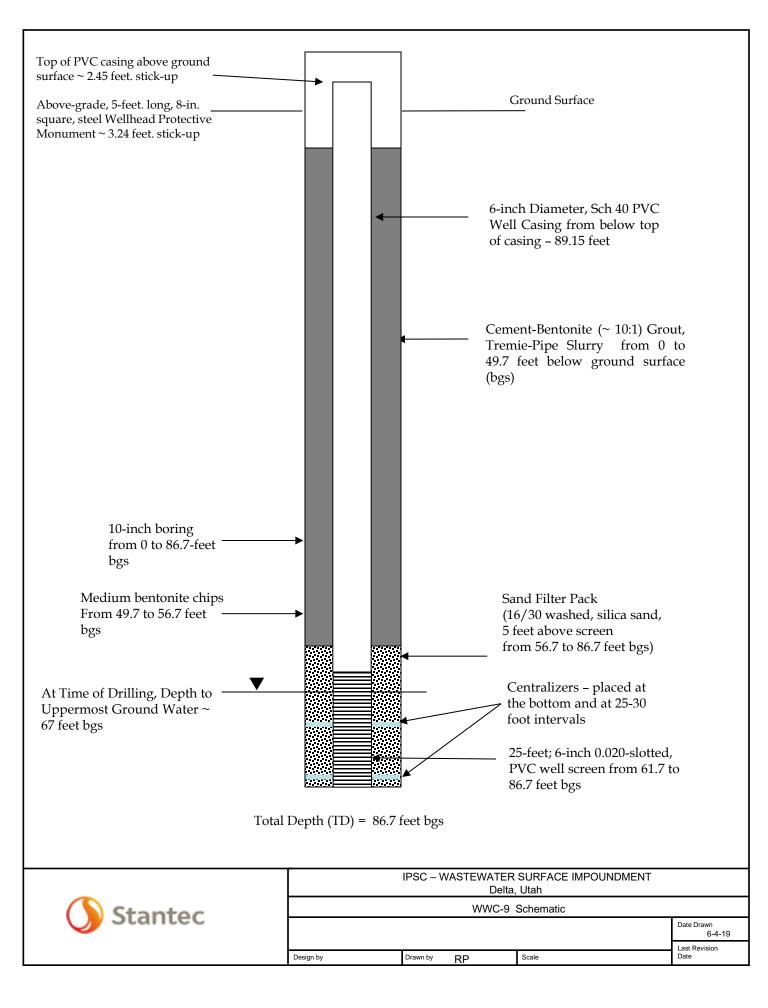
Project Name: Intermountain Power Service Corporation Boring Monitor Well: WWC-9

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-04-28

Driller: Ryan Miller Logged by: Rich Pratt Depth to Water at Drilling: 67 feet Depth to Water at Drilling (static at 24 hours): 23.75 feet

WWC-9

Interval (feet)	Description
0 - 0.5	Medium brown silt, dry
0.5 - 1	Medium brown clay, dry
1 - 4	Light brown fine-grained sand, dry
4 - 8	Light brown clay, dry
8 - 13	Light brown fine-grained sand, dry
13 - 15	Light brown clay, dry
15 - 16	Light brown clay with sand, dry
16 - 17	Light brown clay, dry
17 - 18	Light brown clay with sand, moist
18 – 21.5	Light brown clay, moist
21.5 - 22	Light brown clay with sand, moist
22 - 23	Light brown clay, moist
23 - 26	Light brown clay with sand, moist
26 - 27	Light brown clay, moist
27 - 30	Light brown clay, moist
30 - 31	Light brown clay, saturated
31 - 32	Light brown clay with sand, moist
32 - 36	Light brown clay, moist
36 - 37	Light brown clay with sand, moist
37 - 38	Light brown clay with sand, moist
38 - 51	Medium brown medium grained sand, moist
51 - 54	Light brown clay, moist
54 - 58	Medium brown medium grained sand, moist
58 - 59	Medium brown medium grained sand, moist
59 - 62	Medium brown medium grained sand, moist
62 - 63	Light brown clay, moist to moist
63 - 66	Light brown clay with sand, moist
66 - 67	Light brown clay, moist
67 - 69	Light brown clay with sand, saturated



Interval (feet)	Description
69 - 69.5	Medium brown sand
69.5 - 70	Light brown clay with sand
70 - 71	Light brown clay
71 - 74	Light brown clay with sand
74 - 75	Medium brown sand
75 - 77	Light brown clay
77 - 83	Medium brown sand
83 - 85	Light brown clay
85 - 87	Light brown clay with sand

Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up Casing, solid (6-inch PVC): 0-61.7 feet Screen (6 inch, 0.02 slotted, PVC): 61.7-86.7 feet Sand Pack: 16/30 sand, 56.7-86.7 feet Bentonite Seal: Hydrolyzed bentonite pellet seal 49.7-56.7 feet Top of 6 in. PVC Casing Elevation (Relative Datum Survey): NA

Top of Manhole Cover (Relative Datum Survey): NA

Project Name: Intermountain Power Service Corporation Boring Monitor Well: WWC-10

Drilling Firm: Cascade Boring Method: Sonic Boring Diameter: 10 inches Project No.: 203709098 Completion Date: 2019-04-26

Driller: Ryan Miller Logged by: Rich Pratt Depth to Water at Drilling: 67 feet Depth to Water at Drilling (static at 24 hours): 17.65 feet

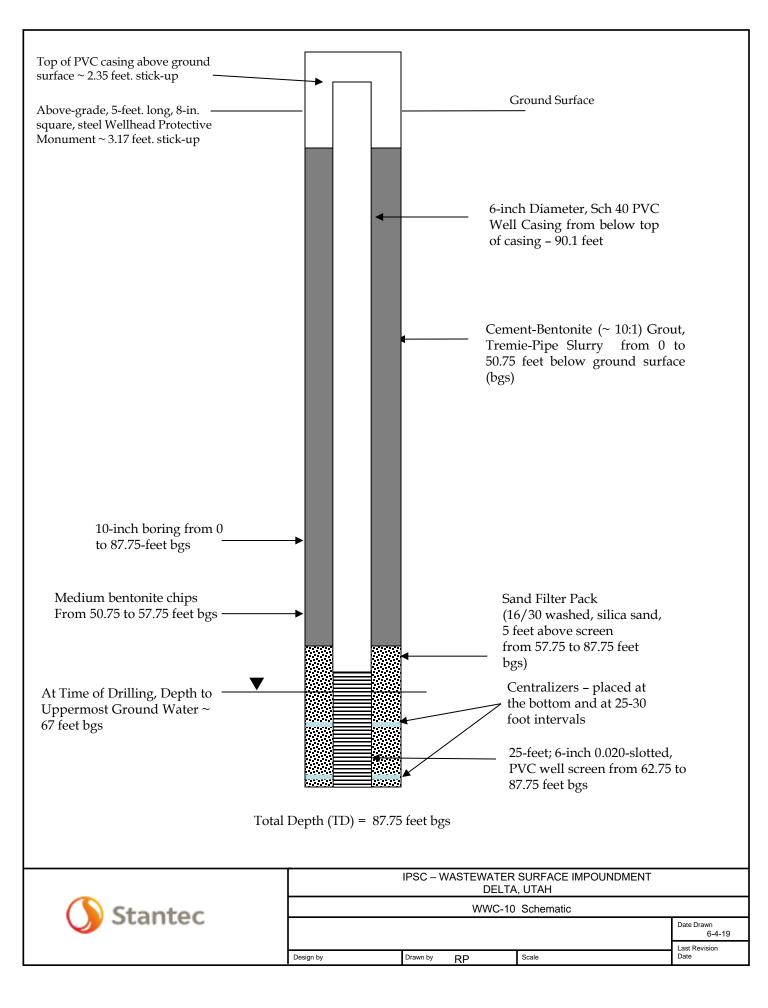
WWC-10

Interval (feet)	Description
0 - 5	Light brown sand, moist
5 – 9.5	Light brown clay with sand, moist
9.5 - 13	Dark gray clay, moist
13 - 14	Dark brown silt with organic plant matter, moist
14 - 15	Dark gray clay, moist
15 - 17	Gray medium grained sand, moist
17 - 34	Gray medium grained sand, moist
34 - 45	Brown medium grained sand, moist
45 - 47	Medium brown clay, moist
47 - 49	Medium brown clay with sand, moist
49 - 50	Medium brown medium grained sand, moist
50 - 51	Medium brown clay with sand, moist
51 - 52	Medium brown medium grained sand, moist
52 - 53	Medium brown clay with sand, moist
53 - 54	Medium brown medium grained sand, moist
54 - 60	Medium brown clay, moist
60 - 61	Medium brown clay with sand, moist
61 - 67	Medium brown clay, moist
67 - 68	Medium brown clay, saturated
68 - 69	Medium brown clay with sand
69 - 70	Medium brown clay
70 - 76	Medium brown clay with sand
76 - 87	Medium brown clay

Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-62.75 feet


Screen (6 inch, 0.02 slotted, PVC): 62.75-87.75 feet

Sand Pack: 16/30 sand, 57.75-87.75 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal 50.75-57.75 feet

Top of 6 in. PVC Casing Elevation (Relative Datum Survey): NA

Top of Manhole Cover (Relative Datum Survey): NA

INTERMOUNTAIN POWER SERVICE COP	MONITORNG WELL ID: CLIENT PROJECT SITE LOCATION	WWC-11 Intermountain Power Service Corpo Monitoring Well Installation South of Waste Water Basin Surfac	() Stanted
SAMPLING METHOD: 4 inch so	Drilling 600 11-77287 nic core barrel 0 to 91 ft bgs., onic core barrel 0 to 91 ft bgs.	COORDINATE SYSTEM: EASTING: NOR ELEVATION: BOR TOTAL DEPTH (ft.): 91 GRO DATE STARTED: 11/15/2019 DATE LOGGED BY: Michael Ward	90 degrees (ft. btoc.): 22.82 2019	
CEPTIN (feet) GRAPHIC GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION IAGRAM
0 Poorly graded Sand with 7/4), trace gravel 5%. 5	Silt (SP), fine sand 95%, loose,	, soft, dry, very pale brown (10 YR		 Above ground monument with well cap
10 Well Graded Sand with C moist, loose, pale brown Clay with Sand (CL), low moist, brown (10 YR 5/3 Same as above, Clay (C	interfingered clay, brownish yell Clay (SW-SC), medium grained (10 YR 6/3). to medium plasticity, soft to me). L), no sand.	dium density, light gray (10 YR 7/1), ow (10 YR 6/8). sand 85%, gravel 10%, clay 5%, dium density, non cohesive, dry to , pale brown (10 YR 6/3), 2% gravel,		Grout 0 to 54.4 ft bgs. Borehole diameter 10 inches from 0 to 91 ft bgs.
30 35 Well Graded Sand with 0 10 10 Well Graded Sand with 0 moist, brown (10 YR 5/3)	Gravel (SW), fine to coarse sand , gravel are subangular to subro	90%, small gravel 10%, loose, bunded, assorted gravel matrix.		0 to 65 ft bgs., 6 in dia., Sch. 40 PVC riser
		vet, cohesive, pale brown (10 YR 6/3) 90%, gravel 10%, loose, soft, brown		
Clay with Sand (CL), low pale brown (10 YR 6/3).	city, medium density, wet, cohe	dium density, non cohesive, moist,		Bentonite 54.4 to 56.7 ft bgs. Filter pack sand 56.7 to 91 ft bgs.
65-	ce interfingering clay, reddish ye			
	Gravel (SW), fine to coarse sand el are subrounded, assorted mai	l 90%, small gravel 10%, loose, wet, trix.		65 to 90 ft bgs., 6 in dia., Sch. 40 PVC screen with 0.02 inch slot aperture
35 00 Clay with Sand (CL), me 6/3).	dium plasticity, medium density,	, wet, cohesive, pale brown (10 YR		End Cap
95 End of borehole to 91 ft l	ogs., per scope of work.		_/	

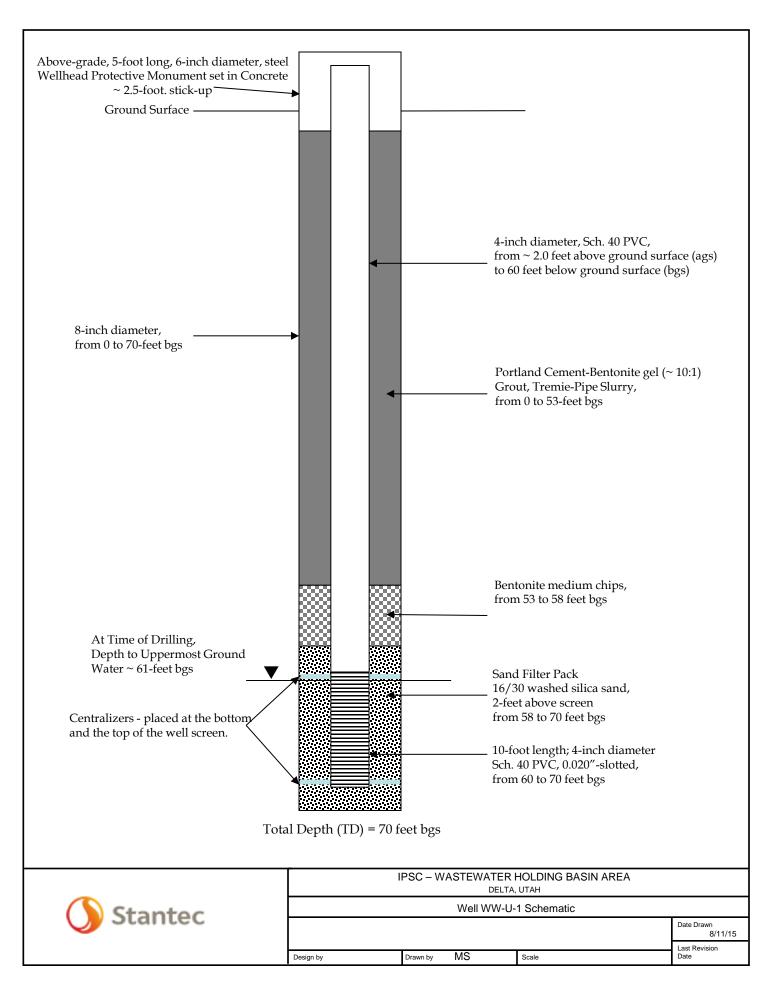
INTERMO	UNTAIN POWER SERVICE	CORP. MONITORNG WELL ID: CLIENT PROJECT: SITE LOCATION:	WWC-12 Intermountain Power Service Corpora Monitoring Well Installation South of Waste Water Basin Surface	() Stanted
ORILLING C	ONTRACTOR: Casc	ade Drilling	COORDINATE SYSTEM:	
DRILLING M	ETHOD: Sonic	;	EASTING: NORTH	HING:
DRILLING E		Sonic 600 11-77287		HOLE ANGLE: 90 degrees
SAMPLING P		n sonic core barrel 0 to 91 ft bgs., ch sonic core barrel 0 to 91 ft bgs.		NDWATER LEVEL (ft. btoc.): 20.46 INISHED: 11/12/2019
(feet) LITHOLOGICAL GRAPHIC		LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM
0	loose, fine grained, o	with Silt (SP-SM), 90% sand, 10% Iry, sand are mostly quartz, subang oming light yellowish brown (10 YR	jular quartz grains.	Above ground monument with well cap
0- <u>777</u>	Clay (CL), medium p Poorly Graded Sand	oming wet at 8.5 ft bgs., perched g lasticity, medium stiff, cohesive, ve with Silt (SP-SM), 95% fine grained	ery pale brown (10 YR 7/4).	Grout 0 to 55 ft bgs. Borehole
5 0	brown (10 YR 4/3), t Well Graded Sand w soft, dark yellowish b	race gravel. ith Gravel (SW), 80% sand, 20% g prown (10YR 4/4), gravel are subro	ravel, fine to coarse sand, moist, loose unded to rounded, small.	diameter 10 inches from 0 to 91 ft bgs.
5 0	Clay (CL), medium p 6/4), thickly bedded,	lasticity, medium density, moist, co sharp contact at 25 ft bgs.	bhesive, light yellowish brown (10 YR	
5	Poorly Graded Sand	(SP), fine grained sand 100%, loos	se, soft, moist, brown (10YR 5/3).	0 to 65 ft bgs., 1 in dia., Sch. 40 PVC riser
0 5 0 	loose, soft, moist, da Same as above, incr Same as above, dec	ith Gravel (SW), fine to coarse grai rk yellowish brown (10 YR 4/4). ease in gravel to 30%. rease in gravel to 10%. (SP), fined grained sand 100%, loc	ned sand 90%, small gravel 10%,	Bentonite 55 to
5	contact.	icity, stiff, moist, cohesive, light yell	lowish brown (10 YR 6/4), sharp	58 ft bgs.
0	Lost core sample fro Clay (CH), high plas	m sonic casing. icity, stiff, moist, cohesive, yellowis	sh brown (10 YR 5/4).	Filter Pack San 58 to 91 ft bgs.
0-	Well Graded Sand w loose, brown (10 YR	ith Silt and Clay (SW-SM), fine or n 4/3)	nedium grained sand 100%, soft,	65 to 90 ft bgs.,
5-	Clay (CH), high plas	icity, stiff, moist, cohesive, yellowis	sh brown (10 YR 5/4).	6 in dia., Sch. 4 PVC screen wit 0.02 inch slot
0	light yellowish brown	(10 YR 6/4), trace clay medium plasticity, soft to medium	rained sand 95%s, soft, loose, wet, density, wet, pale brown (10YR 6/3),	aperture
0- 1	Clay (CH), high plast reddish yellow (7.5 Y	gradational transition to clay. icity, mottled, wet, cohesive, pale b /R 7/6). 1 ft bgs., per scope of work.	prown (10 YR 6/3), mottled color is	End Cap
5	\⊏ria or borehole to 9	i it bgs., per scope of work.	/	

		MONITORNG WEL	LL ID:	WWC-13			
	~	CL	IENT	Intermountain Power Service Co	rporatic	on	Chant
INTERMOUNTAIN POWER SERVICE CORP. PROJECT: SITE LOCATION				Monitoring Well Installation South of Waste Water Basin Sur	poundment	() Stanted	
RILLI	NGC	CONTRACTOR: Cascade Drilling		COORDINATE SYSTEM:			
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic			EASTING: NORTHING:				
					DLE ANGLE: 90 degrees		
DRILLING EQUIPMENT: Pro Sonic 600 11-77287 SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bqs.,						_ (ft. btoc.): 19.55	
, (IVII L		10 inch sonic core barrel 0 to 91 ft		DATE STARTED: 11/13/2019 DA			. ,
				LOGGED BY: Michael Ward			
-	AL						
(feet)	GRAPHIC	LITHOLOGICAL DESCRIPTION					CONSTUCTION DIAGRAM
0							Above ground
~		Poorly Graded Sand with Silts (SP-SM), fine sand (7.5 YR 7/1).	1 95%, 5	5% silts, soft, loose, dry, light gray			monument with
5		Well Graded Sand (SW), fine to medium grained	sand 95	% soft loose dry ninkish arey (7	7.5	88	well cap
-		YR 7/2), trace gravel, small gravel, assorted matri	ix, subro	bunded.		8 8	
0		Same as above, with clay, increase gravel 10%, v Clay with Sand (CL), low to medium plasticity, mo		esive, very pale brown (10 YR 7/4	<u>)</u> . –	88	Grout 0 to 52.8
5–		Well Graded Sand (SW), fine to medium grained (10 YR 6/3), trace gravel 5%, subrounded.				8 8	bgs. Borehole
ĭ ¦		(10 TR 0/3), trace graver 3%, subrounded.				88	diameter 10
0–:						88	inches from 0 to 91 ft bgs.
÷	;;;	Same as above, with clay (SW-SC) at 10%, wet, s	soft, Iow	plasticity clay.	\exists		-
5-	11	Clay with Sand (CL), medium plasticity, moist con contact at 23 ft, bgs,	nesive, t	hick bedded, fine sand, sharp	/	88	
0-		Same as above, Člay (CL), trace black staining.				88	
		Clay with Sand (CL), medium plasticity, moist con Poorly Graded Sand (SP), fine grained sand 1009	nesive, f % loose	ine sand. soft moist brown (10 YR 5/3)	/	88	0 to 65 ft bgs., 0 in dia Sch. 40
85-			, 10000			88	PVC riser
-						88	
0-						88	
5	:::	Well Graded Sand with gravel (SW), fine to coars brown (10 YR 5/3), gravel are small, subrounded,	e sand assorte	85%, 15% gravel, loose, soft, mois ed matrix	st,	88	
٠ _		Poorly Graded Sand (SP), fine to medium grained	d sand 9	8%, loose, soft, moist, brown (10		88	
0-		YR 5/3), trace small gravel 2%, subrounded. Same as above, trace clay.				88	
	\square	Clay with Sand (CL), low to medium plasticity, sof (10 YR 5/4), secondary sand are fine grained.	ft to mee	dium density, moist, yellowish brow	wn	88	Bentonite 52.8
5-	11	(10 TT 0.7), secondary sand are line grained.					55 ft bgs.
io_	1	Clay (CL), medium to high plasticity, medium to si		ity, moist, thickly bedded, cohesiv	e, 🗌		Filter pack sand
	11	brown (10 YR 5/3), mottled, reddish yellow (5 YR	6/6).				55 to 91 ft bgs.
5-	$\langle \rangle$						
	11	Clay with Sand (CL), medium plasticity, moist to			\exists		
0-	11	Clay (CL), medium plasticity, medium to stiff dens mottled, reddish yellow (5 YR 6/6).	sity, moi	st, conesive, brown (10 YR 5/3),			65 to 90 ft bgs.,
5-	11					\$ — \$	6 in dia., Sch. 4 PVC screen wit
		Poorly Graded Sand with Clay (SP-SC), fine grain					0.02 inch slot aperture
80-	11	YR 5/3), some trace interfingering clay 5%, reddis Clay with Sand (CL), low plasticity, soft, wet, non			/		aperiure
	11	Clay (CL), medium to high plasticity, wet, cohesiv		,	-		
85-	11	clay reddish yellow (5 YR 6/6), trace sand.		-		\$ \$	
0-	11	Same as above, becoming medium plasticity.			_		
_		End of borehole to 91 ft bgs., per scope of work.			$\overline{}$	<u></u>	End Cap
95							
Notes		bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet					1

MONITORNG WELL ID: CLIENT: PROJECT: SITE LOCATION: DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 88 ft bgs., 10 inch sonic core barrel 0 to 88 ft bgs.,			WWC-14 Intermountain Power Service Corporation Monitoring Well Installation South of Waste Water Basin Surface Impoundment				() Stantec
			ELEVATION: BOI TOTAL DEPTH (ft.): 88 GR0		BOREHC	IORTHING: OREHOLE ANGLE: 90 degrees ROUNDWATER LEVEL (ft. btoc.): ATE FINISHED: 5/7/2020	
(feet) (feet) LITHOLOGICAL GRAPHIC	LITHO	DLOGICAL CRIPTION					CONSTUCTION DIAGRAM
0	Poorly graded Sand with Silt (SP), light Well Graded Sand with Clay (SW-SC), I Poorly graded Sand with Silt (SP), light	ght and dark bro					Above ground monument with well cap
10- <u>-</u> 15-	Well Graded Sand with Clay (SW-SC), I Well Graded Sand with Gravel (SW), mo Well Graded Sand with Gravel (SW), mo	oist, dark brown					Grout 0 to 51 ft bgs. Borehole diameter 10
20- - 25-	Well Graded Sand with Gravel (SW), mo	-					inches from 0 to 88 ft bgs.
- 30- - 35- -	Clay (CL), light brown, moist Well Graded Sand with Clay (SW-SC), I Well Graded Sand with Gravel (SW), mo	-			·		0 to 60 ft bgs., 6 in dia., Sch. 80 PVC riser
40							
55- -	Well Graded Sand with Clay (SW-SC), I	ght brown, moist			_		Bentonite 51 to 58 ft bgs. Filter pack sand
50 55	Clay (CL), light brown, moist						58 to 88 ft bgs.
0 	Well Graded Sand with Clay (SW-SC), I Well Graded Sand with Gravel (SW), mo Clay (CL), light brown, moist	o <u>ist, dark brown</u>		·			60 to 85 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot
0- - 5	Well Graded Sand with Gravel (SW), mo Well Graded Sand with Clay (SW-SC), I	bi <u>st, dark brown</u> ght brown, moist					aperture
90 10 15	Clay (CL), light brown, moist End of borehole to 88 ft bgs., per scope	of work.					End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet						1

m and	CLIENT: Intermountain Power Service Corporation ROJECT: Monitoring Well Installation) Stanted
DRILLING CONTRACTOR: Cascade Drilling DRILLING METHOD: Sonic DRILLING EQUIPMENT: Pro Sonic 600 SAMPLING METHOD: 4 inch sonic core barrel 0 to 88 10 inch sonic core barrel 0 to 84	3 <i>y</i>	EL (ft. btoc.):
		CONSTUCTION
0 Well graded sand with silt (SW-SM), fine to me unconsolidated, light yellowish brown (10 YR 6	(4).	 Above ground monument with well cap
Poorly graded sand (SP), fine to medium grain YR 6/2). 10 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	ained, moist, clays are soft, dark yellowish	Grout 0 to 51 ft bgs. Borehole diameter 10 inches from 0 to 88.5 ft bgs.
Poorly graded sand (SP), fine to medium grain Clay (CL), stiff, medium to high plasticity, mois Poorly Graded Sand with Clay (SP-SC), fine to noncohesive, pale brown (10 YR 6/3). Clay (CL), stiff, medium to high plasticity, mois	, cohesive, light yellowish brown (10 YR 6/4). medium grained, moist to wet, soft,	0 to 63 ft bgs., 6 in dia., Sch. 80 PVC riser
 Poorly Graded Sand (SP), fine or medium grain trace gravels. Well Graded Sand (SW), fine to coarse sand, YR 5/3). Clays (CL), stiff, medium to high plasticity, moi Well Graded Sand (SW), fine to coarse sand, 	oose, soft, unconsolidated, moist, brown (10	Bentonite 51 to 58 ft bgs.
 YR 5/3), trace gravels, rounded. Clay (CL), medium plasticity, stiff, cohesive, br Same as above, becoming high plasticity. 		Filter pack sand 58 to 88 ft bgs.
Poorly Graded Sand (SW), fine or medium gra YR 5/3). Clay (CL), medium plasticity, stiff, cohesive, br Poorly Graded Sand (SW), fine or medium gra YR 5/3). Clay (CL), medium plasticity, stiff, cohesive, br Clay with Sand (CL), wet, non cohesive, low pl	own (7.5 YR 5/4)	63 to 88 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
5 End of borehole at 88 ft bgs. Installed monitorin		End Cap
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red		1

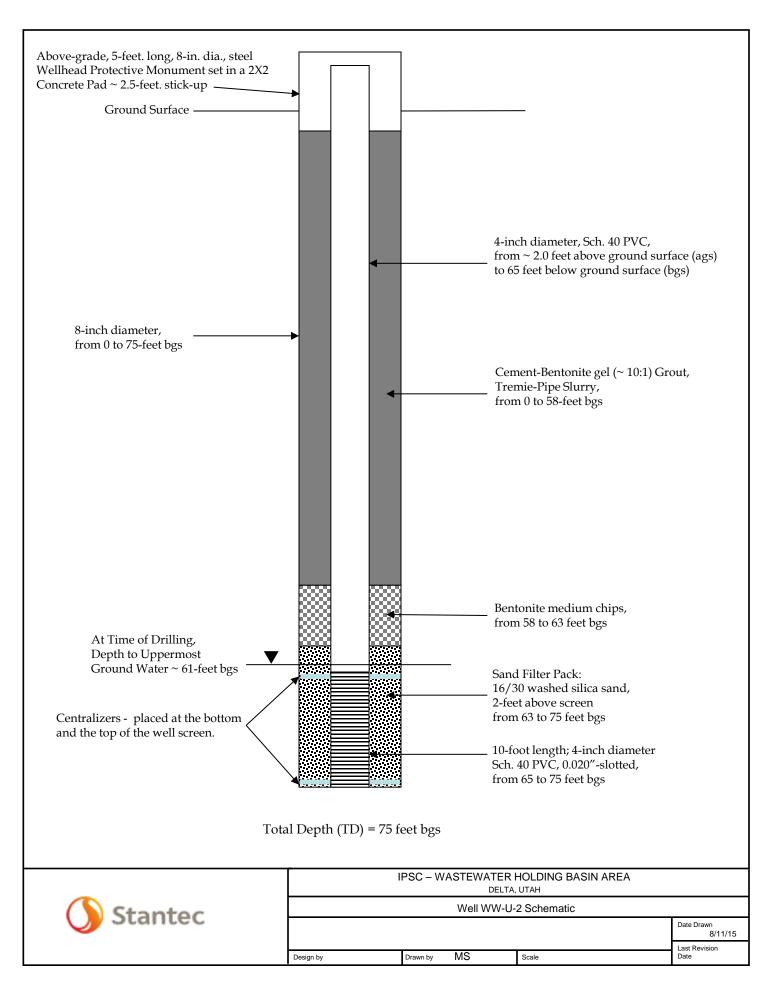
INTERMO	MON UNTAIN POWER SERVICE CORP.	PROJECT: Monitorin	ntain Power Service g Well Installation	e Corporation	Stanted
	CONTRACTOR: Cascade Drilling METHOD: Sonic EQUIPMENT: Pro Sonic 600	COORDIN EASTINC ELEVATI		NORTHING: BOREHOLE ANC	
SAMPLING	METHOD: 4 inch sonic core ba 10 inch sonic core b	-	:PTH (ft.): 88 ARTED: 5/7/2020 BY: Rich Pratt	GROUNDWATER DATE FINISHED:	
(feet) (feet) GRAPHIC		LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
0	Poorly graded Sand with Silt (SP), I Clay (CL), light brown, dry Well Graded Sand with Clay (SW-S				Above ground monument with well cap
	Clay (CL) with sand, light brown, dr Clay (CL), light brown, moist Well Graded Sand with Gravel (SW	y — — — — — — — — —			Grout 0 to 51 ft bgs. Borehole diameter 10 inches from 0 to 88 ft bgs.
	Clay (CL), light brown, moist Well Graded Sand with Clay (SW-S Clay (CL), light brown, moist Well Graded Sand with Gravel (SW				0 to 63 ft bgs., 6 in dia., Sch. 80 PVC riser
	Clay (CL), light brown, moist Well Graded Sand with Clay (SW-S Clay (CL), light brown, moist Well Graded Sand with Clay (SW-S				Bentonite 51 to 58 ft bgs. Filter pack sand 58 to 88 ft bgs.
0- 5- 0	Clay (CL), light brown, moist Well Graded Sand with Gravel (SW Clay (CL), light brown, moist), light brown, moist			63 to 88 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
5 	Well Graded Sand with Gravel (SW Clay (CL), light brown, moist Well Graded Sand with Clay (SW-S End of borehole at 88 ft bgs. Installe	C), light brown, moist			End Cap
Notes: t	pgs. = below ground surface Sch. = Schedule				


DRILLING METHOD: Sonic EASTING: DRILLING EQUIPMENT: Pro Sonic 600 ELEVATIO SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs., TOTAL DEP' DATE STAR LOGGED BY LITHOLOGICAL DESCRIPTION DATE STAR LOGGED BY Umber of the barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs., 10 inch sonic core barrel 0 to 91 ft bgs., 10 DATE STAR LOGGED BY Umber of the barrel 0 to 91 ft bgs., 10 DATE STAR DESCRIPTION DATE STAR LOGGED BY Umber of the barrel 0 to 91 ft bgs., 10 DATE STAR DESCRIPTION DATE STAR LOGGED BY Umber of the barrel 0 to 91 ft bgs., 10 DATE STAR DATE STAR LOGGED BY Umber of the barrel 0 to 91 ft bgs., 10 DATE STAR DATE STAR DOTING Fraded Sand with Silt (SW-SM), fine or medium grained sand, log pale brown (10 YR 7/4). Solay (CL), low to medium plasticity, medium dense, soft, dry, unconsolida 7/2). 10 Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Gray (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Gray (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Gray (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Gray (CL), medium plasticity, medium dense, cohesive	N: BOREHOLE ANGLE: 90 degre TH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.): RTED: 5/8/2020 DATE FINISHED: 5/8/2020 Y: Michael Ward WELL CONSTUCTION DIAGRAM WELL CONSTUCTION DIAGRAM Well construction DIAGRAM Well construction DIAGRAM Above gre monume well cap Well construction DIAGRAM Grout 0 th bgs. Borehole diameter rown (10 YR 5/4).	ON round ent with to 50 ft
 LOGGED BY LITHOLOGICAL DESCRIPTION Well Graded Sand with Silt (SW-SM), fine or medium grained sand, log pale brown (10 YR 7/4). Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolidat 7/2). Clays (CL), low to medium plasticity, medium dense, moist, light yello Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolidat 7/2). Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (Y: Michael Ward WELL CONSTUCTION DIAGRAM Diagram Diagram Above gr monume well cap Wish brown (10 YR 7/4). Ated, light gray (10 YR YR 4/6). Sown (10 YR 5/4). Cown (10 YR 5/4	round ent with to 50 ft
 Well Graded Sand with Silt (SW-SM), fine or medium grained sand, lopale brown (10 YR 7/4). Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clays (CL), low to medium plasticity, medium dense, moist, light yello Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive,	DiAGRAM Dose, soft, dry, very ated, light gray (10 YR wish brown (10 YR 7/4). ated, light gray (10 YR YR 4/6). Grout 0 t bgs. Borehole diameter inches fr	round ent with to 50 ft
 Well Graded Sand With Slit (SW-SM), fine or medium grained sand, ic pale brown (10 YR 7/4). Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clays (CL), low to medium plasticity, medium dense, moist, light yello Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Clay (CL), medium plasticity, medium dense, cohesive	bose, soft, dry, very monume ated, light gray (10 YR well cap wish brown (10 YR 7/4). grown (10 YR ated, light gray (10 YR grown (10 YR YR 4/6). bgs. brown (10 YR 5/4). grown (10 YR 5/4).	ent with to 50 ft
Poorly Graded Sand (SP), fine to coarse, loose, soft, dry, unconsolida 7/2). Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, moist, yellowish bry Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3) Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3) Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3) Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3) Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 (2.5)	ated, light gray (10 YR Grout 0 t YR 4/6). Borehole own (10 YR 5/4). inches fr	
Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3), Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 grav (CL), medium plasticity, medium dense, cohesive, dark red (2.5)	rown (10 YR 5/4) 🛛 🚫 inches fr	
Well Graded Sand (SW), fine grained, loose, soft, brown (10 YR 4/3) Clay (CL), medium plasticity, medium dense, cohesive, dark red (2.5 grav (10 YR 6/1)		om 0 to
Well Graded Sand (SW), fine grained, loose, soft, wet, brown (10 YR	YR 4/6), mottled with in dia., S PVC rise	Sch. 80
10		
50 Sandy Lean Clay (CL), low plasticity, soft to medium dense, wet, yello 6/1).	owish brown (10 YR Bentonite	e 50 to
Well Graded Sand with Clay (SW-SC), fine grained sand, wet, loose, 3 0-((10 YR 5/4)).		s. ck sand
5 Sandy Lean Clay (CL), low plasticity, soft to medium dense, wet, brow		
Well Graded Sand (SW), fine or medium grained sand, loose, soft, we Clay (CL), moderate plasticity, medium dense, consolidated, brown (1	63 to 88 6 in dia.,	Sch. 80
Well Graded Sand (SW), fine or medium grained sand, loose, soft, we	et, brown (10 YR 5/3) 0.02 inch aperture	n slot
Clay (CL), medium to high plasticity, stiff, dense, consolidated, brown Well Graded Sand (SW), fine or medium grained sand, loose, soft, we		
0 End of borehole at 88 ft bgs. Installed monitoring well per scope of wo	ork. End Cap)
5 Notes: bgs. = below ground surface Sch. = Schedule		

WWU-	1
------	---

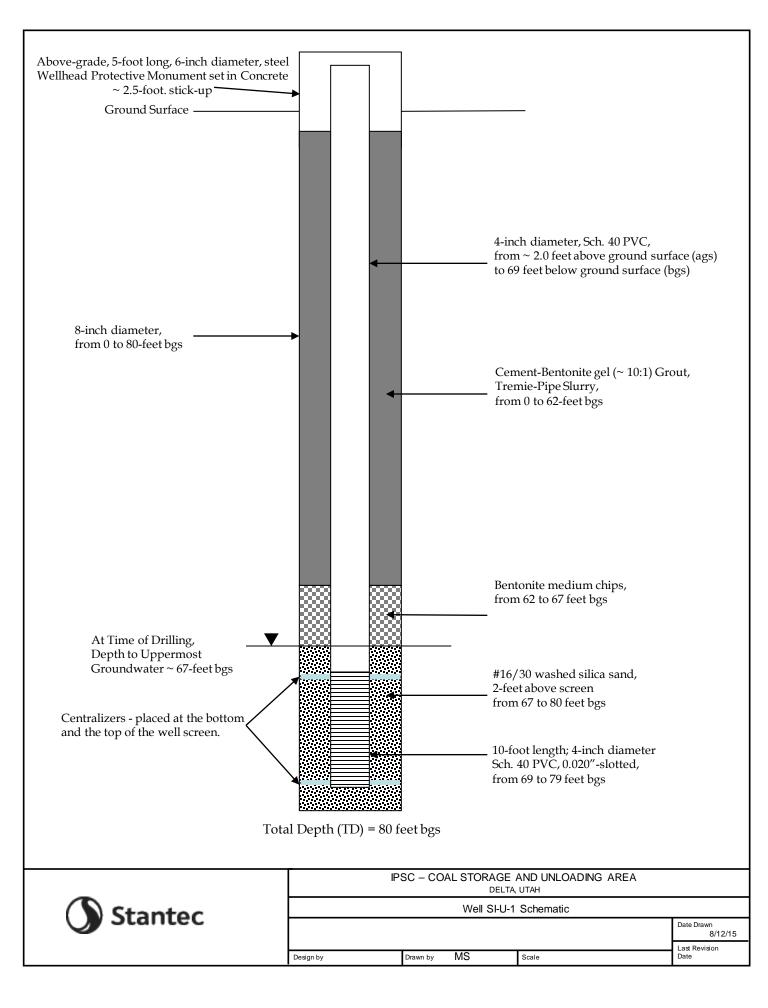
Interval (feet) I 0-0.5 0 0.5-1.5 1 1.5-2.5 2 2.5-3.5 1	Drilling Method 8" Sonic		Sample Description
0.5-1.5 1.5-2.5	8" Sonic		8/11/2015
0.5-1.5 1.5-2.5	8 30mc	TOPSOIL	8/11/2015 Surface - Sand and Gravel.
1.5-2.5	8" Sonic	SM	Silty SAND:
	8" Sonic	SP/SM	SAND with silt:
2.3-3.5	8" Sonic	ML SF/SW	Sandy SILT:
3.5-4.75	8" Sonic	SP	SAND:
4.75-5	8" Sonic	SC	Clayey SAND:
4.75-5			
	8" Sonic	SP/SM	SAND with silt:
7-10.75	8" Sonic	SC	Clayey SAND:
10.75-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13	8" Sonic	SC	Clayey SAND:
13-14	8" Sonic	SM	Silty SAND:
14-15	8" Sonic	SP	SAND:
15-17.5	8" Sonic	SP/SM	SAND with silt:
17.5-20	8" Sonic	SP	SAND:
20-22	8" Sonic	SP/SM	SAND with silt:
22-22.5	8" Sonic	SC	Clayey SAND:
22.5-25	8" Sonic	CL	Sandy CLAY:
25-27.5	8" Sonic		Sandy CLAY:
27.5-28	8" Sonic	SC	Clayey SAND:
28-30	8" Sonic	SW	Gravelly SAND:
30-32.5	8" Sonic	SP/SM	SAND with silt:
32.5-35	8" Sonic	SM	Silty SAND:
35-37.5	8" Sonic	SP	SAND:
37.5-40	8" Sonic	01	SAND:
40-42.5	8" Sonic	SW/SM	SAND with silt:
42.5-43.25	8" Sonic	SM	Silty SAND:
43.25-44.25	8" Sonic	5141	Silty SAND:
44.25-45	8" Sonic	SP/SW	SAND:
45-47.5	8" Sonic	SW	SAND:
47.5-50	8" Sonic	SP	SAND:
50-50.5	8" Sonic	SF	SAND:
50.5-51.75	8" Sonic	ML	Sandy SILT:
51.75-52.5	8" Sonic	SP	SAND:
52.5-53.25	8" Sonic		Clayey SAND:
53.25-55	8" Sonic		Clayey SAND:
55-56.5	8" Sonic	SC	Clayey SAND:
56.5-57.5	8" Sonic		Clayey SAND:
57.5-60	8" Sonic		Clayey SAND:
60-61	8" Sonic	ML	Clayey SILT with sand:
61-62.5	8" Sonic	SM	Silty SAND:
62.5-63.75	8" Sonic	CL	Sandy CLAY:
63.75-64.75	8" Sonic	SM	Silty SAND:
64.75-65.5	8" Sonic	SP	SAND:
65.5-66.5	8" Sonic	ML	Clayey SILT with sand:
66.5-67.5	8" Sonic	SC	Clayey SAND:
67.5-70	8" Sonic	SM	Silty SAND with clay:

TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60 Drilling Method: Prosonic T600, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

			WWU-2
Interval (feet)	Drilling Method	USCS	Sample Description
			8/11/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand and Gravel.
0.5-2.5	8" Sonic	ML	Gravelly SILT with sand:
2.5-4	8" Sonic		SAND:
4-5	8" Sonic	SP	SAND:
5-5.5	8" Sonic	51	SAND:
5.5-7.5	8" Sonic		SAND:
7.5-9.5	8" Sonic	SP/SW	SAND:
9.5-10	8" Sonic	SP	SAND:
10-11	8" Sonic	SW	SAND:
11-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13	8" Sonic	SM	Silty SAND:
13-15	8" Sonic	ML	Sandy SILT:
15-15.5	8" Sonic	SP	SAND:
15.5-17	8" Sonic	SC	Clayey SAND with gravel:
17-17.5	8" Sonic		Gravelly SAND with sand:
17.5-19	8" Sonic	SW	SAND:
19-20	8" Sonic		SAND:
20-22.5	8" Sonic	GW	Sandy GRAVEL:
22.5-23.5	8" Sonic	SW	SAND:
23.5-25	8" Sonic	SP/SM	SAND with silt:
25-32.5	8" Sonic	5P/5M	SAND with silt:
32.5-33.5	8" Sonic	SW/SC	Gravelly SAND with clay:
33.5-35	8" Sonic	SP/SM	SAND with silt:
35-37.5	8" Sonic	5P/5M	SAND with silt:
37.5-39	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
39-40	8" Sonic	SC	Clayey SAND:
40-45	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
45-45.5	8" Sonic	SM	Silty SAND with clay:
45.5-47.5	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
47.5-49.5	8" Sonic	CH/SC	Sandy CLAY/Clayey SAND:
49.5-50	8" Sonic	SP/SM	SAND with silt:
50-51.5	8" Sonic	SC	Clayey SAND:
51.5-52.5	8" Sonic	SP/SC	SAND with clay:
52.5-55	8" Sonic	SP	SAND:
55-56.5	8" Sonic	CH	Sandy CLAY:
56.5-57.5	8" Sonic	SC	Clayey SAND:
57.5-59	8" Sonic	ML	Clayey SILT with sand:
59-60	8" Sonic	CH	Sandy CLAY:
60-62.5	8" Sonic	SC	Clayey SAND:
62.5-64	8" Sonic	CH	Sandy CLAY:
64-65	8" Sonic	SM	Silty SAND:
65-66.5	8" Sonic	SP	SAND:
66.5-67.5	8" Sonic	SM	Silty SAND:
67.5-75	8" Sonic	SW	SAND:

TD = 75'; PVC 4-inch screen from 65 to 75; PVC 4-inch riser from -2.5 to 65 Drilling Method: Prosonic T600, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

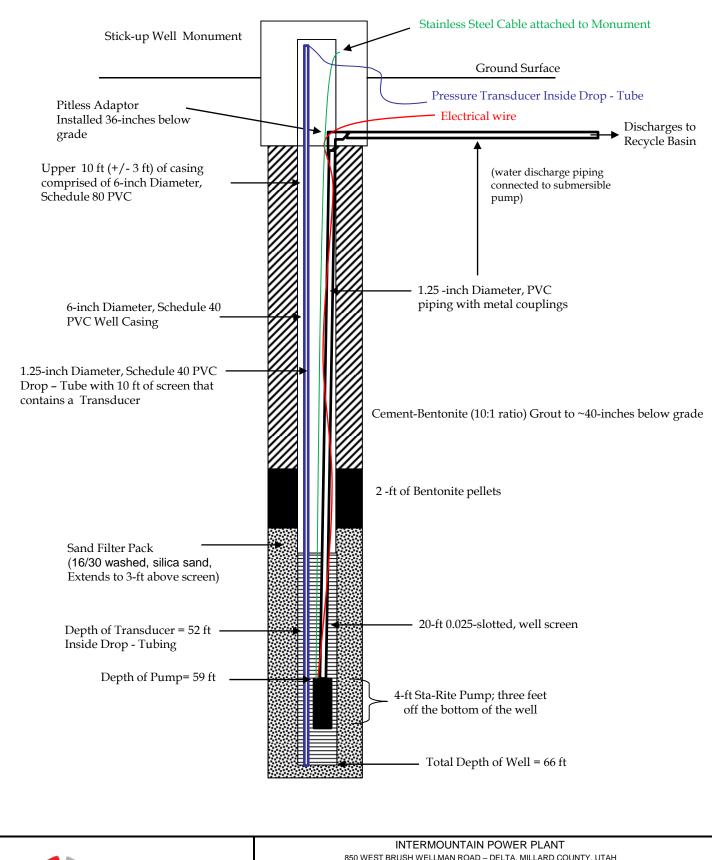
		SI-U-1				
Interval (feet)	USCS	Sample Description				
8/12/2015						
0-0.5	TOPSOIL	Surface - Sand and Gravel, roots and grass.				
0.5-2.5	SP/SM	SAND with silt:				
2.5-5	SP	SAND:				
5-6.5	SP/SM	SAND with silt:				
6.5-7.5	SW/SM	SAND with silt:				
7.5-8	SW	SAND:				
8-12.5	SP	SAND:				
12.5-17.5	51	SAND:				
17.5-18	SP/SM	SAND with silt:				
18-19	SM	Silty SAND:				
19-20	CL	CLAY:				
20-21.5	SP	SAND:				
21.5-22.5	SP/SM	Gravelly SAND with silt:				
22.5-26.5	SW	SAND:				
26.5-27.5	SW/SC	SAND with clay:				
27.5-29.5	ML	Sandy SILT with clay:				
29.5-30	SP	SAND:				
30-32	ML	Sandy SILT with clay:				
32-32.5	SW	SAND with gravel:				
32.5-38	SC	Clayey SAND:				
38-40	SM	Silty SAND:				
40-42.5	SP/SM	SAND with silt:				
42.5-44.25	GW	Sandy GRAVEL with clay:				
44.25-45	SM	Silty SAND:				
45-46.5	SC	Clayey SAND:				
46.5-47.75	SP/SC	SAND with clay:				
47.75-52.5	SP	SAND:				
52.5-54	CH	CLAY:				
54-55	SC/CH	Clayey SAND/Sandy CLAY:				
55-60		CLAY:				
60-62.5	CH	CLAY:				
62.5-66		CLAY:				
66-70	SC	Clayey SAND:				
70-70.75	ML	Clayey SILT with sand:				
70.75-71.5	CH	CLAY:				
71.5-72.5	SP/SC	SAND with clay:				
72.5-75	SP/SM	SAND with silt:				
75-75.75	SM	Silty SAND:				
75.75-77	SC	Clayey SAND:				
77-80	SP/SM	SAND with silt:				

TD = 80'; PVC 4-inch screen from 69 to 79; PVC 4-inch riser from -2.5 to 69 Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-101 / RW-2 DRILLING FIRM: Boart Longyear BORING METHOD: Sonic BORING DIAMETER: 10.0-inch

DRILLING LOG


PROJECT No.: 07.00408.01 COMPLETION DATE: 12/11/2007 DRILLER: Robert LOGGED BY: Thomas Hedrick DEPTH TO WATER (at drilling): ~ 40 ft. DEPTH TO WATER (static > 24-hrs.): 36.09 ft.

Drilling Interval Method Sample Description (feet) SDM Light Brown fine grained SAND with clay matrix 0 - 9 9 - 17 SDM Light Brown clayey SILT 17 - 20 SDM Light Brown silty CLAY 20 - 25 SDM Brown medium grained SAND with pebbles, Dry and loose 25 - 28 SDM Light Brown silty CLAY, very tight, MOIST 28 - 38 SDM Light Brown CLAY, Moist 38 - 42 SDM Brown fine grained SAND, Moist SDM Brownish/Red CLAY, Dry 42 - 50 50 - 56 SDM Brown medium grained SAND with clay matrix, very moist/saturated 56 - 58 SDM Brown silty CLAY, moist 60 - 66 SDM Brown medium grained SAND, Saturated Total Depth = 66 feet BGS, Screened from 66 – 46', Sand 40-66', Bentonite 36-40', Grout 0-36'

WR-101 / RW-2

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up
Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-7 ft.
Casing, solid: 6 inch diameter sch. 40 PVC casing, 7 -46 ft.
Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 46-66 ft.
Sand Pack: 16/30 washed, silica sand, 40-66 ft.
Bentonite Seal: "Pure Gold" Bentonite Pellets, 36-40 ft.
Cement-Bentonite (10:1 ratio) Grout: 0-36 ft.

	ТИ	850 W	EST BRUSH WELLMAN ROAD	– DELTA, MILLARD COUNTY, UTAH	
JBR	Ground Water Recovery Well WR-101 Schematic				
				Date Drawn	
- 🛡		L			Last Revision
		Design by	Drawn by	Scale	Date

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-102

DRILLING FIRM: Boart Longyear BORING METHOD: Sonic Drilling Method BORING DIAMETER: 10.0-inch

DRILLING LOG


PROJECT No.: 08.00463.01 COMPLETION DATE: 3/30/2009

DRILLER: Chato LOGGED BY: Thomas Hedrick DEPTH TO WATER (at drilling): ~ 40 ft. DEPTH TO WATER (static > 24-hrs.): ~ 27 ft.

	1	WR-102	
Interval (feet)	Drilling Method	Sample Description	
0 - 11	SDM	Light Brown fine grained SAND with pebbles present from 3 - 7 feet, Dry	
11 - 16	SDM	Light Brown fine grained SAND with interbeds of brown CLAY, Dry	
16 - 35	SDM	Light Gray CLAY, moist at ~ 35 feet,	
35 - 37	SDM	Light Gray Clay with a fine to medium grained sandy matrix, very moist	
37 - 48	SDM	Brown fine to medium grained SAND, saturated	
48 - 50	SDM	Brown CLAY, dry	
50 - 53	SDM	Brown to Black medium grained SAND, saturated	
53 - 57	SDM	Brown CLAY with two fine grained sand layer present	
		Total Depth = 57 feet BGS, Screened from 37 – 57', Sand 34-57', Bentonite 31-34, Grout 0-31'	

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up
Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-9 ft.
Casing, solid: 6 inch diameter sch. 40 PVC casing, 9 -37 ft.
Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 37-57 ft.
Sand Pack: 16/30 washed, silica sand, 34-57 ft.
Bentonite Seal: "Pure Gold" Bentonite Pellets, 31-34 ft.
Cement-Bentonite (10:1 ratio) Grout: 0-31 ft.

Design by

Ground Water Recovery Well WR-102 Schematic	
	Date Drawn

Scale

Drawn by

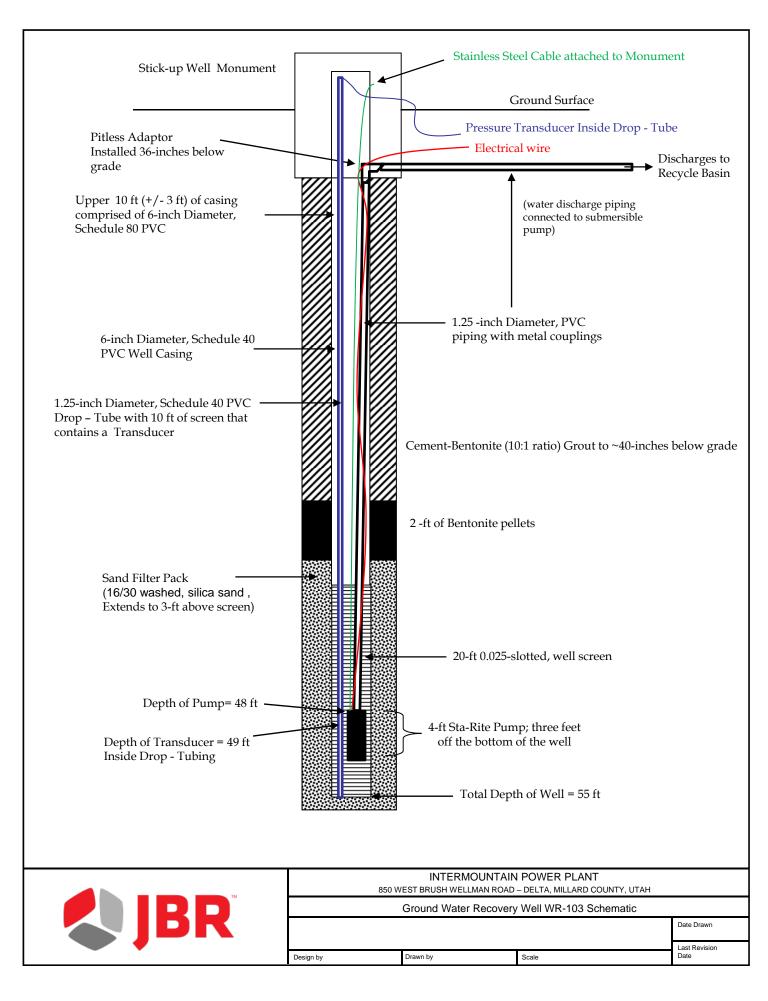
Last Revision Date

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-103

DRILLING FIRM: Boart Longyear BORING METHOD: Sonic BORING DIAMETER: 10.0-inch

DRILLING LOG

PROJECT No.: 08.00463.01 COMPLETION DATE: 3/31/2009


DRILLER: Chato LOGGED BY: Thomas Hedrick DEPTH TO WATER (at drilling): ~ 40 ft. DEPTH TO WATER (static > 24-hrs.): ~ 30 ft.

WR-103

Interval (feet)	Drilling Method	Sample Description	
0 - 3	SDM	Brown to Light brown fine grained SAND to silt, Dry	
3 - 15	SDM	Light brown fine to medium grained SAND, pebbles present from 3 - 5 feet, Dry	
15 - 17	SDM	Light brown fine to medium grained SAND, with interbeds of light brown CLAY with a sandy matrix, Dry	
17 - 24	SDM	Light brown CLAY, Dry	
24 - 37	SDM	Reddish Gray CLAY, Dry	
37 - 45	SDM	Brown to Black medium fine to medium grained SAND, very moist	
45 - 47	SDM	Brown fine grained SAND with a CLAY matrix, very moist	
47 - 52	SDM	Brown Fine to medium grained SAND, saturated	
52 - 55	SDM	Red CLAY, dry	
		Total Depth = 55 feet BGS, Screened from 35 – 55', Sand 32-55', Bentonite 29-32, Grout 0-29'	

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up
Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-6.5 ft.
Casing, solid: 6 inch diameter sch. 40 PVC casing, 6.5 -35 ft.
Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 35-55 ft.
Sand Pack: 16/30 washed, silica sand, 32-55 ft.
Bentonite Seal: "Pure Gold" Bentonite Pellets, 29-32 ft.
Cement-Bentonite (10:1 ratio) Grout: 0-29 ft.

SELECTION OF REMEDY REPORT

APPENDIX B TABULATED GROUNDWATER MONITORING DATA June 16, 2021

APPENDIX B TABULATED GROUNDWATER MONITORING DATA

CCR Well Levels

Well	Depth	Date
WW-U-1	33.23	12/7/2015
WW-U-2	23.42	12/7/2015
SI-U-1	32.47	12/7/2015
CL-U-1	32.02	12/7/2015
CL-U-2	37.55	12/7/2015
CL-W-1	31.05	12/7/2015
CL-W-2	33.14	12/7/2015
CL-W-3	31.54	12/7/2015
CL-W-4	30.56	12/7/2015
CL-W-5	29.76	12/7/2015
CL-W-6	28.71	12/7/2015
CL-W-7	35.23	12/7/2015
CL-W-8	32.37	12/7/2015
BA-U-1	39.21	12/7/2015
BA-U-2	33.26	12/7/2015
BAC-1	39.32	12/7/2015
BAC-2	51.38	12/7/2015
BAC-3	51.02	12/7/2015
BAC-4	35.35	12/7/2015
BAC-5	32.62	12/7/2015
BAC-6	29.76	12/7/2015
BAC-7	31.26	12/7/2015
WWC-1	21.16	12/7/2015
WWC-2	22.16	12/7/2015
WWC-3	16.42	12/7/2015
WWC-4	17.85	12/7/2015
WWC-5	18.78	12/7/2015

CCR Well Levels

Well	Depth	Date
WW-U-1	33.08	3/3/2016
WW-U-2	23.52	3/3/2016
SI-U-1	32.45	3/3/2016
CL-U-1	31.53	3/3/2016
CL-U-2	37.09	3/3/2016
CL-W-1	31.56	3/3/2016
CL-W-2	32.59	3/3/2016
CL-W-3	30.91	3/3/2016
CL-W-4	30.02	3/3/2016
CL-W-5	28.17	3/3/2016
CL-W-6	28.13	3/3/2016
CL-W-7	34.75	3/3/2016
CL-W-8	31.89	3/3/2016
BA-U-1	38.82	3/3/2016
BA-U-2	33.05	3/3/2016
BAC-1	39.85	3/3/2016
BAC-2	51.31	3/3/2016
BAC-3	51.29	3/3/2016
BAC-4	34.97	3/3/2016
BAC-5	32.07	3/3/2016
BAC-6	29.27	3/3/2016
BAC-7	29.78	3/3/2016
WWC-1	20.92	3/3/2016
WWC-2	21.79	3/3/2016
WWC-3	16.12	3/3/2016
WWC-4	17.56	3/3/2016
WWC-5	18.5	3/3/2016

CCR Well Levels		
Well	Depth	Date
WW-U-1	34.2	6/24/2016
WW-U-2	24.21	6/24/2016
SI-U-1	32.93	6/24/2016
CL-U-1	31.88	6/24/2016
CL-U-2	37.41	6/24/2016
CL-W-1	30.67	6/24/2016
CL-W-2	32.49	6/24/2016
CL-W-3	30.78	6/24/2016
CL-W-4	29.86	6/24/2016
CL-W-5	27.97	6/24/2016
CL-W-6	27.9	6/24/2016
CL-W-7	34.98	6/24/2016
CL-W-8	32.07	6/24/2016
BA-U-1	39.13	6/24/2016
BA-U-2	33.49	6/24/2016
BAC-1	40.42	6/24/2016
BAC-2	51.38	6/24/2016
BAC-3	51.35	6/24/2016
BAC-4	34.85	6/24/2016
BAC-5	31.79	6/24/2016
BAC-6	28.86	6/24/2016
BAC-7	30.26	6/24/2016
WWC-1	21.47	6/24/2016
WWC-2	22.33	6/24/2016
WWC-3	16.63	6/24/2016
WWC-4	18.07	6/24/2016
WWC-5	19.03	6/24/2016

CCR Well Levels		
Well	Depth	Date
WW-U-1	34.42	8/30/2016
WW-U-2	24.57	8/30/2016
SI-U-1	33.49	8/30/2016
CL-U-1	32.74	8/30/2016
CL-U-2	38.31	8/30/2016
CL-W-1	31.52	8/30/2016
CL-W-2	33.5	8/30/2016
CL-W-3	31.81	8/30/2016
CL-W-4	30.89	8/30/2016
CL-W-5	28.99	8/30/2016
CL-W-6	28.95	8/30/2016
CL-W-7	35.84	8/30/2016
CL-W-8	32.93	8/30/2016
BA-U-1	39.95	8/30/2016
BA-U-2	34.24	8/30/2016
BAC-1	40.97	8/30/2016
BAC-2	52.1	8/30/2016
BAC-3	51.94	8/30/2016
BAC-4	35.68	8/30/2016
BAC-5	32.67	8/30/2016
BAC-6	29.64	8/30/2016
BAC-7	31.09	8/30/2016
WWC-1	22.4	8/30/2016
WWC-2	22.87	8/30/2016
WWC-3	17.17	8/30/2016
WWC-4	18.61	8/30/2016
WWC-5	19.6	8/30/2016

CCR Well Levels		
Well	Depth	Date
WW-U-1	34.74	11/9/2016
WW-U-2	24.81	11/9/2016
SI-U-1	33.74	11/9/2016
CL-U-1	33.04	11/9/2016
CL-U-2	38.59	11/9/2016
CL-W-1	31.89	11/9/2016
CL-W-2	34.00	11/9/2016
CL-W-3	32.34	11/9/2016
CL-W-4	31.43	11/9/2016
CL-W-5	29.58	11/9/2016
CL-W-6	29.55	11/9/2016
CL-W-7	36.20	11/9/2016
CL-W-8	33.28	11/9/2016
BA-U-1	40.27	11/9/2016
BA-U-2	34.59	11/9/2016
BAC-1	41.51	11/9/2016
BAC-2	52.61	11/9/2016
BAC-3	52.10	11/9/2016
BAC-4	35.98	11/9/2016
BAC-5	32.90	11/9/2016
BAC-6	29.81	11/9/2016
BAC-7	30.92	11/9/2016
WWC-1	22.27	11/9/2016
WWC-2	23.22	11/9/2016
WWC-3	17.43	11/9/2016
WWC-4	18.88	11/9/2016
WWC-5	19.85	11/9/2016

CCR Well Levels		
Well	Depth	Date
WW-U-1	33.88	3/30/2017
WW-U-2	22.19	3/30/2017
SI-U-1	32.89	3/30/2017
CL-U-1	31.99	3/30/2017
CL-U-2	37.56	3/30/2017
CL-W-1	32.84	3/30/2017
CL-W-2	32.72	3/30/2017
CL-W-3	31.08	3/30/2017
CL-W-4	30.25	3/30/2017
CL-W-5	28.41	3/30/2017
CL-W-6	28.40	3/30/2017
CL-W-7	35.15	3/30/2017
CL-W-8	32.04	3/30/2017
BA-U-1	39.29	3/30/2017
BA-U-2	33.67	3/30/2017
BAC-1	40.89	3/30/2017
BAC-2	51.32	3/30/2017
BAC-3	51.94	3/30/2017
BAC-4	34.73	3/30/2017
BAC-5	31.71	3/30/2017
BAC-6	28.74	3/30/2017
BAC-7	30.03	3/30/2017
WWC-1	18.91	3/30/2017
WWC-2	22.21	3/30/2017
WWC-3	16.53	3/30/2017
WWC-4	17.97	3/30/2017
WWC-5	17.94	3/30/2017

CCR Well Levels		
Well	Depth	Date
WW-U-1	34.70	6/21/2017
WW-U-2	24.75	6/21/2017
SI-U-1	33.46	6/21/2017
CL-U-1	32.13	6/21/2017
CL-U-2	37.72	6/21/2017
CL-W-1	30.74	6/21/2017
CL-W-2	32.35	6/21/2017
CL-W-3	30.72	6/21/2017
CL-W-4	29.90	6/21/2017
CL-W-5	28.06	6/21/2017
CL-W-6	28.01	6/21/2017
CL-W-7	35.16	6/21/2017
CL-W-8	32.21	6/21/2017
BA-U-1	39.41	6/21/2017
BA-U-2	33.90	6/21/2017
BAC-1	41.29	6/21/2017
BAC-2	50.94	6/21/2017
BAC-3	51.14	6/21/2017
BAC-4	34.08	6/21/2017
BAC-5	30.98	6/21/2017
BAC-6	28.03	6/21/2017
BAC-7	29.30	6/21/2017
WWC-1	21.95	6/21/2017
WWC-2	22.74	6/21/2017
WWC-3	17.04	6/21/2017
WWC-4	18.48	6/21/2017
WWC-5	19.44	6/21/2017

CCR Well Levels		
Well	Depth	Date
WW-U-1	35.43	10/4/2017
WW-U-2	25.49	10/5/2017
SI-U-1	34.28	10/6/2017
CL-U-1	33.25	10/7/2017
CL-U-2	38.81	10/8/2017
CL-W-1	31.80	10/9/2017
CL-W-2	33.60	10/10/2017
CL-W-3	31.93	10/11/2017
CL-W-4	31.09	10/12/2017
CL-W-5	29.26	10/13/2017
CL-W-6	29.26	10/14/2017
CL-W-7	36.23	10/15/2017
CL-W-8	33.28	10/16/2017
BA-U-1	40.42	10/17/2017
BA-U-2	34.85	10/18/2017
BAC-1	41.78	10/19/2017
BAC-2	52.03	10/20/2017
BAC-3	52.31	10/21/2017
BAC-4	35.29	10/22/2017
BAC-5	32.19	10/23/2017
BAC-6	29.24	10/24/2017
BAC-7	30.48	10/25/2017
WWC-1	22.69	10/26/2017
WWC-2	23.51	10/27/2017
WWC-3	17.80	10/28/2017
WWC-4	19.27	10/29/2017
WWC-5	20.26	10/30/2017

CCR Well Levels		
Well	Depth	Date
WW-U-1	36.14	3/26/2018
WW-U-2	25.79	3/26/2018
SI-U-1	34.04	3/26/2018
CL-U-1	32.64	3/26/2018
CL-U-2	38.22	3/26/2018
CL-W-1	31.73	3/26/2018
CL-W-2	33.49	3/26/2018
CL-W-3	31.73	3/26/2018
CL-W-4	30.94	3/26/2018
CL-W-5	29.00	3/26/2018
CL-W-6	28.96	3/26/2018
CL-W-7	35.99	3/26/2018
CL-W-8	33.11	3/26/2018
BA-U-1	40.28	3/26/2018
BA-U-2	34.74	3/26/2018
BAC-1	42.05	3/26/2018
BAC-2	34.62	3/26/2018
BAC-3	52.76	3/26/2018
BAC-4	35.82	3/26/2018
BAC-5	33.28	3/26/2018
BAC-6	30.53	3/26/2018
BAC-7	31.88	3/26/2018
WWC-1	22.56	3/26/2018
WWC-2	23.31	3/26/2018
WWC-3	17.55	3/26/2018
WWC-4	19.04	3/26/2018
WWC-5	20.08	3/26/2018

CCR Well Levels		
Well	Depth	Date
WW-U-1	36.20	6/13/2018
WW-U-2	25.95	6/13/2018
SI-U-1	34.27	6/13/2018
CL-U-1	32.83	6/13/2018
CL-U-2	38.42	6/13/2018
CL-W-1	31.92	6/13/2018
CL-W-2	33.53	6/13/2018
CL-W-3	31.72	6/13/2018
CL-W-4	30.79	6/13/2018
CL-W-5	28.95	6/13/2018
CL-W-6	29.12	6/13/2018
CL-W-7	36.19	6/13/2018
CL-W-8	33.31	6/13/2018
BA-U-1	40.54	6/13/2018
BA-U-2	35.00	6/13/2018
BAC-1	42.29	6/13/2018
BAC-2	52.68	6/13/2018
BAC-3	53.92	6/13/2018
BAC-4	35.83	6/13/2018
BAC-5	33.32	6/13/2018
BAC-6	30.52	6/13/2018
BAC-7	31.83	6/13/2018
WWC-1	22.89	6/13/2018
WWC-2	23.64	6/13/2018
WWC-3	17.92	6/13/2018
WWC-4	19.34	6/13/2018
WWC-5	20.19	6/13/2018

CCR Well Levels		
Well	Depth	Date
WW-U-1	36.74	10/24/2018
WW-U-2	26.65	10/24/2018
SI-U-1	35.25	10/24/2018
CL-U-1	34.43	10/24/2018
CL-U-2	40.02	10/24/2018
CL-W-1	33.69	10/24/2018
CL-W-2	35.53	10/24/2018
CL-W-3	33.67	10/24/2018
CL-W-4	32.74	10/24/2018
CL-W-5	30.84	10/24/2018
CL-W-6	30.79	10/24/2018
CL-W-7	37.82	10/24/2018
CL-W-8	35.01	10/24/2018
BA-U-1	42.07	10/24/2018
BA-U-2	36.40	10/24/2018
BAC-1	43.46	10/24/2018
BAC-2	54.24	10/24/2018
BAC-3	54.22	10/24/2018
BAC-4	35.66	10/24/2018
BAC-5	35.70	10/24/2018
BAC-6	33.22	10/24/2018
BAC-7	34.85	10/24/2018
WWC-1	23.70	10/24/2018
WWC-2	24.48	10/24/2018
WWC-3	18.74	10/24/2018
WWC-4	20.22	10/24/2018
WWC-5	21.23	10/24/2018

Well Levels		
Wells	Level	Date
WW-U-1	35.34	5/20/19
WW-U-2	25.90	5/20/19
SI-U-1	34.60	5/20/19
CL-U-1	33.35	5/20/19
CL-U-2	38.93	5/20/19
CL-0-2 CL-W-1	32.93	5/20/19
CL-W-1	34.76	5/20/19
CL-W-2		5/20/19
CL-W-3 CL-W-4	32.86	
	31.89	5/20/19
CL-W-5	29.99	5/20/19
CL-W-6 CL-W-7	29.91	5/20/19
CL-W-7 CL-W-8	36.94	5/20/19 5/20/19
	34.18	
BA-U-1 BA-U-2	41.22 35.55	5/20/19 5/20/19
BAC-1	43.02	5/20/19
BAC-1 BAC-2	54.19	5/20/19
BAC-2 BAC-3	54.69	5/20/19
BAC-4	37.62	5/20/19
BAC-5	35.66	5/20/19
BAC-6	33.08	5/20/19
BAC-7	34.69	5/20/19
WWC-1	22.95	
		5/20/19
WWC-2	24.70	5/20/19
WWC-3 WWC-4	18.01	5/20/19
	19.47	5/20/19 5/20/19
WWC-5 RW-4	20.47 19.85	
		5/20/19
RW-5	45.41	5/20/19 5/20/19
RW-7 WDB-19	13.80 28.00	
_		5/20/19
CLW-9	18.37	5/20/19
WWC-6	35.74	5/20/19
WWC-7 WWC-8	17.47	5/20/19
	27.06	5/20/19
WWC-9	23.80	5/20/19
WWC-10 BAC-8	17.80	5/20/19
BAC-8 BAC-9	45.65	5/20/19
BAC-9 BAC-10	46.70	5/20/19
	47.21	5/20/19
CLU-3	41.49	5/20/19
WR-101	54.61 44.76	5/20/19
WR-102	44.76	5/20/19
WR-103	47.30	5/20/19
EP-W-19	32.61	5/20/19
RW-6	44.17	5/20/19
RW-9	42.91	5/20/19
WDB-7	41.72	5/20/19
EP-W-23	30.71	5/20/19
EP-W-27	28.92	5/20/19
WDB-19	28.00	5/20/19
RW-5	45.41	5/20/19

Well Levels		
Wells	Level	Date
WW-U-1	35.91	10/17/19
WW-U-2	26.64	10/17/19
SI-U-1	35.35	10/17/19
CL-U-1	34.52	10/17/19
CL-U-2	40.08	10/17/19
CL-W-1	33.81	10/17/19
CL-W-2	35.70	10/17/19
CL-W-3	33.85	10/17/19
CL-W-4	32.90	10/17/19
CL-W-5	31.02	10/17/19
CL-W-6	30.99	10/17/19
CL-W-7	37.98	10/17/19
CL-W-8	35.11	10/17/19
BA-U-1	42.09	10/17/19
BA-U-2	36.42	10/17/19
BAC-1	43.71	10/17/19
BAC-2	54.62	10/17/19
BAC-3	55.01	10/17/19
BAC-4	38.14	10/17/19
BAC-5	36.01	10/17/19
BAC-6	33.01	10/17/19
BAC-7	35.06	10/17/19
WWC-1	23.81	10/17/19
WWC-2	24.61	10/17/19
WWC-3	18.90	10/17/19
WWC-4	20.37	10/17/19
WWC-5	21.37	10/17/19
RW-4	20.69	10/17/19
RW-5	46.31	10/17/19
RW-5	14.74	10/17/19
WDB-19	29.11	10/17/19
CLW-9	36.97	10/17/19
WWC-6	19.57	10/17/19
WWC-7	19.20	10/17/19
WWC-8	28.15	10/17/19
WWC-9	24.86	10/17/19
WWC-10	19.40	10/17/19
BAC-8	46.07	10/17/19
BAC-9	40.07	10/17/19
BAC-10	47.18	
		10/17/19
CLU-3	42.49	10/17/19
WR-101	54.60	10/17/19
WR-102	43.14	10/17/19
WR-103	45.40	10/17/19
EP-W-19	33.52	10/17/19
RW-6	44.69	10/17/19
RW-9	43.16	10/17/19
WDB-7	42.55	10/17/19
EP-W-23	31.66	10/17/19
EP-W-27	29.89	10/17/19
WDB-19	29.11	10/17/19
RW-5	46.31	10/17/19

	Well L	evels
Well	Level	Date
WW-U-1	30.42	3/23/2020
WW-U-2	22.31	3/23/2020
SI-U-1	33.78	3/23/2020
CL-U-1	33.46	3/23/2020
CL-U-2	38.92	3/23/2020
CL-W-1	32.75	3/23/2020
CL-W-2	34.71	3/23/2020
CL-W-3	32.87	3/23/2020
CL-W-4	31.99	3/23/2020
CL-W-5	30.09	3/23/2020
CL-W-6	30.08	3/23/2020
CL-W-7 CL-W-8	36.70 33.95	3/23/2020 3/23/2020
BA-U-1	40.76	3/23/2020
BA-U-1 BA-U-2	34.81	3/23/2020
BAC-1	41.89	3/23/2020
BAC-2	53.88	3/23/2020
BAC-3	54.42	3/23/2020
BAC-4	37.21	3/23/2020
BAC-5	35.05	3/23/2020
BAC-6	32.35	3/23/2020
BAC-7	33.95	3/23/2020
WWC-1	22.85	3/23/2020
WWC-2	23.80	3/23/2020
WWC-3	18.02	3/23/2020
WWC-4	19.42	3/23/2020
WWC-5	20.39	3/23/2020
CLW-9	36.13	3/23/2020
WWC-6	18.48	3/23/2020
WWC-7	17.68	3/23/2020
WWC-8	27.11	3/23/2020
WWC-9	23.98	3/23/2020
WWC-10	17.92 22.01	3/23/2020 3/23/2020
WWC-11 WWC-12	19.59	3/23/2020
WWC-12 WWC-13	13.55	3/23/2020
BAC-8	46.08	3/23/2020
BAC-9	47.08	3/23/2020
BAC-10	47.60	3/23/2020
BAC-11	47.73	3/23/2020
BAC-12	48.07	3/23/2020
BAC-13	45.11	3/23/2020
BAC-14	46.62	3/23/2020
BAC-15	45.92	3/23/2020
BAC-16	47.19	3/23/2020
BAC-17	45.33	3/23/2020
CLU-3	41.32	3/23/2020
RW-4	19.80	3/23/2020
RW-5	45.88	3/23/2020
RW-7	14.01	3/23/2020
WDB-19	28.19	3/23/2020
EPW-15	43.84	3/23/2020
WR-101	35.91	3/23/2020
WR-102 WR-103	32.16 45.40	3/23/2020 3/23/2020
EP-W-19	32.81	3/23/2020
RW-6	44.55	3/23/2020
RW-9	43.32	3/23/2020
WDB-7	42.13	3/23/2020
EP-W-23	30.75	3/23/2020
EP-W-27	28.79	3/23/2020
WDB-19	28.19	3/23/2020
RW-5	45.88	3/23/2020

v	Vell Lev	els
Well	Level	Date
WW-U-1	35.28	10/20/2020
WW-U-2 SI-U-1	25.96 35.19	10/20/2020 10/20/2020
CL-U-1	35.06	10/20/2020
CL-U-2	40.63	10/20/2020
CL-U-3 CL-W-1	42.93 34.22	10/20/2020 10/20/2020
CL-W-1 CL-W-2	36.27	10/20/2020
CL-W-3	34.42	10/20/2020
CL-W-4	33.48	10/20/2020 10/20/2020
CL-W-5 CL-W-6	31.62 31.61	10/20/2020
CL-W-7	38.26	10/20/2020
CL-W-8	35.51	10/20/2020
CL-W-9 BA-U-1	37.75	10/20/2020 10/20/2020
BA-U-1 BA-U-2	42.35 36.54	10/20/2020
BAC-1	43.54	10/20/2020
BAC-2	55.01	10/20/2020
BAC-3 BAC-4	55.36 38.61	10/20/2020 10/20/2020
BAC-4 BAC-5	36.36	10/20/2020
BAC-6	33.72	10/20/2020
BAC-7	35.26	10/20/2020
WWC-1 WWC-2	23.98 24.79	10/20/2020 10/20/2020
WWC-3	19.12	10/20/2020
WWC-4	20.57	10/20/2020
WWC-5	21.58	10/20/2020
BAC-8 BAC-9	46.50 47.62	10/20/2020 10/20/2020
BAC-9 BAC-10	47.62	10/20/2020
BAC-11	48.82	10/20/2020
BAC-12	49.18	10/20/2020
BAC-13 BAC-14	45.95 47.21	10/20/2020 10/20/2020
BAC-14 BAC-15	46.34	10/20/2020
BAC-16	47.66	10/20/2020
BAC-17	46.43	10/20/2020
BAC-18 BAC-19	45.05 41.31	10/20/2020 10/20/2020
BAC-20	42.90	10/20/2020
BAC-21	44.74	10/20/2020
BAC-22 BAC-23	45.10 44.60	10/20/2020 10/20/2020
BAC-23 BAC-24	44.80	10/20/2020
BAC-25	44.49	10/20/2020
BAC-26	48.43	10/20/2020
BAC-27 BAC-28	47.85 45.42	10/20/2020 10/20/2020
BAC-29	44.86	10/20/2020
BAC-30	44.71	10/20/2020
BAC-31 BAC-32	44.34 48.31	10/20/2020 10/20/2020
BAC-32 BAC-33	48.14	10/20/2020
BAC-34	48.22	10/20/2020
BAC-35	48.08	10/20/2020
BAC-36 BAC-37	44.73 43.67	10/20/2020 10/20/2020
BAC-37 BAC-38	43.07	10/20/2020
WWC-6	19.84	10/20/2020
WWC-7	20.22	10/20/2020
WWC-8 WWC-9	28.57 25.34	10/20/2020 10/20/2020
WWC-10	19.57	10/20/2020
WWC-11	23.28	10/20/2020
WWC-12 WWC-13	20.97	10/20/2020
WWC-13 WWC-14	20.13 18.90	10/20/2020 10/20/2020
WWC-15	21.19	10/20/2020
WWC-16	19.52	10/20/2020
WWC-17 RW-3	24.62 38.71	10/20/2020 10/20/2020
RW-3 RW-4	20.84	10/20/2020
RW-5	46.95	10/20/2020
RW-7	15.10	10/20/2020
RW-8 EPW-15	43.97 44.53	10/20/2020 10/20/2020
WDB-5	45.33	10/20/2020
WDB-17	40.46	10/20/2020
WR-101	54.61	10/20/2020
WR-102 WR-103	44.76 45.40	10/20/2020 10/20/2020
EP-W-19	34.23	10/20/2020
RW-6	45.11	10/20/2020
RW-9 WDB-7	43.61 43.24	10/20/2020 10/20/2020
EP-W-23	32.30	10/20/2020
EP-W-27	30.28	10/20/2020
WDB-19	29.84	10/20/2020
EMW-1 EMW-3	31.15 39.99	10/20/2020 10/20/2020
EMW-U4	38.04	10/20/2020
EMW-L4	34.08	10/20/2020
EMW-U5	35.74	10/20/2020
EMW-5L EMW-6	31.81 43.10	10/20/2020 10/20/2020
EMW-7	44.33	10/20/2020
EMW-8	55.94	10/20/2020
EP-2 EP-3	32.71 37.25	10/20/2020
EP-3 EP-4	37.25 38.91	10/20/2020 10/20/2020
EP-5	27.73	10/20/2020
-		

WELL LEVELS 4/20/2021

Wells	Level	Date
WW-U-1	36.48	4/20/21
WW-U-2	26.49	4/20/21
SI-U-1	34.91	4/20/21
CL-U-1	34.21	4/20/21
CL-U-2	39.78	4/20/21
CL-U-3	42.23	4/20/22
CL-W-1	33.61	4/20/22
CL-W-2	35.61	4/20/22
CL-W-3	33.74	4/20/22
CL-W-4	32.79	4/20/22
CL-W-5	30.95	4/20/22
CL-W-6	30.90	4/20/22
CL-W-7	37.60	4/20/22
CL-W-8	34.91	4/20/22
CL-W-9	36.99	4/20/22
BA-U-1	41.84	4/20/22
BA-U-2	36.15	4/20/22
BAC-1	42.41	4/20/22
BAC-2	54.81	4/20/22
BAC-3	54.59	4/20/22
BAC-4	38.36	4/20/22
BAC-5	36.17	4/20/22
BAC-6	33.46	4/20/22
BAC-7	34.99	4/20/22
BAC-8	46.68	4/20/22
BAC-9	47.72	4/20/22

Wells	Level	Date
BAC-10	48.29	4/20/21
BAC-11	48.49	4/20/21
BAC-12	48.87	4/20/21
BAC-13	45.89	4/20/21
BAC-14	47.20	4/20/21
BAC-15	46.53	4/20/21
BAC-16	47.85	4/20/21
BAC-17	46.12	4/20/21
BAC-18	44.58	4/20/21
BAC-19	40.90	4/20/21
BAC-20	42.62	4/20/21
BAC-21	44.42	4/20/21
BAC-22	44.78	4/20/21
BAC-23	44.24	4/20/21
BAC-24	43.95	4/20/21
BAC-25	44.19	4/20/21
BAC-26	47.97	4/20/21
BAC-27	47.41	4/20/21
BAC-28	45.04	4/20/21
BAC-29	44.61	4/20/21
BAC-30	44.50	4/20/21
BAC-31	44.04	4/20/21
BAC-32	47.72	4/20/21
BAC-33	47.57	4/20/21
BAC-34	47.62	4/20/21
BAC-35	47.60	4/20/21

Wells	Level	Date
BAC-36	44.41	4/20/21
BAC-37	43.31	4/20/21
BAC-38	42.37	4/20/21
WWC-1	23.23	4/20/21
WWC-2	23.88	4/20/21
WWC-3	18.17	4/20/21
WWC-4	19.72	4/20/21
WWC-5	20.86	4/20/21
WWC-6	18.58	4/20/21
WWC-7	18.48	4/20/21
WWC-8	27.48	4/20/21
WWC-9	24.18	4/20/21
WWC-10	18.24	4/20/21
WWC-11	22.07	4/20/21
WWC-12	19.75	4/20/21
WWC-13	18.89	4/20/21
WWC-14	17.56	4/20/21
WWC-15	19.93	4/20/21
WWC-16	18.03	4/20/21
WWC-17	23.43	4/20/21
RW-1	43.69	4/20/21
RW-3	38.61	4/20/21
RW-4	20.31	4/20/21
RW-5	46.68	4/20/21
RW-6	45.20	4/20/21
RW-7	43.82	4/20/21

Wells	Level	Date
RW-8	43.92	4/20/21
RW-9	43.81	4/20/21
EMW-1	30.50	4/20/21
EMW-2	37.31	4/20/21
EMW-4L	33.28	4/20/21
EMW-5L	31.20	4/20/21
EMW-6	42.97	4/20/21
WDB-7	42.88	4/20/21
WDB-17	39.84	4/20/21
WDB-19	29.17	4/20/21
EP-W-19	33.78	4/20/21
EP-W-23	31.75	4/20/21
EP-W-27	29.98	4/20/21
WR-101	54.61	4/20/21
WR-102	45.16	4/20/21
WR-103	45.40	4/20/21

Round 1 Detection Monitoring - December 2-10, 2015 Results

													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	< 0.500	68.9	418	0.813	7.82	131	1040	<0.00200	0.0378	0.126	<0.00200	< 0.000500	0.00537	< 0.00400	< 0.00200	0.346	<0.000150	0.00459	<0.00200	<0.00200	0.52	0.5	1.02
CL-U-2	< 0.500	73.8	404	0.611	7.73	132	1020	<0.00200	0.0317	0.129	<0.00200	< 0.000500	0.00613	<0.00400	<0.00200	0.325	<0.000150	0.00406	<0.00200	<0.00200	0.55	1.2	1.75
CLW-1	< 0.500	55.7	322	0.844	7.95	76.5	832	<0.00200	0.0264	0.105	<0.00200	< 0.000500	0.00814	<0.00400	<0.00200	0.3	<0.000150	0.00574	<0.00200	<0.00200	0.56	1.6	2.16
CLW-2	< 0.500	53.9	432	0.695	7.75	108	976	<0.00200	0.0283	0.0957	<0.00200	< 0.000500	0.00576	<0.00400	<0.00200	0.36	<0.000150	0.00472	<0.00200	<0.00200	0.51	1.1	1.61
CLW-3	< 0.500	45	367	0.948	7.86	123	928	<0.00200	0.0375	0.111	<0.00200	< 0.000500	0.00346	<0.00400	<0.00200	0.337	<0.000150	0.00492	<0.00200	<0.00200	0.4	1.3	1.7
CLW-4	< 0.500	44.5	320	1.37	7.87	73.3	828	<0.00200	0.0308	0.122	<0.00200	< 0.000500	0.00336	<0.00400	<0.00200	0.319	<0.000150	0.00584	<0.00200	<0.00200	0.34	1.9	2.24
CLW-5	< 0.500	38.4	345	1.51	7.81	88.3	872	<0.00200	0.0188	0.0864	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.0325	<0.000150	0.00841	<0.00200	<0.00200	0.37	1.6	1.97
CLW-6	< 0.500	33.6	325	1.38	7.71	74.5	820	<0.00200	0.0249	0.0879	<0.00200	< 0.000500	0.00335	<0.00400	<0.00200	0.316	<0.000150	0.0104	<0.00200	<0.00200	0.37	0.63	1
CLW-7	< 0.500	47.3	339	0.792	7.81	66.4	812	<0.00200	0.0234	0.0593	<0.00200	< 0.000500	0.00421	< 0.00400	<0.00200	0.282	<0.000150	0.00331	<0.00200	<0.00200	0.14	0.52	0.66
CLW-8	< 0.500	43.6	324	0.797	7.8	70.5	772	<0.00200	0.0155	0.107	<0.00200	< 0.000500	0.00463	< 0.00400	< 0.00200	0.285	< 0.000150	0.00626	<0.00200	<0.00200	0.4	0.74	1.14

	Results																			Field Results											
Bottom Ash																							Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium Be	eryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance Turbidity (N	NTUs)	DO	TDS
BA-U-1	< 0.500	51.4	430	1.21	8.06	121	984	4 <0.00200	0.0163	0.133	<0.00200	<0.000500	0.00305	<0.00400	<0.00200	0.313	<0.000150	0.0408	<0.00200	<0.00200	0.66	0.7	1.36	BA-U-1	14.56	7.93	-67	1590	106	2.51	-
BA-U-2	< 0.500	53	343	0.727	8.9	48.9	82.4	4 <0.00200	0.0154	0.148	< 0.00200	<0.000500	0.00971	<0.00400	<0.00200	0.297	<0.000150	0.0121	<0.00200	<0.00200	0.32	2.1	2.42	BA-U-2	13.58	8.33	-85	1510	96.4	2.9	-
BAC-1	7.49	274	3280	0.299	7.37	3060	8860	0.00237	0.0146	0.1	<0.00200	<0.000500	0.00503	0.00605	<0.00200	1.52	<0.000150	0.143	0.0204	<0.00200	0.71	1.6	2.31	BAC-1	11.8	7.32	111	15100	54.8	1.84	9.35
BAC-2	10.7	267	2000	0.741	7.29	3620	7820	0 <0.00200	0.0386	0.0472	<0.00200	<0.000500		<0.00400			<0.000150	0.151	0.0164	<0.00200	0.48		1.42	BAC-2	15.7	7.12	79	11800	100	1.82	7.33
BAC-3	6.09	387	2900	0.648	7.6	3840	9800		0.0191			<0.000500		<0.00400			<0.000150	0.0367	0.019	<0.00200	0.99	1.1	2.09	BAC-3	16.24	7.51		15000	34.2	1.36	9.28
BAC-4	< 0.500	53	473	1.35	7.96		1150		0.0407			<0.000500		<0.00400			<0.000150	0.0104	<0.00200	<0.00200	0.19	0.5	0.69	BAC-4	14.36	7.93		2230	12.5	2.07	1.43
BAC-5	< 0.500	51.1	483	1.11	7.83		1010		0.0357			<0.000500		<0.00400			<0.000150	0.00926	<0.00200	<0.00200	0.29	0.96	1.25	BAC-5	13.96	7.88		2020	113	0.97	1.29
BAC-6	4.36	142	516	0.754	7.68	1080	2410	0 <0.00200	0.0134				0.0363				<0.000150	0.0968	<0.00200	<0.00200	0.39	1.4	1.79	BAC-6	12.49	7.69	-157	3610	96.1	1.2	2.31
BAC-7	4.65	148	665	1.01	7.77	1360	2910	0 <0.00200	0.0191	0.0577	<0.00200	<0.000500	0.0264	<0.00400	<0.00200	0.681	<0.000150	0.0699	0.00276	<0.00200	0.46	0.92	1.38	BAC-7	14.17	7.76	-96	4430	789	1.12	2.84
													Results														-	Field Results			
Waste Water													Results										Dedium 220 and	Waste Water				Field Results			
Waste Water	Boron	Calcium	Chlorida	Eluorida	nH	Sulfata	TDS	Antimony	Arsonic	Barium Be	oryllium	Cadmium		Cobalt	Load	Lithium	Morcury	Molyhdonum	Solonium	Thallium	Padium 226	Padium 229	Radium 226 and	Waste Water	Tomp		REDOX			DO	TDS
	Boron	Calcium	Chloride		рН 7.4	Sulfate	TDS	Antimony	Arsenic				Chromium	Cobalt	Lead			Molybdenum		Thallium	Radium 226	Radium 228	228 combined		Temp	рН 7 27		Conductance Turbidity (N	NTUs)	DO	TDS
SI-U-1	0.594	Calcium 171	667	<0.100	7.4	918	2300	0 <0.00200	0.00266	0.112	<0.00200	<0.000500	Chromium 0.0099	< 0.00400	<0.00200	0.49	<0.000150	0.00554	<0.00200	<0.00200	Radium 226 0.56	Radium 228	228 combined	SI-U-1	10.79	рН 7.27 7.01	-14	Conductance Turbidity (N 3720	74	DO 6.93	TDS -
SI-U-1 WW-U-1	0.594 1.05	Calcium 171 374	667 2180	<0.100 <0.100	7.4 7.06	918 1470	2300 5430	0 <0.00200	0.00266 0.00453	0.112 0.178	<0.00200 <0.00200	<0.000500 <0.000500	Chromium 0.0099 0.0032	<0.00400 <0.00400	<0.00200 <0.00200	0.49 0.983	<0.000150 <0.000150	0.00554	<0.00200 0.00549	<0.00200 <0.00200	0.56 1	1.7 2.3	228 combined 2.26 3.3	SI-U-1 WW-U-1	10.79 13.11	7.01	-14	Conductance Turbidity (N 3720 7920	74 32.9	6.93 3.2	TDS -
SI-U-1 WW-U-1 WW-U-2	0.594 1.05 1.6	Calcium 171 374 358	667 2180 2430	<0.100 <0.100 <0.100	7.4 7.06 7.23	918 1470 1370	2300 5430 5540	0 <0.00200	0.00266 0.00453 0.00309	0.112 0.178 0.123	<0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500	Chromium 0.0099 0.0032 0.00582	<0.00400 <0.00400 0.0072	<0.00200 <0.00200 <0.00200	0.49 0.983 0.934	<0.000150 <0.000150 <0.000150	0.00554 0.00619 0.0237	<0.00200 0.00549 0.00543	<0.00200 <0.00200 <0.00200	0.56 1 0.84	1.7 2.3 2.1	228 combined 2.26 3.3 2.94	SI-U-1 WW-U-1 WW-U-2	10.79 13.11 12.59	7.01 7.23	-14 2 -11	Conductance Turbidity (N 3720 7920 7920 7920	74 32.9 93.4	DO 6.93 3.2 5.09	TDS - - -
SI-U-1 WW-U-1 WW-U-2 WWC-1	0.594 1.05 1.6 9.62	171 374 358 561	667 2180 2430 4840	<0.100 <0.100 <0.100 <0.100	7.4 7.06 7.23 7.19	918 1470 1370 3150	2300 5430 5540	> <0.00200	0.00266 0.00453 0.00309 0.0181	0.112 0.178 0.123 0.0536	<0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0099 0.0032 0.00582 0.0139	<0.00400 <0.00400 0.0072 <0.00400	<0.00200 <0.00200 <0.00200 <0.00200	0.49 0.983 0.934 2.69	<0.000150 <0.000150 <0.000150 0.00031	0.00554 0.00619 0.0237 0.00701	<0.00200 0.00549 0.00543 0.0152	<0.00200 <0.00200 <0.00200 <0.00200	0.56 1 0.84 0.31	1.7 2.3 2.1 0.83	228 combined 2.26 3.3 2.94 1.14	SI-U-1 WW-U-1 WW-U-2 WWC-1	10.79 13.11 12.59 14.94	7.01 7.23 7.06	-14 2 -11 15	Conductance Turbidity (N 3720	74 32.9 93.4 110	6.93 3.2 5.09 1.28	TDS - - - 11.5
SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2	0.594 1.05 1.6 9.62 < 0.500	171 374 358 561 66.5	667 2180 2430 4840 381	<0.100 <0.100 <0.100 <0.100 0.158	7.4 7.06 7.23 7.19 7.91	918 1470 1370 3150 147	2300 5430 5540 11800 940	>0 <0.00200	0.00266 0.00453 0.00309 0.0181 0.0155	0.112 0.178 0.123 0.0536 0.0511	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0099 0.0032 0.00582 0.0139 0.00348	<0.00400 <0.00400 0.0072 <0.00400 <0.00400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.49 0.983 0.934 2.69 0.241	<0.000150 <0.000150 <0.000150 0.00031 <0.000150	0.00554 0.00619 0.0237 0.00701 0.00383	<0.00200 0.00549 0.00543 0.0152 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.56 1 0.84 0.31 0.12	1.7 2.3 2.1 0.83 1.1	228 combined 2.26 3.3 2.94 1.14 1.22	SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2	10.79 13.11 12.59 14.94 17.36	7.01 7.23 7.06 7.88	-14 2 -11 15 -44	Conductance Turbidity (N 3720	74 32.9 93.4 110 79.9	6.93 3.2 5.09 1.28 1.08	- - 11.5 1.07
SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2 WWC-3	0.594 1.05 1.6 9.62 < 0.500 < 0.500	171 374 358 561	667 2180 2430 4840 381 284	<0.100 <0.100 <0.100 <0.100 0.158 1.01	7.4 7.06 7.23 7.19 7.91 8.11	918 1470 1370 3150 147 82.2	2300 5430 5540 11800 940 688	<0.00200	0.00266 0.00453 0.00309 0.0181 0.0155 0.0102	0.112 0.178 0.123 0.0536 0.0511 0.0638	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0099 0.0032 0.00582 0.0139 0.00348 0.00577	<0.00400 <0.00400 0.0072 <0.00400 <0.00400 <0.00400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.49 0.983 0.934 2.69 0.241 0.243	<0.000150 <0.000150 <0.000150 0.00031 <0.000150 <0.000150	0.00554 0.00619 0.0237 0.00701 0.00383 0.0459	<0.00200 0.00549 0.00543 0.0152 <0.00200 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.56 1 0.84 0.31 0.12 0.32	1.7 2.3 2.1 0.83 1.1 0.55	228 combined 2.26 3.3 2.94 1.14 1.22 0.87	SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2 WWC-3	10.79 13.11 12.59 14.94 17.36 13.92	7.01 7.23 7.06	-14 2 -11 15 -44	Conductance Turbidity (N 3720 - 7920 - 7920 - 1850 - 1680 - 1430 -	74 32.9 93.4 110 79.9 121	6.93 3.2 5.09 1.28 1.08 1.29	TDS - - 11.5 1.07 0.918
SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2	0.594 1.05 1.6 9.62 < 0.500	171 374 358 561 66.5	667 2180 2430 4840 381	<0.100 <0.100 <0.100 <0.100 0.158	7.4 7.06 7.23 7.19 7.91	918 1470 1370 3150 147 82.2	2300 5430 5540 11800 940	> <0.00200	0.00266 0.00453 0.00309 0.0181 0.0155	0.112 0.178 0.123 0.0536 0.0511 0.0638 0.09	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0099 0.0032 0.00582 0.0139 0.00348	<0.00400 <0.00400 0.0072 <0.00400 <0.00400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.49 0.983 0.934 2.69 0.241 0.243 0.909	<0.000150 <0.000150 <0.000150 0.00031 <0.000150	0.00554 0.00619 0.0237 0.00701 0.00383	<0.00200 0.00549 0.00543 0.0152 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.56 1 0.84 0.31 0.12	1.7 2.3 2.1 0.83 1.1 0.55 0.45	228 combined 2.26 3.3 2.94 1.14 1.22 0.87 0.95	SI-U-1 WW-U-1 WW-U-2 WWC-1 WWC-2	10.79 13.11 12.59 14.94 17.36	7.01 7.23 7.06 7.88	-14 2 -11 15 -44	Conductance Turbidity (N 3720	74 32.9 93.4 110 79.9	6.93 3.2 5.09 1.28 1.08	- - 11.5 1.07

				F	Round 1			
					Field Resu	ılts		
m 226 and combined	Landfill Wells	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
1.02	CL-U-1	13.46	7.74	-42	1720	443	2.12	-
1.75	CL-U-2	14.72	6.92	-38	1750	604	2.6	-
2.16	CLW-1	14.84	7.69	-45	1490	383	2.28	0.952
1.61	CLW-2	9.95	7.86	-144	1810	99.6	1.76	1.16
1.7	CLW-3	11.24	7.95	-158	1740	128	1.9	1.11
2.24	CLW-4	14.9	7.95	-165	1540	25.1	1.67	0.98
1.97	CLW-5	15.12	7.96	-134	1620	46.4	1.6	1.04
1	CLW-6	15.3	8	-193	1550	30.8	0.98	0.998
0.66	CLW-7	16.38	7.54	8	1430	90.9	7.01	0.917
1.14	CLW-8	15.01	7.58	0	1530	11.3	2.09	0.976

					Field Resu	ılts		
nd d	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
.36	BA-U-1	14.56	7.93	-67	1590	106	2.51	-
.42	BA-U-2	13.58	8.33	-85	1510	96.4	2.9	-
.31	BAC-1	11.8	7.32	111	15100	54.8	1.84	9.35
.42	BAC-2	15.7	7.12	79	11800	100	1.82	7.33
.09	BAC-3	16.24	7.51	75	15000	34.2	1.36	9.28
.69	BAC-4	14.36	7.93	12	2230	12.5	2.07	1.43
.25	BAC-5	13.96	7.88	-18	2020	113	0.97	1.29
.79	BAC-6	12.49	7.69	-157	3610	96.1	1.2	2.31
.38	BAC-7	14.17	7.76	-96	4430	789	1.12	2.84
	•							

										Round	2 Detection N	Aonitoring -	February 23-	March 8, 20	16											r	Round 2			
													Results														Field Resul	/ts		
Landfill Wells																						Radium 226 and	Landfill Wells							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	47.7	391	0.839	8.52	123	908	< 0.00200	0.0415	0.0953	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.401 < 0.000150	0.00733	<0.00200	<0.00200	0.27	1.6	1.87	CL-U-1	14.18	8.74	4 -209	1750	4.3	2.15	1.12
CL-U-2	< 0.500	59.9	372	0.873	7.75	119	940	<0.00200	0.0243	0.0934	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.387 <0.000150	0.00414	<0.00200	<0.00200	0.28	1	1.28	CL-U-2	14.41	7.75	, -89	1820	4.6	1.85	1.17
CLW-1	< 0.500	35.1	301	0.834	7.89	71.6	808	< 0.00200	0.0266	0.0648	<0.00200	<0.000500	0.00235	<0.00400	<0.00200	0.361 < 0.000150	0.00506	<0.00200	<0.00200	0.36	1.5	1.86	CLW-1	15.84	7.95	-60	1560	3.8	1.4	0.996
CLW-2	< 0.500	45.9	378	1.18	7.66	90.5	936	< 0.00200	0.0243	0.0882	<0.00200	< 0.000500	<0.00200		<0.00200	0.438 < 0.000150	0.00481	<0.00200	<0.00200	0.51	0.53	1.04	CLW-2	17.53	7.81			2	9.35	1.17
CLW-3	< 0.500	40.5	336	1.35	7.92	96	884	< 0.00200	0.0437	0.103	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.435 <0.000150	0.0049	<0.00200	<0.00200	0.47	1.1	1.57	CLW-3	14.99	7.87	7 -203	1710	0	3.96	1.09
CLW-4	< 0.500	32.1	282	1.53	7.87	80.9	776	< 0.00200	0.0271	0.109	<0.00200	<0.000500	<0.00200	<0.00400	< 0.00200	0.375 <0.000150	0.00762	<0.00200	<0.00200	0.37	0.7	1.07	CLW-4	17.08	7.81	1 -211	1490	11.5	1.82	0.955
CLW-5	< 0.500	35.4	318	1.82	7.91	85.7	824	< 0.00200	0.0214	0.0869	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.411 < 0.000150	0.00922	<0.00200	<0.00200	0.27	0.32	0.59	CLW-5	17.06	7.82	2 -168	1650	10.9	8.45	1.06
CLW-6	< 0.500	32.1	306	1.72	7.97	75.4	816	< 0.00200	0.0246	0.095	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.4 < 0.000150	0.0117	<0.00200	<0.00200	0.02	0.96	0.98	CLW-6	15.83	7.91	1 -194	1600	6.2	0.95	1.02
CLW-7	< 0.500	42.8	290	0.825	7.65	67.6	832	<0.00200	0.0239	0.0794	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.327 <0.000150	0.146	<0.00200	<0.00200	0.14	0.29	0.43	CLW-7	16.53	7.75	, 9	1560	3.5	2.67	0.996
CLW-8	< 0.500	41.5	293	0.782	7.8	70.3	808	< 0.00200	0.022	0.0839	<0.00200	<0.000500	0.00224	< 0.00400	<0.00200	0.35 <0.000150	0.00499	<0.00200	<0.00200	0.32	0.32	0.64	CLW-8	15.86	7.81	1 -25	1560	8	1.92	0.996
																								-						
													Results														Field Resul	lts		
Bottom Ash																						Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	28.7	258	1.67	8.55	64.2	852	< 0.00200	0.023	0.0969	<0.00200	<0.000500	<0.00200		<0.00200	0.376 <0.000150	0.0359	<0.00200	<0.00200	0.33	1.3	1.63	BA-U-1	13.53	8.63	, 5	1550	11.3	2.59	0.995
BA-U-2	< 0.500	67.4	529	0.938	8.02	55.7	1230	<0.00200	0.0199	0.175	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.514 < 0.000150	0.00298	<0.00200	<0.00200	0.2	1	1.2	BA-U-2	15.78	7.94	4 -167	2240	19.7	1.06	1.44
BAC-1	2.85	155	1730	<0.100	7.86	1390	5240	< 0.00200	0.0174	0.39	<0.00200	<0.000500	0.00536	< 0.00400	<0.00200	0.63 <0.000150	0.0607	0.0131	<0.00200	0.96	1.6	2.56	BAC-1	17.51	8.16	, 39	6.5	10.7	3	4.11
BAC-2	9.83	196	1600	<0.100	7.35	2900	7640	< 0.00200	0.0411	0.0385	<0.00200	<0.000500	0.00742	<0.00400	0.00221	1.22 <0.000150	0.167	0.0128	<0.00200	0.4	2.5	2.9	BAC-2	16.74	7.2	2 322	9.96	3.2	2.59	6.26
BAC-3	6.55	406	3240	<0.100	7.62	3960	10400	< 0.00200	0.0192	0.0553	<0.00200	< 0.000500	0.00676	< 0.00400	<0.00200	1.12 <0.000150	0.0337	0.0184	<0.00200	0.44	0.68	1.12	BAC-3	14.4	7.36	5 29	1590	3.8	3.35	9.84
BAC-4	< 0.500	57.4	488	1.36	7.87	191	1290	< 0.00200	0.0371	0.0806	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.532 <0.000150	0.0106	<0.00200	<0.00200	0.48	0.5	0.98	BAC-4	15.9	7.81	-55	2370	3.9	2.08	1.51
BAC-5	< 0.500	41.3	433	1.34	7.95	111	1010	< 0.00200	0.0392	0.0736	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.476 <0.000150	0.00758	<0.00200	<0.00200	0.25	-0.03	0.22	BAC-5	16.34	7.92	2 -23	1980	4	2.89	1.27
BAC-6	2.67	98.4	491	0.734	7.72	636	1880	< 0.00200	0.0144	0.0736	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.597 <0.000150	0.0569	<0.00200	<0.00200	0.61	0.6	1.21	BAC-6	18.19	7.67	-8	2.94	0	1.73	1.88
BAC-7	4.43	132	623	1.07	7.89	1230	2980	< 0.00200	0.0225	0.0372	< 0.00200	< 0.000500	<0.00200	< 0.00400	< 0.00200	0.699 < 0.000150	0.0681	0.00274	< 0.00200	0.16	0.51	0.67	BAC-7	14.22	7.9	9- ار	4560	3.9	2.46	2.92
		101	010	1.07	7.05	1230		.0.00200	0.0110	0.00.2		0.000000				0.000	0.000-	0.001	40100200	0.10	0.01	0.07	2.10							

													Results															Field Res	ılts		
Waste Water																							Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	168	752	0.557	7.65	665	2320	< 0.00200	0.00781	0.0846	<0.00200	<0.000500	0.00346	<0.00400	< 0.00200	0.634	<0.000150	0.00671	<0.00200	<0.00200	0.43	-0.16	0.27	SI-U-1	12.99	7.49	11	3790	7.4	1.37	2.42
WW-U-1	1.03	346	2430	<0.100	7.23	1440	5330	< 0.00200	0.00446	0.123	<0.00200	<0.000500	<0.00200	<0.00400	< 0.00200	1.33	<0.000150	0.00669	0.00432	<0.00200	1	2.2	3.2	WW-U-1	15.75	7.21	-117	8030	19.6	4.07	5.06
WW-U-2	1.59	362	2410	<0.100	7.34	1370	5780	< 0.00200	0.00846	0.0761	<0.00200	<0.000500	0.00735	<0.00400	< 0.00200	1.35	<0.000150	0.0126	0.0108	<0.00200	0.51	1.2	1.71	WW-U-2	14.5	7.34	-22	9240	12.9	2.4	5.82
WWC-1	6.01	458	4530	0.256	7.24	2710	10800	< 0.00200	0.00331	0.072	<0.00200	<0.000500	0.00369	0.00842	< 0.00200	1.08	<0.000150	0.0103	0.00919	<0.00200	0.91	1.6	2.51	WWC-1	15.29	7.11	-108	1400	11.8	7.82	8.62
WWC-2	< 0.500	61.3	352	0.208	7.97	131	932	< 0.00200	0.0147	0.0421	<0.00200	<0.000500	0.00335	<0.00400	< 0.00200	0.162	<0.000150	0.00391	<0.00200	<0.00200	0.18	1	1.18	WWC-2	14.19	7.75	-86	1720	9.1	2.37	1.1
WWC-3	< 0.500	29.2	203	0.845	8.2	78.5	660	< 0.00200	0.021	0.0357	<0.00200	<0.000500	<0.00200	<0.00400	< 0.00200	0.172	<0.000150	0.00593	< 0.00200	<0.00200	0.16	0.52	0.68	WWC-3	15.63	8.1	-183	1190	2	1.36	0.759
WWC-4	0.826	185	1100	0.39	7.31	716	3100	0 <0.00200	0.00923	0.101	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.75	<0.000150	0.00783	<0.00200	<0.00200	0.6	0.84	1.44	WWC-4	15.58	7.37	-8	5004	4.7	1.61	3.18
WWC-5	1.59	320	1640	0.319	7.22	1210	4790	< 0.00200	0.00371	0.0882	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	1.41	<0.000150	0.0205	0.00345	<0.00200	0.52	1.9	2.42	WWC-5	15	7.22	19	7510	6.4	2	4.75

Date: 2/29/2016

										Ro	und 3 Detec	tion Monitori	ing - June 6-:	15, 2016												R	ound 3			
													Results														Field Resu	lts		
Landfill Wells																						Radium 226 and	Landfill Wells							
	Boron C	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	51.2	414	1.01	7.83	122	1080	<0.00200	0.0507	0.0887	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.378 <0.000150	0.00491	<0.00200	<0.00200	0.11	0.72	0.83	CL-U-1	18.94	8.04	-204	1910	22.6	1.2	1.22
CL-U-2	< 0.500	53.7	390	1.14	7.75	121	976	<0.00200	0.0245	0.0933	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.346 <0.000150	0.00391	<0.00200	<0.00200	0.26	1.5	1.76	CL-U-2	18.47	7.7	-136	1900	1	2.72	1.22
CLW-1	< 0.500	34.6	312	1.13	7.9	70.1	716	<0.00200	0.0285	0.0621	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.318 < 0.000150	0.00438	<0.00200	<0.00200	0.28	0.89	1.17	CLW-1	23.71	7.77	62	1550	0	1.34	0.99
CLW-2	< 0.500	43.9	402	1.21	7.84	87.9	976	<0.00200	0.0264	0.0819	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.396 <0.000150	0.00427	<0.00200	<0.00200	0.25	1.1	1.35	CLW-2	22.15	7.66	-169	1840	0	1.31	1.17
CLW-3	< 0.500	36.2	346	1.3	7.86	104	876	<0.00200	0.0402	0.0992	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.375 <0.000150	0.00463	<0.00200	<0.00200	0.35	1.2	1.55	CLW-3	20.8	7.71	-225	1720	0.8	1.8	1.1
CLW-4	< 0.500	30.6	294	1.58	7.79	77.9	748	<0.00200	0.0196	0.119	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.338 < 0.000150	0.0092	<0.00200	<0.00200	0.45	0.72	1.17	CLW-4	19.51	7.8	-235	1480	0	4.39	0.95
CLW-5	< 0.500	33	336	1.81	7.86	84.9	848	<0.00200	0.0182	0.0851	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.352 <0.000150	0.00868	<0.00200	<0.00200	0.27	0.65	0.92	CLW-5	21.24	7.77	-209	1570	11.5	4.22	1.01
CLW-6	< 0.500	29.8	313	1.73	7.9	73.2	756	< 0.00200	0.0181	0.0901	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.333 < 0.000150	0.0105	< 0.00200	<0.00200	0.34	1.4	1.74	CLW-6	18.81	7.87	-235	1600	0	1.7	1.02
CLW-7	< 0.500	39.3	328	1.16	7.64	67.4	732	<0.00200	0.0246	0.0581	<0.00200	<0.000500	0.00891	< 0.00400	<0.00200	0.331 < 0.000150	0.00638	<0.00200	< 0.00200	0.19	0.55	0.74	CLW-7	16.73	7.62	66	1580	8.9	3.82	1.01
CLW-8	< 0.500	40.3	312	1.08	7.82	69.7	808	<0.00200	0.0225	0.0797	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.32 <0.000150	0.00435	< 0.00200	< 0.00200	0.27	0.32	0.59	CLW-8	20.93	7.66	55	1510	0	12.58	0.966
																	· · · · · ·													

	< 0.500	59.5	528	1.10	7.04	07.4	152	<0.00200	0.0240	0.0361	<0.00200	<0.000300	0.00891	<0.00400	<0.00200	0.331 <0.000130	0.00038	<0.00200	<0.00200	0.19	0.55	0.74	CLVV-/
CLW-8	< 0.500	40.3	312	1.08	7.82	69.7	808	<0.00200	0.0225	0.0797	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.32 <0.000150	0.00435	<0.00200	<0.00200	0.27	0.32	0.59	CLW-8
													Results										1
Bottom Ash																							Bot
Dottom Ash																						Radium 226 and	
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	
BA-U-1	< 0.500	195	1130	0.801	7.63	339	2520	<0.00200	0.0177	0.0935	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.773 <0.000150	0.00317	0.00426	<0.00200	0.3	1.6	1.9	BA-U-
BA-U-2	< 0.500	15.9	284	0.865	12	40.6	720	<0.00200	<0.00200	0.128	<0.00200	<0.000500	0.0032	<0.00400	<0.00200	0.315 <0.000150	0.016	<0.00200	<0.00200	0.22	1.5	1.72	BA-U-
BAC-1	4.73	191	2240	0.402	7.59	1840	6420	<0.00200	0.0164	0.081	<0.00200	< 0.000500	0.0033	<0.00400	<0.00200	1.3 <0.000150	0.0669	0.0168	<0.00200	0.51	1.3	1.81	BAC-1
BAC-2	11.2	216	1650	0.986	7.17	3220	7520	<0.00200	0.0416	0.0248	<0.00200	< 0.000500	0.00488	<0.00400	<0.00200	1.32 <0.000150	0.14	0.0142	<0.00200	0.17	1.6	1.77	BAC-2
BAC-3	6.82	445	3230	0.794	7.42	4490	10900	<0.00200	0.0158	0.048	<0.00200	<0.000500	0.00707	<0.00400	<0.00200	2.53 <0.000150	0.0269	0.0198	<0.00200	0.25	1.6	1.85	BAC-3
BAC-4	< 0.500	66.1	551	1.38	7.73	223	1280	<0.00200	0.0334	0.0772	<0.00200	<0.000500	0.00461	<0.00400	<0.00200	0.509 <0.000150	0.0122	<0.00200	<0.00200	0.16	0.68	0.84	BAC-4
BAC-5	< 0.500	50.4	541	1.26	7.79	122	1220	<0.00200	0.0337	0.0839	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.494 <0.000150	0.00738	<0.00200	<0.00200	0.11	1.7	1.81	BAC-5
BAC-6	1.7	89.5	521	1.04	7.72	448	1560	<0.00200	0.0122	0.0859	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.542 <0.000150	0.0359	<0.00200	<0.00200	0.27	0.76	1.03	BAC-6
BAC-7	4.51	132	685	1.31	7.69	1370	2870	<0.00200	0.0234	0.0315	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.674 <0.000150	0.0749	0.00319	<0.00200	0.17	2.4	2.57	BAC-7
													Results										

													Results														Field Resu	ults
Waste Water	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226 and 228 combined	Waste Water	Temp	рH	REDOX	Conductance	Τι
SI-U-1	< 0.500	129	901	0.564	7.6	318	1880	<0.00200	0.00989	0.0929	<0.00200	<0.000500	0.0156	<0.00400	<0.00200	0.499 < 0.000150	0.00411	<0.00200	<0.00200	0.45	0.64	1.09	SI-U-1	18	7.54	-69	3350	
WW-U-1	1.18	296	2030	0.386	7.21	1300	5820	< 0.00200	0.0052	0.115	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	1 <0.000150	0.00888	0.00637	<0.00200	0.64	0.92	1.56	WW-U-1	22.73	7.15	34	l 7560	\square
WW-U-2	1.49	412	2300	0.534	7.33	1180	5400	< 0.00200	0.00538	0.0746	<0.00200	< 0.000500	0.0114	< 0.00400	<0.00200	1.08 < 0.000150	0.0126	0.0107	<0.00200	0.64	1.1	. 1.74	WW-U-2	18.42	7.25	-66	6 8820	\square
WWC-1	3.59	526	3950	<0.100	7.12	1990	8820	<0.00200	0.00401	0.077	<0.00200	< 0.000500	<0.00200	0.00532	<0.00200	2.18 < 0.000150	0.00653	0.00824	<0.00200	0.47	2	2.47	WWC-1	18.38	6.9	62	2 14.7	
WWC-2	< 0.500	59.1	369	0.833	7.79	145	956	< 0.00200	0.0151	0.0408	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.225 <0.000150	0.00402	<0.00200	<0.00200	0.22	0.39	0.61	WWC-2	18.22	7.74	-101	1.74	
WWC-3	< 0.500	26.4	197	1.02	8.12	85.6	664	< 0.00200	0.0213	0.0328	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.23 < 0.000150	0.00574	<0.00200	<0.00200	0.13	3.3	3.43	WWC-3	16.62	7.99	-168	, 1.2	
WWC-4	0.627	138	902	0.576	7.57	406	2010	< 0.00200	0.00498	0.0768	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.606 < 0.000150	0.0082	<0.00200	<0.00200	0.27	1.7	1.97	WWC-4	16.85	7.43	-8	3.63	
WWC-5	1.65	406	1730	0.3	7.24	1140	5060	< 0.00200	0.00608	0.067	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	1.4 <0.000150	0.0119	0.00363	<0.00200	0.42	0.85	1.27	WWC-5	17.35	7.01	15	5 7.44	\square
Date: 6/13/2016																												

Date: 6/13/2016

					Field Resu	ılts		
and ed	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
1.9	BA-U-1	18.51	7.48	-114	4730	4.9	1.73	3.03
L.72	BA-U-2	20.17	11.9	-206	1980	5.1	4.04	1.26
1.81	BAC-1	20.91	7.43	-5	10.3	33.2	3.43	6.41
L.77	BAC-2	19.81	7.01	33	11.6	2	0.69	7.18
L.85	BAC-3	18.81	7.19	16	16.6	2.6	1.26	10.3
).84	BAC-4	18.21	7.71	83	2490	2.6	3.05	1.59
L.81	BAC-5	18.58	7.75	51	2260	0	1320	1.45
1.03	BAC-6	20.42	7.7	50	2740	0.4	21.84	1.75
2.57	BAC-7	21.43	7.63	-7	4510	8	15.04	2.89

ılts		
Turbidity (NTUs)	DO	TDS
0.3	8.11	2.14
0	4.74	4.76
25.9	1.6	5.56
1.6	1.86	9.13
1.9	5.2	1.12
0	0.59	0.765
1.2	0.85	2.32
1	0.78	4.69

										Round 4	Detection M	onitoring - A	August 22-Sep	tember 1, 2	016							
													Results									
Landfill Wells																						Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	< 0.500	< 0.500 54.8 424 1.03 7.63 124 1030 <0.00200															0.8					
CL-U-2	< 0.500	57.7	406	1.17	7.69	113	948	<0.00200	0.0265	0.0961	<0.00200	< 0.000500	0.00227	< 0.00400	<0.00200	0.351 < 0.000150	0.00508	< 0.00200	<0.00200	0.31	1.1	1.41
CLW-1	< 0.500	35	315	1.18	7.89	65.4	832	<0.00200	0.0279	0.0594	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.316 < 0.000150	0.00454	<0.00200	<0.00200	0.52	0.86	1.38
CLW-2	< 0.500	46.8	424	1.29	7.75	89.2	992	<0.00200	0.0284	0.0823	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.391 <0.000150	0.00462	<0.00200	<0.00200	0.31	0.62	0.93
CLW-3	< 0.500	38.7	349	1.33	7.75	109	896	<0.00200	0.0412	0.0995	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.368 < 0.000150	0.00472	<0.00200	<0.00200	0.3	0.15	0.45
CLW-4	< 0.500	32.1	318	1.53	7.81	84.5	808	<0.00200	0.0316	0.104	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.336 <0.000150	0.00577	<0.00200	<0.00200	0.39	0.62	1.01
CLW-5	< 0.500	34.3	350	1.83	7.75	92.1	860	<0.00200	0.0189	0.0803	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.346 < 0.000150	0.00798	<0.00200	<0.00200	0.24	0.27	0.51
CLW-6	< 0.500	31.5	331	1.73	7.84	77.1	812	<0.00200	0.0164	0.0966	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.342 <0.000150	0.011	<0.00200	<0.00200	0.2	1	1.2
CLW-7	< 0.500	42.1	336	1.1	7.71	70	760	<0.00200	0.024	0.0529	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.302 <0.000150	0.00396	<0.00200	<0.00200	0.17	0.33	0.5
CLW-8	< 0.500	40.1	327	1.08	7.73	75	720	<0.00200	0.0224	0.0761	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.308 < 0.000150	0.00459	<0.00200	<0.00200	0.35	1	1.35
																•						

													Results											
Bottom Ash																							Radium 226 and	
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	
BA-U-1	< 0.500	180	1170	0.888	7.62	327	2390	<0.00200	0.0191	0.0802	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.684	<0.000150	0.00386	0.00384	<0.00200	0.45	0.84	1.29	B
BA-U-2	< 0.500	10.4	317	0.975	11.8	39.9	748	<0.00200	0.00225	0.114	<0.00200	<0.000500	0.00216	<0.00400	<0.00200	0.337	<0.000150	0.0147	<0.00200	<0.00200	0.26	1.1	1.36	B
BAC-1	4.95	221	2520	0.401	7.52	2380	7210	<0.00200	0.0146	0.0643	<0.00200	<0.000500	0.0028	<0.00400	<0.00200	1.42	< 0.000150	0.0603	0.0148	<0.00200	0.63	0.64	1.27	B
BAC-2	10.5	203	1640	1.03	7.22	3180	7620	<0.00200	0.0431	0.0237	<0.00200	<0.000500	0.0081	<0.00400	<0.00200	1.17	<0.000150	0.166	0.0136	<0.00200	0.33	0.23	0.56	B
BAC-3	6.77	399	3350	1.28	7.36	4630	11700	<0.00200	0.0213	0.0436	<0.00200	<0.000500	0.00386	<0.00400	<0.00200	2.37	<0.000150	0.0294	0.019	<0.00200	0.38	0.76	1.14	B
BAC-4	< 0.500	56.1	498	1.35	7.62	210	1460	<0.00200	0.0358	0.0757	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.508	<0.000150	0.0103	<0.00200	<0.00200	0.19	0.83	1.02	B
BAC-5	< 0.500	49.4	561	1.25	7.68	127	1200	<0.00200	0.0331	0.0879	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.538	<0.000150	0.0077	<0.00200	<0.00200	0.1	0.46	0.56	B
BAC-6	1.38	80.2	546	0.901	7.61	502	1540	<0.00200	0.0115	0.0781	<0.00200	0.000677	0.00283	<0.00400	<0.00200	0.54	<0.000150	0.034	<0.00200	<0.00200	0.31	0.24	0.55	B
BAC-7	3.96	126	612	1.28	7.68	1370	2770	<0.00200	0.0232	0.0274	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.669	<0.000150	0.0942	0.00257	<0.00200	0.37	-0.17	0.2	B

Results

													Results															Field Resu	ults		
Waste Water																							Radium 226 and	Waste Water						(/	
	Boron C	Calcium	Chloride I	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	131	922	0.564	7.57	281	1880	<0.00200	0.00926	0.0858	<0.00200	< 0.000500	0.00217	< 0.00400	0 <0.00200	0.46	7 <0.000150	0.00295	<0.00200	<0.00200	0.45	0.96	1.41	SI-U-1	21.31	7.57	-21	3.25	1.6	14.7	2.08
WW-U-1	1.25	304	2200	0.327	7.21	1280	5270	<0.00200	0.00439	0.0916	<0.00200	< 0.000500	0.00337	< 0.00400	0 <0.00200	1.0	1 <0.000150	0.00835	0.00689	<0.00200	0.54	2	2.54	WW-U-1	20.96	7.12	. 34	8.06	10.9	3.52	5.08
WW-U-2	0.641	308	2140	0.614	7.42	854	4550	<0.00200	0.00258	0.117	<0.00200	< 0.000500	0.00424	<0.00400	0 <0.00200	0.99	4 <0.000150	0.0342	0.00617	<0.00200	0.82	1.6	2.42	WW-U-2	19.51	7.41	-63	7.34	4.7	8.24	4.62
WWC-1	10.2	457	4680	0.213	7.11	3130	12100	<0.00200	0.02	0.0335	<0.00200	< 0.000500	<0.00200	<0.00400	0 <0.00200	2.4	1 0.00019	0.00966	0.0145	<0.00200	0.33	0.86	1.19	WWC-1	20.69	6.94	-34	18400	0	0.54	11.4
WWC-2	< 0.500	57.9	389	0.508	7.86	151	960	<0.00200	0.0152	0.0406	<0.00200	< 0.000500	<0.00200	<0.00400	0 <0.00200	0.24	3 <0.000150	0.0034	<0.00200	<0.00200	0.69	1.2	1.89	WWC-2	17.91	7.64	-153	1720	2.6	3.57	1.1
WWC-3	< 0.500	27.3	220	1.03	8.02	78	628	<0.00200	0.0217	0.0342	<0.00200	< 0.000500	<0.00200	< 0.00400	0 <0.00200	0.24	1 <0.000150	0.00559	<0.00200	<0.00200	0.2	-0.34	-0.14	WWC-3	17.39	7.97	-176	1200	0	0.54	0.766
WWC-4	1.17	225	1330	0.422	7.37	868	3230	<0.00200	0.0131	0.065	<0.00200	< 0.000500	<0.00200	< 0.00400	0 <0.00200	0.87	9 <0.000150	0.00237	0.00238	<0.00200	0.27	0.48	0.75	WWC-4	17.14	7.22	-68	5320	0	2.25	3.35
WWC-5	2.87	326	1920	0.366	7.18	1700	5440	<0.00200	0.00717	0.0439	<0.00200	< 0.000500	<0.00200	< 0.00400	0 <0.00200	1.3	3 <0.000150	0.00742	0.00312	<0.00200	0.41	0.51	0.92	WWC-5	17.85	7.01	89	7790	0.9	0.59	4.91
Date: 8/26/2016	5																										<u>-</u>				

Date: 8/26/2016

				F	Round 4			
					Field Resu	ılts		
n 226 and ombined	Landfill Wells	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
0.8	CL-U-1	17.53	7.66	-180	1.84	4.1	1.72	1.18
1.41	CL-U-2	19.27	7.65	-151	1.81	0	9.25	1.16
1.38	CLW-1	18.96	7.85	34	1.55	0	5.66	0.992
0.93	CLW-2	19.41	7.7	-177	1.81	0	10.68	1.16
0.45	CLW-3	19.1	7.74	-225	1.66	0	10.74	1.07
1.01	CLW-4	21.52	7.8	-244	1.54	0	5.07	0.985
0.51	CLW-5	20.36	7.74	-195	1.67	45.2	9.17	1.07
1.2	CLW-6	18.53	7.79	-235	1.61	0	4.22	1.03
0.5	CLW-7	19.86	7.62	-71	1.57	0.01	12.06	1.01
1.35	CLW-8	20.81	7.7	-78	1.53	0	5.02	0.976

					Field Resu	ılts		
q	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
29	BA-U-1	20.11	7.46	-160	4.24	0	3.38	2.72
86	BA-U-2	17.77	11.83	-224	2.11	9.1	8.94	1.35
27	BAC-1	22.39	7.33	10	11.8	8.7	2.54	7.3
56	BAC-2	21.36	7.04	0	10200	0	2.17	6.33
L4	BAC-3	22.52	7.22	34	15.4	0	2.18	9.58
)2	BAC-4	19.45	7.62	-94	2350	0	11.45	1.51
56	BAC-5	19.21	7.62	-96	2340	0	10.71	1.5
55	BAC-6	19.95	7.59	9	2650	0	24.99	1.7
.2	BAC-7	19.38	7.56	-77	4270	0	2.75	2.73

Round 5 Detection Monitoring - October 17-26, 2016 Results

													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	< 0.500	57.4	424	0.959	7.7	115	912	<0.00200	0.037	0.089	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.217	<0.000150	0.00404	<0.00200	<0.00200	0.25	0.18	0.43
CL-U-2	< 0.500	59.5	395	0.99	7.73	113	864	<0.00200	0.0269	0.101	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.206	<0.000150	0.00401	<0.00200	<0.00200	0.36	0.84	1.2
CLW-1	< 0.500	38.9	325	1.15	7.8	67.8	824	<0.00200	0.0295	0.0668	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.189	<0.000150	0.0043	<0.00200	<0.00200	0.27	0.19	0.46
CLW-2	< 0.500	49.2	422	1.13	7.82	85.3	984	<0.00200	0.0258	0.0855	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.223	<0.000150	0.00456	<0.00200	<0.00200	0.31	0.34	0.65
CLW-3	< 0.500	40.8	366	1.19	7.83	100	944	<0.00200	0.0412	0.104	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.214	<0.000150	0.00508	<0.00200	<0.00200	0.35	0.13	0.48
CLW-4	< 0.500	34.6	335	1.39	7.84	85.9	828	<0.00200	0.0385	0.0932	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.203	< 0.000150	0.00414	<0.00200	<0.00200	0.59	-0.37	0.22
CLW-5	< 0.500	35.3	339	1.69	7.89	82.1	928	<0.00200	0.0206	0.0812	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.204	< 0.000150	0.00723	<0.00200	<0.00200	0.31	0.84	1.15
CLW-6	< 0.500	33.9	325	1.46	7.85	77.9	972	<0.00200	0.0287	0.0908	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.203	< 0.000150	0.00638	<0.00200	<0.00200	0.35	0.18	0.53
CLW-7	< 0.500	42.8	343	1.14	7.9	68.6	796	<0.00200	0.0235	0.0551	<0.00200	<0.000500	0.00234	<0.00400	<0.00200	0.182	<0.000150	0.00413	<0.00200	<0.00200	0.27	0.32	0.59
CLW-8	< 0.500	41.7	334	1.11	7.77	68.9	744	<0.00200	0.0258	0.0797	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.189	<0.000150	0.00428	<0.00200	<0.00200	0.37	-0.28	0.09

	< 0.500	41.7	554	1.11	1.11	08.9	744	<0.00200	0.0258	0.0797	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.169	<0.000150	0.00428	<0.00200	<0.00200	0.37	-0.28	0.09
													Results										
Bottom Ash																							
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	< 0.500	16.7	327	1.65	9.08	60.2	832	<0.00200	0.0362	0.0679	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.215	<0.000150	0.0163	<0.00200	<0.00200	0.67	0.13	0.8
BA-U-2	< 0.500	38.1	357	1.02	8.56	51.9	824	<0.00200	0.0234	0.131	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.21	<0.000150	0.00449	<0.00200	<0.00200	0.57	0.42	0.99
BAC-1	3.42	131	1850	0.437	8.8	1610	7720	<0.00200	0.0103	0.049	<0.00200	<0.000500	0.00612	<0.00400	<0.00200	0.402	<0.000150	0.0498	0.00852	<0.00200	0.34	0.27	0.61
BAC-2	9.71	216	1620	1.11	7.34	2980	7040	<0.00200	0.0444	0.0228	<0.00200	<0.000500	0.00644	<0.00400	<0.00200	0.414	<0.000150	0.165	0.0131	<0.00200	0.25	-0.03	0.22
BAC-3	7.04	401	3160	0.76	7.39	4260	11400	<0.00200	0.0226	0.0404	<0.00200	<0.000500	0.00362	<0.00400	<0.00200	0.812	<0.000150	0.0275	0.0195	<0.00200	0.24	0.14	0.38
BAC-4	< 0.500	59.2	534	1.34	7.8	222	1230	<0.00200	0.0352	0.0723	<0.00200	<0.000500	0.00212	<0.00400	<0.00200	0.243	<0.000150	0.00992	<0.00200	<0.00200	0.09	0.4	0.49
BAC-5	< 0.500	40.5	479	1.33	7.85	110	1070	<0.00200	0.0359	0.0909	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.219	<0.000150	0.00715	<0.00200	<0.00200	0.2	-0.01	0.19
BAC-6	4.35	133	606	0.97	7.61	1080	2620	<0.00200	0.022	0.0287	<0.00200	<0.000500	0.00257	<0.00400	<0.00200	0.266	<0.000150	0.0858	0.00369	<0.00200	0.13	0.69	0.82
BAC-7	3.97	135	628	1.42	7.69	1340	2880	<0.00200	0.0241	0.026	<0.00200	<0.000500	0.00217	<0.00400	<0.00200	0.279	<0.000150	0.0944	0.00279	<0.00200	0.26	1.1	1.36

Waste Water																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
SI-U-1	< 0.500	132	863	0.514	7.52	286	1850	<0.00200	0.00895	0.0871	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.254	<0.000150	0.00276	<0.00200	<0.00200	0.32	0.11	0.43
WW-U-1	1.23	348	2190	0.346	7.18	1230	5370	<0.00200	0.0041	0.0771	<0.00200	<0.000500	0.00538	<0.00400	<0.00200	0.479	<0.000150	0.00891	0.00579	<0.00200	0.73	0.17	0.9
WW-U-2	1.47	383	2340	0.416	7.22	1120	5540	<0.00200	0.00573	0.0704	<0.00200	<0.000500	0.00396	<0.00400	<0.00200	0.512	<0.000150	0.0111	0.0116	<0.00200	0.78	0.46	1.24
WWC-1	9.83	513	4540	0.133	7.04	2960	12500	<0.00200	0.0197	0.0317	<0.00200	<0.000500	0.00348	<0.00400	<0.00200	0.819	0.000198	0.00936	0.0153	<0.00200	0.23	0.73	0.96
WWC-2	< 0.500	58.5	369	0.42	7.88	140	960	<0.00200	0.0129	0.0543	<0.00200	<0.000500	0.0243	<0.00400	<0.00200	0.112	<0.000150	0.00809	<0.00200	<0.00200	0.1	0.45	0.55
WWC-3	< 0.500	27.7	224	1.08	8.01	86.1	612	<0.00200	0.0218	0.0332	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.123	< 0.000150	0.00543	<0.00200	<0.00200	0.07	0.1	0.17
WWC-4	1.19	227	1200	0.509	7.32	763	3200	<0.00200	0.0136	0.0629	<0.00200	< 0.000500	< 0.00200	<0.00400	<0.00200	0.351	< 0.000150	0.00222	0.00216	<0.00200	0.08	0.75	0.83
WWC-5	3.02	343	1850	0.401	0.71	1570	5300	<0.00200	0.00778	0.0389	<0.00200	<0.000500	0.00238	<0.00400	<0.00200	0.497	<0.000150	0.00498	0.0041	<0.00200	0.43	1.1	1.53
Date: 10/17/2016	;																						

Results

10/1//20

Round 5								
	Field Results							
andfill Wells.	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS	
·U-1	16.15	7.72	-195	1900	0.7	2.79	1.22	
-U-2	16.89	7.67	-102	1820	0.4	0.82	1.17	
W-1	16.85	7.77	-50	1520	2	1.57	0.974	
W-2	17.05	7.76	-202	1900	0.4	3.82	1.21	
W-3	15.28	7.75	-231	1720	1.8	1.29	1.1	
W-4	14.67	7.78	-235	1620	7	1.4	1.04	
W-5	17.4	7.71	-209	1690	8.1	1.41	1.08	
W-6	15.85	7.83	-249	1620	1.1	1.72	1.04	
W-7	17.42	7.7	-73	564	0	13.65	0.361	
W-8	17.18	7.7	-100	1530	2.2	1.03	0.978	
	U-1 U-2 N-1 N-2 N-3 N-4 N-5 N-6 N-7	Temp U-1 16.15 U-2 16.89 N-1 16.85 N-2 17.05 N-3 15.28 N-4 14.67 N-5 17.4 N-6 15.85 N-7 17.42	Temp pH U-1 16.15 7.72 U-2 16.89 7.67 N-1 16.85 7.77 N-2 17.05 7.76 N-3 15.28 7.75 N-4 14.67 7.78 N-5 17.4 7.71 N-6 15.85 7.83 N-7 17.42 7.7	TemppHREDOXU-116.157.72-195U-216.897.67-102N-116.857.77-50N-217.057.76-202N-315.287.75-231N-414.677.78-235N-517.47.71-209N-615.857.83-249N-717.427.7-73	Temp pH REDOX Conductance U-1 16.15 7.72 -195 1900 U-2 16.89 7.67 -102 1820 N-1 16.85 7.77 -50 1520 N-2 17.05 7.76 -202 1900 N-3 15.28 7.75 -231 1720 N-4 14.67 7.78 -235 1620 N-5 17.4 7.71 -209 1690 N-6 15.85 7.83 -249 1620 N-7 17.42 7.7 -73 564	Andfill Wells Temp pH REDOX Conductance Turbidity (NTUs) U-1 16.15 7.72 -195 1900 0.7 U-2 16.89 7.67 -102 1820 0.4 N-1 16.85 7.77 -50 1520 0.4 N-2 17.05 7.76 -202 1900 0.4 N-3 15.28 7.75 -231 1720 1.8 N-4 14.67 7.78 -235 1620 7 N-5 17.4 7.71 -209 1690 8.1 N-6 15.85 7.83 -249 1620 1.1 N-7 17.42 7.7 -73 564 0	andfill Wells Temp pH REDOX Conductance Turbidity (NTUs) DO U-1 16.15 7.72 -195 1900 0.7 2.79 U-2 16.89 7.67 -102 1820 0.4 0.82 N-1 16.85 7.77 -50 1520 0.4 0.82 N-2 17.05 7.76 -202 1900 0.4 3.82 N-3 15.28 7.75 -231 1720 1.8 1.29 N-4 14.67 7.78 -235 1620 7.7 1.4 N-5 17.4 7.71 -209 1690 8.1 1.41 N-6 15.85 7.83 -249 1620 1.1 1.72 N-7 17.42 7.7 -73 564 0 13.65	

	Field Results							
Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS	
BA-U-1	16.41	9.07	6	1660	3.2	1.88	1.06	
BA-U-2	16.67	8.77	-318	1600	1.7	1.76	1.03	
BAC-1	18.66	7.57	-144	8800	7.7	0.55	6.19	
BAC-2	19.51	7.01	-2	10200	0.6	0.46	6.34	
BAC-3	18.63	7.15	2	16700	20	4.99	10.4	
BAC-4	16.35	7.72	-120	0.859	3	4.2	0.55	
BAC-5	16.43	7.85	-64	726	1.4	12.41	0.464	
BAC-6	16.07	7.62	-86	1370	11.4	1.77	0.879	
BAC-7	16.64	7.59	-67	1560	4.6	12.42	0.998	

	Field Results							
Waste Water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS	
SI-U-1	16.62	7.47	-22	3370	1	9	2.16	
WW-U-1	17.72	6.99	7	8330	3	1.89	5.25	
WW-U-2	17.84	7.19	-10	8400	2.6	1.89	5.29	
WWC-1	15.78	6.93	-22	18600	0	0.51	11.6	
WWC-2	15.91	7.75	-210	1680	6	1.08	1.07	
WWC-3	16.26	7.94	-166	1210	0	0.24	0.772	
WWC-4	16.51	7.22	-41	5140	0.2	1.09	3.24	
WWC-5	15.83	7.02	-87	7930	0.2	0.37	4.99	

													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	< 0.500	57.1	403	0.876	7.83	113	908	<0.00200	0.0322	0.0867	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.214	<0.000150	0.00365	<0.00200	<0.00200	0.62	0.22	0.62
CL-U-2	< 0.500	61.2	374	0.903	7.89	110	852	<0.00200	0.0272	0.0976	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.208	<0.000150	0.00386	<0.00200	<0.00200	0.4	0.39	0.4
CLW-1	< 0.500	38.4	295	1.05	7.83	62.4	768	<0.00200	0.0309	0.0631	<0.00200	<0.000500	0.0187	<0.00400	<0.00200	0.185	<0.000150	0.00654	<0.00200	<0.00200	0.41	0.78	1.2
CLW-2	< 0.500	49.7	377	1.07	7.85	92.9	936	<0.00200	0.0277	0.0811	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.219	<0.000150	0.00437	<0.00200	<0.00200	0.31	0.72	1
CLW-3	< 0.500	42.4	333	1.23	7.87	94.4	876	<0.00200	0.0423	0.103	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.214	<0.000150	0.00473	<0.00200	<0.00200	0.35	0.7	1.1
CLW-4	< 0.500	35.2	306	1.27	8.02	79.1	808	<0.00200	0.0388	0.0898	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.202	<0.000150	0.00439	<0.00200	<0.00200	0.39	0.12	0.39
CLW-5	< 0.500	36	320	1.71	7.88	79.9	748	<0.00200	0.0216	0.0801	<0.00200	<0.000500	0.00214	<0.00400	<0.00200	0.025	<0.000150	0.00666	<0.00200	<0.00200	0.4	0.38	0.4
CLW-6	< 0.500	33.4	302	1.48	7.91	66	752	<0.00200	0.0164	0.0976	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.193	<0.000150	0.00805	<0.00200	<0.00200	0.25	-0.35	0.25
CLW-7	< 0.500	46.4	312	1.02	7.68	61	824	<0.00200	0.0257	0.0545	<0.00200	< 0.000500	0.00772	<0.00400	<0.00200	0.182	<0.000150	0.00425	<0.00200	<0.00200	0.14	0.18	0.14
CLW-8	< 0.500	42.8	301	1.03	7.71	63.8	772	<0.00200	0.0255	0.0707	<0.00200	< 0.000500	0.012	< 0.00400	< 0.00200	0.189	<0.000150	0.00526	<0.00200	<0.00200	0.25	0.29	0.25

													Results										
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	< 0.500	24.5	259	1.57	8.59	48.8	648	<0.00200	0.0359	0.0856	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.193	<0.000150	0.0124	<0.00200	<0.00200	0.28	0.15	0.28
BA-U-2	< 0.500	3.76	328	0.886	12.1	39.2	728	<0.00200	0.00254	0.122	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.221	<0.000150	0.00986	<0.00200	<0.00200	0.3	0.47	0.3
BAC-1	4.01	188	2170	<0.100	7.47	1650	6320	<0.00200	0.0202	0.279	<0.00200	<0.000500	0.0412	<0.00400	<0.00200	0.429	<0.000150	0.0391	0.0152	<0.00200	1.1	1.5	2.6
BAC-2	10.5	193	1480	0.871	7.2	2780	7320	<0.00200	0.0469	0.022	<0.00200	<0.000500	0.0145	<0.00400	<0.00200	0.44	<0.000150	0.194	0.0144	<0.00200	0.34	0.22	0.56
BAC-3	7.57	408	3140	<0.100	7.36	4290	13000	<0.00200	0.0239	0.0376	<0.00200	<0.000500	0.00447	<0.00400	<0.00200	0.974	<0.000150	0.026	0.0211	<0.00200	0.2	0.5	0.7
BAC-4	< 0.500	59	461	1.13	7.68	206	1260	<0.00200	0.0362	0.0705	<0.00200	<0.000500	0.011	<0.00400	<0.00200	0.237	<0.000150	0.012	<0.00200	<0.00200	0.13	0.18	0.13
BAC-5	< 0.500	59.5	576	0.994	7.73	190	1430	<0.00200	0.032	0.0893	<0.00200	<0.000500	0.00204	<0.00400	<0.00200	0.277	<0.000150	0.00666	<0.00200	<0.00200	0.21	0.24	0.45
BAC-6	4.44	128	594	0.763	7.6	1040	2500	<0.00200	0.0237	0.0269	<0.00200	<0.000500	0.00205	<0.00400	<0.00200	0.28	<0.000150	0.0873	0.0045	<0.00200	0.12	-0.21	-0.09
BAC-7	3.31	151	591	0.936	7.43	1140	3120	<0.00200	0.0237	0.0253	< 0.00200	< 0.000500	< 0.00200	< 0.00400	<0.00200	0.327	< 0.000150	0.0702	0.007	<0.00200	0.21	0.7	0.91

													Results														Field Result	ts		
Waste Water																						Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	131	785	0.458	7.54	247	1760	<0.00200	0.00941	0.08	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.25 <0.000150	0.00227	<0.00200	<0.00200	0.33	0.24	0.33	SI-U-1	17.03	7.37	-45	3340	1.1	8.42	2.14
WW-U-1	1.15	336	1880	0.2	7.26	1180	4890	<0.00200	0.00593	0.0568	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.477 <0.000150	0.00558	0.00583	<0.00200	0.53	0.89	1.42	WW-U-1	18.15	6.96	-57	7980	11.5	1.02	5.02
WW-U-2	0.6	317	1860	0.438	7.38	734	4300	<0.00200	0.00355	0.095	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.479 <0.000150	0.021	0.00749	<0.00200	0.51	1.6	2.11	WW-U-2	17.03	7.29	-15	7470	2.3	1.36	4.71
WWC-1	11.2	479	4510	<0.100	6.98	2940	12200	<0.00200	0.0213	0.0288	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.932 0.000328	0.00995	0.0149	<0.00200	0.26	1.1	1.36	WWC-1	15.08	6.74	-32	19700	0.3	1.8	12.2
WWC-2	< 0.500	52	318	0.405	7.79	125	856	< 0.00200	0.0149	0.0361	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.122 <0.000150	0.00357	<0.00200	<0.00200	0.17	0.61	0.78	WWC-2	15.4	7.75	-134	1650	1	0.44	1.06
WWC-3	< 0.500	25.7	195	0.852	8.13	76	680	<0.00200	0.0227	0.0302	<0.00200	<0.000500	0.00309	<0.00400	<0.00200	0.137 <0.000150	0.00537	<0.00200	<0.00200	0.24	-0.21	0.03	WWC-3	15.31	8.09	207	1230	1.2	0.22	0.784
WWC-4	1.3	233	1250	0.319	7.38	819	3230	<0.00200	0.0135	0.061	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.382 <0.000150	<0.00200	0.00239	<0.00200	0.18	-0.2	-0.02	WWC-4	15.85	7.18	-70	5390	0.5	3.15	3.39
WWC-5	1.72	318	1520	0.292	7.13	1190	4560	<0.00200	0.01	0.0501	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.555 <0.000150	0.00523	0.00399	<0.00200	0.23	0.95	1.18	WWC-5	16.2	6.84	-61	7180	0	0.62	4.52
Date: 3/23/2017																														

e: 3/23/201

	_			F	Round 6			
					Field Resu	ılts		
	Landfill Wells	Temp	nH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
		•	рН					
2	CL-U-1	17.27	7.52	-194	957	4.2	2.53	0.613
4	CL-U-2	15.81	7.48	-139	929	0	10.45	0.598
2	CLW-1	14.45	7.6	-173	1540	0	5.98	0.984
1	CLW-2	16.63	7.58	-221	950	0	9.29	0.609
1	CLW-3	16.58	7.66	-235	840	0	10.64	0.539
9	CLW-4	16.67	7.68	-253	785	0	2.14	0.502
4	CLW-5	16.63	7.6	-222	834	0	2.29	0.534
5	CLW-6	15.51	7.65	-245	790	0	8.85	0.505
4	CLW-7	15.48	7.52	-150	1600	0	1.94	1.02
5	CLW-8	15.08	7.57	-159	1550	0	1.55	0.991

					Field Resu	ılts		
I	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
8	BA-U-1	16.08	8.22	55	783	1.8	6.02	0.501
3	BA-U-2	17.77	11.71	-250	2120	1.9	7.87	1.36
6	BAC-1	16.44	7.24	-131	9640	11.2	2.14	6.07
6	BAC-2	15.89	6.86	-53	10400	0.1	0.6	6.44
7	BAC-3	15.61	7.1	-44	18000	3.4	0.5	11.2
3	BAC-4	14.42	7.58	-165	2400	0	2.76	1.53
5	BAC-5	15.18	7.53	-155	2550	0.1	0.57	1.63
9	BAC-6	16.07	7.42	-115	4030	0	0.32	2.58
1	BAC-7	16.54	7.34	-124	4780	1.5	0.38	3.06

_										R	ound 7 Detec	tion Monitc:	oring - June 5-2	21, 2017									
													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	< 0.500	53	480	0.996	7.74	132	1010	<0.00200	0.0344	0.0826	<0.00200	0.00065	< 0.00200	<0.00400	<0.00200	0.202	<0.000150	0.00402	<0.00200	<0.00200	0.36	0.95	1.31
CL-U-2	< 0.500	55.1	444	1	7.8	134	952	<0.00200	0.0247	0.0938	<0.00200	< 0.000500	< 0.00200	<0.00400	<0.00200	0.19	<0.000150	0.00408	<0.00200	<0.00200	2.7	1	3.7
CLW-1	< 0.500	36.4	322	1.06	7.85	68.2	772	<0.00200	0.0289	0.0615	<0.00200	< 0.000500	< 0.00200	<0.00400	<0.00200	0.173	<0.000150	0.00389	<0.00200	<0.00200	0.2	0.14	0.34
CLW-2	< 0.500	44.7	436	1.19	7.83	102	964	<0.00200	0.0246	0.0754	<0.00200	< 0.000500	0.00411	<0.00400	<0.00200	0.211	<0.000150	0.00461	<0.00200	<0.00200	0.24	1	1.24
CLW-3	< 0.500	37.3	380	1.23	7.85	106	856	<0.00200	0.0378	0.0951	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.197	<0.000150	0.00498	<0.00200	<0.00200	0.27	0.29	0.56
CLW-4	< 0.500	30.6	345	1.44	7.89	86.3	816	<0.00200	0.0352	0.0885	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.189	<0.000150	0.00481	<0.00200	<0.00200	0.29	0.3	0.59
CLW-5	< 0.500	32.4	358	1.82	7.86	91.6	860	<0.00200	0.0203	0.0732	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.188	<0.000150	0.00572	<0.00200	<0.00200	1.4	1.2	2.6
CLW-6	< 0.500	31	336	1.61	7.9	77.5	768	<0.00200	0.02	0.0893	<0.00200	< 0.000500	< 0.00200	<0.00400	<0.00200	<0.100	0.183	<0.00200	0.0068	<0.00200	0.01	0.5	0.51
CLW-7	< 0.500	41.5	352	1.01	7.88	70.4	832	<0.00200	0.0241	0.0514	<0.00200	< 0.000500	< 0.00200	<0.00400	<0.00200	0.169	<0.000150	0.0033	<0.00200	<0.00200	0.14	0.75	0.89
CLW-8	< 0.500	38.4	339	1.02	7.81	73.1	812	<0.00200	0.0239	0.0681	<0.00200	<0.000500	< 0.00200	<0.00400	<0.00200	0.176	<0.000150	0.00391	<0.00200	<0.00200	0.18	0.81	0.99
													Boculto										

													Results										
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	< 0.500	26.3	317	1.75	8.32	52.9	776	<0.00200	0.0323	0.0901	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.191	<0.000150	0.0109	<0.00200	<0.00200	0.15	0.73	0.88
BA-U-2	< 0.500	3.58	366	0.821	11.8	39.6	748	<0.00200	<0.00200	0.0899	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.215	< 0.000150	0.0086	<0.00200	<0.00200	0.09	0.98	1.07
BAC-1	1.91	88.7	914	0.266	8.92	702	2920	<0.00200	0.0145	0.0563	<0.00200	< 0.000500	0.00666	<0.00400	<0.00200	0.305	< 0.000150	0.0317	0.00643	<0.00200	0.2	0.99	1.19
BAC-2	10.6	216	1730	<0.100	7.21	3260	7720	<0.00200	0.042	0.0211	<0.00200	<0.000500	0.00799	<0.00400	<0.00200	0.586	< 0.000150	0.177	0.0138	<0.00200	0.14	0.64	0.78
BAC-3	7.76	401	3510	<0.100	7.29	4900	13200	<0.00200	0.0251	0.0316	<0.00200	<0.000500	0.00858	<0.00400	<0.00200	1.17	< 0.000150	0.0292	0.0212	<0.00200	0.3	0.76	1.06
BAC-4	< 0.500	56.1	612	1.13	7.84	212	1220	<0.00200	0.0329	0.0666	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.228	< 0.000150	0.0113	<0.00200	<0.00200	0.37	0.47	0.84
BAC-5	< 0.500	58.3	654	1.1	7.76	217	1180	<0.00200	0.0297	0.0881	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.259	< 0.000150	0.00728	<0.00200	<0.00200	0.31	0.28	0.59
BAC-6	4.25	135	697	0.779	7.63	1110	2810	<0.00200	0.0229	0.0256	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.257	< 0.000150	0.0921	0.00414	<0.00200	0.24	0.76	1
BAC-7	3.4	146	632	0.864	7.78	1290	3170	<0.00200	0.0154	0.0288	<0.00200	< 0.000500	0.00398	<0.00400	<0.00200	0.36	<0.000150	0.0888	0.00457	<0.00200	2.5	0.88	3.38

														Results															Field Re
1	Waste Water																							Radium 226 and	Waste Water				
		Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance
:	SI-U-1	< 0.500	116	763	0.522	7.56	427	1800	<0.00200	0.0101	0.0599	<0.00200	0.00128	0.00274	<0.00400	<0.00200	0.235	<0.000150	0.00233	<0.00200	<0.00200	0.2	1.3	1.5	SI-U-1	17.96	7.27	-138	317
'	WW-U-1	1.18	312	2340	0.181	7.41	1450	4540	<0.00200	0.00568	0.0521	<0.00200	< 0.000500	0.00212	<0.00400	<0.00200	0.441	<0.000150	0.00556	0.00625	<0.00200	1.2	1.5	2.7	WW-U-1	18.63	6.87	-32	805
'	WW-U-2	0.741	338	2590	0.287	7.36	1040	12500	<0.00200	0.00325	0.0803	<0.00200	<0.000500	0.067	<0.00400	<0.00200	0.512	<0.000150	0.0226	0.00846	<0.00200	0.52	1.6	2.12	WW-U-2	18.21	7.22	-161	761
'	WWC-1	9.88	413	4410	<0.100	7.14	2770	11000	<0.00200	0.0173	0.0326	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	1.11	0.000175	0.0147	0.0147	<0.00200	0.39	1.5	1.89	WWC-1	16.96	6.95	-34	1520
'	WWC-2	< 0.500	49.5	326	0.447	7.85	134	832	<0.00200	0.0141	0.0339	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.138	<0.000150	0.00405	<0.00200	<0.00200	0.24	0.24	0.48	WWC-2	16.11	7.72	-169	150
'	WWC-3	< 0.500	25.9	220	0.974	8.12	84.3	696	<0.00200	0.0214	0.0281	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.146	<0.000150	0.00504	<0.00200	<0.00200	0.1	0.45	0.55	WWC-3	16.94	7.99	-194	121
'	WWC-4	1.33	229	1330	0.466	7.22	912	3060	<0.00200	0.013	0.0545	<0.00200	< 0.000500	<0.00200	<0.00400	<0.00200	0.421	<0.000150	< 0.00200	0.00241	<0.00200	0.22	0.74	0.96	WWC-4	16.15	7.16	-73	5.4
,	WWC-5	2.25	287	1790	<0.100	7.49	1420	4810	<0.00200	0.00753	0.0379	<0.00200	< 0.000500	0.00202	<0.00400	<0.00200	0.567	<0.000150	0.00531	0.00336	<0.00200	0.2	1.5	1.7	WWC-5	16.54	7.01	-42	722

F	Round 7			
	Field Resu	ılts		
х	Conductance	Turbidity (NTUs)	DO	TDS
206	1920	0	1.51	1.23
177	1860	0	1.62	1.19
160	768	0	0.9	0.491
210	945	0	1.52	0.605
246	879	0	213	0.562
252	1580	0	4.35	1.01
232	1680	0	2.65	1.08
258	1590	0	5.1	1.02
131	805	0	2.21	0.516
130	776	0	1.58	0.497

					Field Resu	ılts		
I	Landfill Wells	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
1	CL-U-1	16.35	7.59	-206	1920	0	1.51	1.23
.7	CL-U-2	15.98	7.5	-177	1860	0	1.62	1.19
4	CLW-1	18.47	7.79	-160	768	0	0.9	0.491
4	CLW-2	16.77	7.73	-210	945	0	1.52	0.605
6	CLW-3	17.35	7.78	-246	879	0	213	0.562
9	CLW-4	17.86	7.75	-252	1580	0	4.35	1.01
.6	CLW-5	18.97	7.66	-232	1680	0	2.65	1.08
1	CLW-6	16.95	7.75	-258	1590	0	5.1	1.02
9	CLW-7	18.07	7.7	-131	805	0	2.21	0.516
9	CLW-8	17.59	7.74	-130	776	0	1.58	0.497

					Field Resu	ılts		
	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
8	BA-U-1	18.46	8.13	-138	1500	0	2.32	0.963
7	BA-U-2	19.9	11.43	-301	1870	0	0.58	1.2
Э	BAC-1	22.57	9.92	-118	5180	15.6	2.32	3.27
8	BAC-2	19.02	7.09	-80	10900	2.2	0.84	6.76
6	BAC-3	18.87	7.1	-69	17800	3.2	1.02	11
4	BAC-4	17.01	7.62	-158	2380	0	1.61	1.52
9	BAC-5	17.31	7.69	-131	2560	0	2.62	1.64
1	BAC-6	19.46	7.59	-128	3900	35.2	0.85	2.5
8	BAC-7	17.97	7.5	-147	4610	2.9	1.16	2.95

eld Resu	ılts		
tance	Turbidity (NTUs)	DO	TDS
3170	0	0.57	2.03
8050	0	1	5.07
7610	0	0.91	4.79
15200	0.1	0.67	9.48
1500	1.3	0.94	0.96
1210	0.7	0.63	0.773
5.48	0.5	0.6	3.46
7225	0.9	0.76	4.57

										Round 8	Detection M	onitoring - So	eptember 25	-October 4,	2017												Round 8			
													Results														Field Result	S		
Landfill Wells																						Radium 226 and	Landfill Wells							
	Boron C	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	52.1	422	1.07	7.73	116	1130	<0.00200	0.0291	0.088	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.228 < 0.00015	0 0.00398	<0.00200	<0.00200	0.25	1.6	1.85	CL-U-1	16.07	7.45	-199	1930	0.4	0.56	1.24
CL-U-2	< 0.500	53.8	390	1.1	7.67	120	1060	<0.00200	0.0262	0.0941	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.212 < 0.00015	0 0.00415	<0.00200	<0.00200	0.17	1.4	1.57	CL-U-2	15.67	7.43	-176	1880	0.8	0.58	1.2
CLW-1	< 0.500	35.7	310	1.15	7.85	71.7	808	<0.00200	0.0308	0.0614	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.192 < 0.00015	0 0.00407	<0.00200	<0.00200	0.21	1.7	1.91	CLW-1	20.49	7.68	-172	1.48	0	0.41	0.949
CLW-2	< 0.500	43.5	407	1.23	7.76	97.3	1040	<0.00200	0.0257	0.0793	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.229 < 0.00015	0 0.00467	<0.00200	<0.00200	0.12	3	3.12	CLW-2	16.63	7.63	-199	1880	0.7	0.64	1.2
CLW-3	< 0.500	36.2	347	1.34	7.8	100	884	<0.00200	0.0408	0.102	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.223 < 0.00015	0 0.00474	<0.00200	<0.00200	0.16	1.1	1.26	CLW-3	16.82	7.59	-251	1750	1.5	2.9	1.12
CLW-4	< 0.500	30.5	313	1.6	7.81	85.1	856	<0.00200	0.0333	0.09	<0.00200	<0.000500	0.0516	< 0.00400	<0.00200	0.199 < 0.00015	0 0.0115	<0.00200	<0.00200	0.24	1.8	2.04	CLW-4	17.63	7.56	-269	1620	1.6	1.56	1.03
CLW-5	< 0.500	33.2	344	1.82	7.8	88.5	824	<0.00200	0.023	0.0727	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.211 < 0.00015	0 0.0052	<0.00200	<0.00200	0.2	2.2	2.4	CLW-5	17.21	7.71	-244	1690	3.7	1.12	1.09
CLW-6	< 0.500	30.5	317	1.73	7.82	74.5	828	<0.00200	0.0143	0.0961	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.199 < 0.00015	0 0.00721	<0.00200	<0.00200	0.29	1.7	1.99	CLW-6	15.97	7.75	-259	1.6	2.3	3.3	1.02
CLW-7	< 0.500	45.5	319	1.11	7.7	64.5	868	<0.00200	0.0244	0.0539	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.189 < 0.00015	0 0.00389	<0.00200	<0.00200	0.45	0.95	1.4	CLW-7	16.72	7.59	-147	1640	0	0.86	1.05
CLW-8	< 0.500	37.9	319	1.13	7.77	70.6	788	<0.00200	0.0252	0.0689	<0.00200	<0.000500	<0.00200	< 0.00400	<0.00200	0.192 < 0.00015	0 0.00431	<0.00200	<0.00200	0.25	1.6	1.85	CLW-8	18.26	7.65	-145	1.53	1.1	1.89	0.975

													Results			
Bottom Ash	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithiu
BA-U-1	< 0.500	169	1040	1.02	7.53	343	2310	<0.00200	0.0215	0.0745	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.
BA-U-2	< 0.500	46.3	479	0.993	8.04	53.7	1140	<0.00200	0.0249	0.156	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.
BAC-1	4.86	229	2620	0.854	7.4	2150	8400	<0.00200	0.0148	0.702	<0.00200	<0.000500	0.114	0.00461	<0.00200	(
BAC-2	10.1	221	1690	1.33	7.62	2970	7940	<0.00200	0.0469	0.0202	<0.00200	<0.000500	0.00547	<0.00400	<0.00200	0.
BAC-3	8.76	353	3370	2.51	7.43	5340	12700	<0.00200	0.054	0.0306	<0.00200	<0.000500	0.0114	<0.00400	<0.00200	0.
BAC-4	< 0.500	62.4	482	1.26	7.76	231	1280	<0.00200	0.0359	0.0703	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.
BAC-5	< 0.500	67.5	593	1.17	7.74	269	1450	<0.00200	0.0325	0.0877	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.
BAC-6	0.978	77.2	516	1.01	7.97	301	1510	<0.00200	0.0156	0.0833	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.
BAC-7	3.41	144	633	1.15	7.65	1220	2990	<0.00200	0.0191	0.0223	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.

Fluoride pH	Sulfate TDS	•		Results Radium 226 and																			
Fluoride pH	Sulfate TDS	A													Radium 226 and	Waste Water							
	ounate 100	Antimony Arsenio	: Barium Berylliur	n Cadmium (Chromium (Cobalt	Lead Li	ithium M	lercury Mol	lybdenum S	elenium	Thallium	Radium 226 Ra	adium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
0 0.618 7.55	263 181	0.002 0.0096	59 0.0783 <0.002	00 <0.000500	< 0.00200 <	<0.00400 <0	0.00200	0.257 <0.	.000150	0.00251	<0.00200	<0.00200	0.44	0.56	1	SI-U-1	17.02	7.36	-123	3490	0	1.25	2.24
0 0.539 7.23	1280 526	0.00200 0.005	55 0.0545 <0.002	00 <0.000500	0.003309 <	<0.00400 <0	0.00200	0.459 <0.	.000150	0.00792	0.00697	<0.00200	0.34	1.2	1.54	WW-U-1	16.41	6.96	-135	8820	0.7	1.56	5.56
0 0.721 7.31	1220 551	0 <0.00200 0.010	04 0.0659 <0.002	00 <0.000500	0.00415 <	<0.00400 <0	0.00200	0.485 <0.	.000150	0.00647	0.0122	<0.00200	0.24	1.3	1.54	WW-U-2	16.68	7.09	-34	9.23	0.6	3.75	5.82
0 0.507 7.37	2990 1150	0 <0.00200 0.017	77 0.0272 <0.002	00 <0.000500	<0.00200 <	<0.00400 <0	0.00200	0.755 0.	.000262	0.0068	0.014	<0.00200	0.26	1.2	1.46	WWC-1	16.21	6.78	48	18900	0.8	1.92	11.7
7 0.452 7.78	137 93	6 <0.00200 0.014	42 0.0361 <0.002	00 <0.000500	<0.00200 <	<0.00400 <0	0.00200	0.112 <0.	.000150	0.00341	<0.00200	<0.00200	0.04	1.2	1.24	WWC-2	16.38	7.64	-110	1740	1	2.87	1.12
7 1.13 8.14	84 70	4 <0.00200 0.020	0.0242 <0.002	00 <0.000500	<0.00200 <	<0.00400 <0	0.00200	0.127 <0.	.000150	0.00477	<0.00200	<0.00200	0.08	2	2.08	WWC-3	15.49	8.16	-207	1220	1.3	0.45	0.781
0 0.57 7.38	744 328	0 <0.00200 0.013	35 0.0529 <0.002	00 <0.000500	<0.00200 <	<0.00400 <0	0.00200	0.313 <0.	.000150	<0.00200	0.00214	<0.00200	0.38	0.4	0.78	WWC-4	16.11	7.17	-77	4980	1.2	0.46	3.19
0 0.544 7.16	1240 459	0 <0.00200 0.010	04 0.0438 <0.002	00 <0.000500	< 0.00200 <	<0.00400 <0	0.00200	0.496 <0.	.000150	0.00395	0.00407	<0.00200	0.41	0.65	1.06	WWC-5	15.42	6.94	-31	7180	1.3	0.53	4.52
0 0 7 7 0	0.5397.230.7217.310.5077.370.4527.781.138.140.577.38	0.5397.23128052600.7217.31122055100.5077.372990115000.4527.781379301.138.14847000.577.387443280	0.539 7.23 1280 5260 <0.00200	0.539 7.23 1280 5260 <0.00200	0.5397.2312805260<0.00200	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 <0.00500 0.003309 < 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00200 < 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00500 <0.00200 1.13 8.14 84 704 <0.00200 0.0135 0.0529 <0.00200 <0.00500 <0.00200 < 0.57 7.38 744 3280 <0.00200 0.0135 0.0529 <0.00200 <0.00500 <0.00200	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 <0.00500 0.003309 <0.00400 < 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 <0.00400 < 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00200 <0.00400 < 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00500 <0.00200 <0.00400 < 1.13 8.14 84 704 <0.00200 0.0277 0.0242 <0.00200 <0.00500 <0.00200 <0.00400 < 0.57 7.38 744 3280 <0.00200 0.0135 0.0529 <0.00200 <0.00500 <0.00200 <0.00400 <	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 <0.00500 0.003309 <0.00400 <0.00200 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 <0.00400 <0.00200 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00200 <0.00400 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 0.00500 0.003309 <0.00400 <0.00200 0.459 <0 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 <0.00400 <0.00200 0.485 <0 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00400 <0.00200 0.485 <0 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00500 <0.00200 <0.00400 <0.00200 0.112 <0 1.13 8.14 84 704 <0.00200 0.0127 <0.00200 <0.00500 <0.00200 <0.00400 <0.00200 0.112 <0 0.57 7.38 744 3280 <0.00200 0.0135 0.0529 <0.00200 <0.00500 <0.00200 <0.00400 <0.00200 0.313 <0	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 <0.00500 0.003309 <0.00400 <0.00200 0.459 <0.00150 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 <0.00400 <0.00200 0.485 <0.00150 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00400 <0.00200 0.755 0.00262 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00200 <0.00400 <0.00200 0.112 <0.00150 1.13 8.14 84 704 <0.00200 0.0272 <0.00200 <0.00500 <0.00200 <0.00200 0.112 <0.00150 0.57 7.38 744 3280 <0.00200 0.0135 0.0529 <0.00200 <0.00200 <0.00400 <0.00200 0.313 <0.00150	0.539 7.23 1280 5260 <0.00200 0.0055 <0.0545 <0.00200 0.003309 <0.00400 <0.00200 0.459 <0.00150 0.00792 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 0.00415 <0.00400 <0.00200 0.459 <0.00150 0.00647 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00400 <0.00200 0.755 0.00262 0.00647 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00200 <0.00200 <0.00300 <0.00200 <0.00200 0.112 <0.00150 0.00341 1.13 8.14 84 704 <0.00200 0.0135 0.0529 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00400 <0.00200 0.127 <0.00150 <0.00200 <0.00400 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.539 7.23 1280 5260 <0.00200 0.0055 0.0545 <0.00200 0.003309 <0.00400 <0.00200 0.459 <0.00150 0.00792 0.00697 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 0.00415 <0.00400 <0.00200 0.485 <0.00150 0.00647 0.0122 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00500 <0.00200 <0.00400 <0.00200 0.755 0.00262 0.00647 0.0122 0.452 7.78 137 936 <0.00200 0.0142 0.0361 <0.00200 <0.00200 <0.00200 0.112 <0.00150 0.00341 <0.00200 1.13 8.14 84 704 <0.00200 0.0135 0.0529 <0.00200 <0.00200 <0.00200 0.127 <0.00150 <0.00200 <0.00200 <0.00200 <0.0150 <0.00200 <0.00200 <0.0131 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.	0.539 7.23 1280 5260 <0.00200 0.0055 <0.00200 <0.00200 0.00400 <0.00200 0.459 <0.00150 0.00792 0.00697 <0.00200 0.721 7.31 1220 5510 <0.00200 0.0104 0.0659 <0.00200 <0.00500 <0.00200 <0.00200 0.459 <0.00150 0.00697 <0.00200 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0150 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.00200 <0.0120 <0.00200 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.0120 <0.00200 <0.0120 <0.00	0.539 7.23 1280 5260 <0.00200 0.0055 <0.00200 <0.00200 0.003309 <0.00400 <0.00200 0.459 <0.00150 0.00792 0.00697 <0.00200 0.34 0.721 7.31 1220 5510 <0.00200 0.0144 0.0659 <0.00200 <0.00500 <0.00405 <0.00400 <0.0200 0.485 <0.00150 0.00647 0.0122 <0.00200 0.24 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00200 <0.0200 0.755 0.00262 0.0068 0.014 <0.00200 0.024 0.452 7.78 137 936 <0.00200 0.0142 <0.00200 <0.00200 <0.0120 <0.00200 0.0131 <0.00200 <0.0040 <0.00200 0.112 <0.00150 0.00477 <0.00200 <0.00200 <0.018 <0.00200 <0.018 <0.00200 <0.018 <0.00200 <0.018 <0.00200 <0.018 <0.00200 <0.01647 <0.00200 <0.00200 <0.018 <0.00200 <0.00200 <0.018 <t< th=""><th>0.539 7.23 1280 5260 <0.0020 0.0055 0.0545 <0.0020 0.00500 0.003309 <0.0020 0.459 <0.00792 0.00792 0.00697 <0.00200 0.34 1.2 0.721 7.31 1220 5510 <0.0020 0.0144 0.0659 <0.00200 <0.00500 0.00415 <0.00200 0.459 <0.00647 0.0122 <0.0200 0.24 1.3 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00200 <0.0200 0.755 0.00262 0.0068 0.014 <0.0200 0.26 1.2 0.452 7.78 137 936 <0.00200 0.0142 <0.00200 <0.00200 <0.0200 0.12 <0.00150 0.00341 <0.00200 <0.0200 <0.012 <0.00200 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <td< th=""><th>0.539 7.23 1280 5260 <0.00200</th> 0.0055 0.0545 <0.00200</td<></th> 0.003309 <0.00200</t<>	0.539 7.23 1280 5260 <0.0020 0.0055 0.0545 <0.0020 0.00500 0.003309 <0.0020 0.459 <0.00792 0.00792 0.00697 <0.00200 0.34 1.2 0.721 7.31 1220 5510 <0.0020 0.0144 0.0659 <0.00200 <0.00500 0.00415 <0.00200 0.459 <0.00647 0.0122 <0.0200 0.24 1.3 0.507 7.37 2990 11500 <0.00200 0.0177 0.0272 <0.00200 <0.00200 <0.0200 0.755 0.00262 0.0068 0.014 <0.0200 0.26 1.2 0.452 7.78 137 936 <0.00200 0.0142 <0.00200 <0.00200 <0.0200 0.12 <0.00150 0.00341 <0.00200 <0.0200 <0.012 <0.00200 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <0.00150 <0.00200 <0.012 <td< th=""><th>0.539 7.23 1280 5260 <0.00200</th> 0.0055 0.0545 <0.00200</td<>	0.539 7.23 1280 5260 <0.00200	0.539 7.23 1280 5260 <0.0020 0.0055 0.0545 <0.0020 0.00309 <0.0050 0.0040 <0.00309 <0.0020 0.0159 <0.0020 0.0349 1.2 1.54 0.721 7.31 1220 5510 <0.0020 0.014 0.0659 <0.0020 0.0415 <0.0020 0.485 <0.00150 0.0067 0.0122 <0.0200 0.24 1.3 1.54 WW-U-1 0.507 7.37 2990 1150 <0.0020 0.017 0.027 <0.0020 <0.0020 0.0164 <0.0200 0.012 <0.0200 0.24 1.3 1.54 WW-U-2 0.507 7.37 2990 1150 <0.0020 0.017 <0.020 <0.0020 <0.020 0.0164 <0.0200 <0.020 0.24 1.3 1.54 WW-U-1 0.452 7.78 137 936 <0.0200 0.0142 <0.0020 <0.0020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.	0.539 7.23 1280 5260 <0.0020	0.5397.2312805260<0.0020	0.539 7.23 1280 5260 <0.00200	0.5397.2312805260<0.0020	0.5397.23128052600.00200.00550.00540.00200.00330<	0.53 7.2 128 526 0.0020 0.0055 0.055 0.0020 0.0030 0

							Radium 226 and	Bottom Ash			
ithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	
0.368	<0.000150	0.00296	0.00375	<0.00200	0.07	1.3	1.37	BA-U-1	16.04	7.21	
0.241	<0.000150	0.00294	<0.00200	<0.00200	0.24	1.5	1.74	BA-U-2	16.58	8.07	
0.52	<0.000150	0.0467	0.0174	<0.00200	0.39	1.6	1.99	BAC-1	15.36	6.93	
0.431	<0.000150	0.154	0.0149	<0.00200	0.11	0.14	0.25	BAC-2	16.95	6.92	
0.897	<0.000150	0.0525	0.0287	<0.00200	0.23	1.3	1.53	BAC-3	16.87	7.07	
0.262	<0.000150	0.0139	<0.00200	<0.00200	0.1	2.5	2.6	BAC-4	16.67	7.68	
0.294	<0.000150	0.00838	<0.00200	<0.00200	0.26	2.7	2.96	BAC-5	16.66	7.71	
0.265	<0.000150	0.0213	<0.00200	<0.00200	0.27	3.8	4.07	BAC-6	17.02	7.83	
0.285	<0.000150	0.074	0.00446	<0.00200	0.15	0.84	0.99	BAC-7	15.97	7.45	

	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
21	-166	4300	1.7	0.78	2.75
)7	-272	2030	0	1.63	1.3
93	-28	7170	1	0.54	4.52
92	-20	11500	2	0.9	7.11
)7	-102	18.7	43.3	0.94	11.6
68	-148	2470	1.1	0.62	1.58
'1	-140	2740	0.8	1.12	1.75
33	-47	2610	0.9	2.54	1.67
15	-121	4500	3.3	2.56	2.88

Landfill Wells													0	26-30, 2018	-										-			ound 9			
													Results															Field Resul	ts		
																							Radium 226 and	Landfill Wells							
				luoride	рН	Sulfate							Chromium	Cobalt	Lead		rcury Molybo	T		Thallium	Radium 226	Radium 228	228 combined		Temp	•			Turbidity (NTUs)	DO	TDS
	< 0.500	62.6	402	0.971	7.66	94.9		<0.00200	0.0283	0.0758		<0.000500			< 0.00200	0.209 <0.0		0.00359		<0.00200	0.18	0.81			14.91	7.28	-193	1940	0.6	0.54	1.24
	< 0.500	64.1	352	0.895	7.65	92.7		<0.00200	0.0236	0.0873	<0.00200			< 0.00400		0.194 < 0.0		0.00376		<0.00200	0.34	0.16		CL-U-2	14.84	7.24	-174	1890	0.2	0.67	1.21
	< 0.500	37.8	318	1.02	7.67	59.5		<0.00200	0.0265	0.053		< 0.000500		< 0.00400		0.179 < 0.0		0.0068		<0.00200	0.09	0.53		CLW-1	16.76	7.7	-186	1530	0.2	0.7	0.98
	< 0.500	51.4	421	1.13	7.8	79.4	1020	<0.00200	0.0258	0.0711		<0.000500	< 0.00200			0.212 < 0.0		0.00439		<0.00200	0.24	0.94		CLW-2	15.47	7.6	-204	1880	0.4	0.96	1.22
	< 0.500	42.8	334	1.23	7.86	82.3	956	<0.00200	0.0364	0.089		<0.000500		<0.00400	++	0.2 < 0.0		0.00464		<0.00200	0.37	0.94		CLW-3	16.64	7.49	-236	1720	0	1.61	1.1
-	< 0.500	35.8	301	1.35	7.77	70.4 79.9	864	<0.00200	0.0352	0.0788		<0.000500	0.000762		<0.00200	0.189 < 0.0		0.00477		<0.00200	0.46	0.59		CLW-4	16.15	7.51 7.43	-259 -239	1610 1720	0	2.2	1.03
	< 0.500 < 0.500	37.4 34.2	354 292	1.71 1.62	7.66	60.4		<0.00200 <0.00200	0.021	0.0671 0.0885		<0.000500 <0.000500	0.000712		<pre>0 <0.00200 0 <0.00200</pre>	0.194 <0.0		0.0054		<0.00200 <0.00200	0.15 0.56	0.96 0.48		CLW-5 CLW-6	16.46 15.56	7.43	-239	1720	3	2 6 1	1.1
	< 0.500	54.2 47	316	0.972	7.59	51.3		<0.00200	0.0104	0.0885		<0.000500		<0.00400		0.182 <0.0		0.00729		<0.00200	0.38	0.48		CLW-8	18.88	7.47	-230	1570	0.1	3.61 1.89	1.05
	< 0.500	44.1	303	0.972	7.63	54.2		<0.00200	0.0213	0.0475	<0.00200			<0.00400	++	0.183 <0.0		0.00376		<0.00200	0.28	0.22		CLW-7	18.47	7.52	-123	1520	0	0.45	0.973
	< 0.300	44.1	505	0.981	7.05	54.2	792	<0.00200	0.0251	0.0009	<0.00200	<0.000300	<0.00200	<0.00400	<0.00200	0.188 <0.0	50150	5.00370	<0.00200	<0.00200	0.25	0.8	1.05		10.47	7.58	-125	1520	0	0.45	0.975
													Results															Field Resul	ts		
Bottom Ash													nesuns										Radium 226 and	Bottom Ash							
	Boron (Calcium (Chloride F	luoride	На	Sulfate	TDS A	Antimony	Arsenic	Barium I	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Me	rcury Molybo	denum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	< 0.500	33.5	296	1.64	8.05	50.7	872	<0.00200	0.0276	0.0837	- , -	< 0.000500	0.00126	1	< 0.00200	0.199 < 0.0		0.00914		<0.00200	0.07	0.31	0.38	BA-U-1	15.13	7.78	-33	1600	0.6	3.82	1.02
	< 0.500	46.2	399	0.943	8.2	46.9		< 0.00200	0.0227	0.125		< 0.000500		< 0.00400		0.209 < 0.0		0.00311		< 0.00200	0.12	0.34	0.46	BA-U-2	16.14	8.65	-281	1750	0.2	0.25	1.12
BAC-1	3.88	192	1890	0.507	7.63	1470	6120	0.00138	0.0127	0.0501	<0.00200	< 0.000500	0.00451	< 0.00400	0 <0.00200	0.581 < 0.0		0.028		<0.00200	0.31	0.48	0.79	BAC-1	16.99	7.23	-189	9190	8.1	0.52	5.79
BAC-2	9.89	283	1940	1.32	7.72	3070	8590	<0.00200	0.0508	0.0238	<0.00200	<0.000500	0.00777	< 0.00400	0 < 0.00200	0.524 < 0.0	00150	0.142	0.0173	<0.00200	0.29	0.89	1.18	BAC-2	15.94	6.82	-77	12000	1.2	0.51	7.44
BAC-3	7.91	417	3480	1.62	7.84	4460	13000	< 0.00200	0.0441	0.0331	<0.00200	< 0.000500	0.00468	< 0.00400	0 <0.00200	1.05 < 0.0	00150	0.0396	0.0228	< 0.00200	0.28	1.25	1.53	BAC-3	15.37	7.03	-82	18900	5	3.65	11.7
BAC-4	< 0.500	67.4	489	1.14	7.74	221	1300	<0.00200	0.0316	0.0605	<0.00200	<0.000500	<0.00200	< 0.00400	< 0.00200	0.249 <0.0	00150	0.0143	<0.00200	<0.00200	0.1	0.81	0.91	BAC-4	15.79	7.47	-150	2500	0.5	0.7	1.6
BAC-5	< 0.500	74.8	524	1.07	7.68	234	1480	<0.00200	0.0275	0.0706	<0.00200	<0.000500	<0.00200	< 0.00400	< 0.00200	0.284 <0.0	00150 (0.00915	<0.00200	<0.00200	0.24	0.5	0.74	BAC-5	18.41	7.47	-149	2570	0.5	3.97	1.63
BAC-6	4.58	145	595	1.15	7.48	1100	2600	<0.00200	0.0214	0.0227	<0.00200	<0.000500	<0.00200	< 0.00400	< 0.00200	0.28 <0.0	00150	0.0898	0.00249	<0.00200	0.08	0.72	0.8	BAC-6	19.15	7.32	-92	3810	0.5	0.55	2440
BAC-7	4.51	137	1980	0.388	7.57	1100	2730	<0.00200	0.0235	0.0195	<0.00200	<0.000500	<0.00200	< 0.00400	< 0.00200	0.288 <0.0	00150	0.0752	0.0048	<0.00200	0.14	0.71	0.85	BAC-7	19.26	7.4	-101	4190	3	3.14	2.68
													Results															Field Resul	ts		
Waste Water																							Radium 226 and	Waste Water							
		Calcium (Chloride F		рН	Sulfate	-						Chromium	Cobalt	Lead		rcury Molybo			Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)	DO	TDS
	< 0.500	129	739	0.506	7.5	201		<0.00200	0.00929	0.0741		<0.000500			< 0.00200	0.241 < 0.0		0.00227		<0.00200	0.04	0.73		SI-U-1	16.11	7.56	-31	3240	0	0.71	2.07
WW-U-1	1.34	339	1900	0.406	7.05	1050		<0.00200	0.005			<0.000500			< 0.00200	0.436 <0.0		0.00702			0.45	0.91		WW-U-1	16.35	7.11	-75	8010	0.7	0.4	0.00
WW-U-2	1.47	370	2010	0.532	7.16	925		<0.00200	0.00642	0.0499		<0.000500			< 0.00200	0.475 <0.0		0.00467	0.0115		0.34	0.94		WW-U-2	16.11	7.27	-10	8450	0.2	0.47	5.32
WWC-1	11.9	638	4100	0.236	6.89	2640		<0.00200	0.02	0.0209		<0.000500			< 0.00200	0.805 0.0		0.00596			0.25	1.21		WWC-1	16.03	6.65	-17	19900	0	2.51	12.4
	< 0.500	57.2	308	0.41	7.62	111		<0.00200	0.014	0.031		<0.000500			< 0.00200	0.104 < 0.0		0.00356		<0.00200	0.1	0.55		WWC-2	15.75	7.52	-124	1650	0.4	0.55	1.05
	< 0.500	28.9	200	0.985	7.96	67.8		<0.00200	0.0214	0.0245		<0.000500			< 0.00200	0.131 <0.0		0.00464	<0.00200		0.07	0.27		WWC-3	14.89	7.81	-190	1250	1.1	0.79	0.8
WWC-4	1.19	200	1010	0.365	7.3	593		<0.00200	0.0128	0.0463		<0.000500			< 0.00200	0.355 <0.0		0.00200		<0.00200	0.22	0.58		WWC-4	16.17	7.26	-64	4600	2.3	0.37	2.92
WWC-5	2.86	321	1600	0.384	6.92	1450	5030	<0.00200	0.0096	0.0302	<0.00200	<0.000500	<0.00200	< 0.00400	< 0.00200	0.511 <0.0	00150 (0.00301	0.00415	<0.00200	0.2	1.64	1.84	WWC-5	17.27	7.02	-36	7300	0	0.34	4.6

																Raululli 220 allu	waste water					
TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Т
1840	< 0.00200	0.00929	0.0741	<0.00200	<0.000500	0.00137	<0.00400	<0.00200	0.241	< 0.000150	0.00227	<0.00200	<0.00200	0.04	0.73	0.77	SI-U-1	16.11	7.56	-31	3240	
5280	< 0.00200	0.005	0.0486	<0.00200	<0.000500	0.00193	<0.00400	<0.00200	0.436	< 0.000150	0.00702	0.00653	<0.00200	0.45	0.91	1.36	WW-U-1	16.35	7.11	-75	8010	
5260	< 0.00200	0.00642	0.0499	<0.00200	<0.000500	0.00144	<0.00400	<0.00200	0.475	< 0.000150	0.00467	0.0115	<0.00200	0.34	0.94	1.28	WW-U-2	16.11	7.27	-10	8450	
12700	< 0.00200	0.02	0.0209	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.805	0.000205	0.00596	0.015	<0.00200	0.25	1.21	1.46	WWC-1	16.03	6.65	-17	19900	
784	<0.00200	0.014	0.031	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.104	< 0.000150	0.00356	<0.00200	<0.00200	0.1	0.55	0.65	WWC-2	15.75	7.52	-124	1650	
628	3 <0.00200	0.0214	0.0245	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.131	< 0.000150	0.00464	<0.00200	<0.00200	0.07	0.27	0.34	WWC-3	14.89	7.81	-190	1250	
2790	< 0.00200	0.0128	0.0463	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.355	< 0.000150	<0.00200	<0.00200	<0.00200	0.22	0.58	0.8	WWC-4	16.17	7.26	-64	4600	
5030	< 0.00200	0.0096	0.0302	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.511	< 0.000150	0.00301	0.00415	<0.00200	0.2	1.64	1.84	WWC-5	17.27	7.02	-36	7300	

esu	llts		
9	Turbidity (NTUs)	DO	TDS
10	0	0.71	2.07
0	0.7	0.4	5.03
50	0.2	0.47	5.32
00	0	2.51	12.4
50	0.4	0.55	1.05
50	1.1	0.79	0.8
00	2.3	0.37	2.92
00	0	0.34	4.6

										Rou	Ind 10 Asses	sment Monit	oring - Jun	e 4-13, 2018													F	ound 10			
													Results															Field Resu	ts		
Landfill Wells																							Radium 226 and	Landfill Wells			/				
		alcium C	hloride F		рН	Sulfate	TDS	Antimony		Barium	Beryllium		Chromiun		Lead						Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	54.7	372	0.853	7.7	98	984	<0.00200		0.0799		<0.000500		00 < 0.00400			<0.000150	0.00361	<0.00200	<0.00200	0.18	0.67		CL-U-1	17.54	7.56			1.7	0.39	1.2
CL-U-2	< 0.500	56.4	365	0.862	7.64	108	952	<0.00200	0.0242	0.09		<0.000500		00 < 0.00400			<0.000150	0.0038	<0.00200		-0.02			CL-U-2	17.81	7.55			0.7	2.53	1.17
CLW-1	< 0.500	35.2	298	1.02	7.93	57.8	748		0.0285	0.0568		<0.000500		02 <0.00400			<0.000150	0.00388	0.000928	<0.00200	0.29			CLW-1	19.97	7.67			2.1	4.08	9.45
CLW-2	< 0.500	44.6	399	1.14	7.79	86.8	980	<0.00200	0.0247	0.072		<0.000500		00 < 0.00400			<0.000150	0.00433	<0.00200	<0.00200	0.25	0.96		CLW-2	17.54	7.63			4.5	0.63	1.18
CLW-3	< 0.500	37.5	323	1.16	7.91	94.2	876	<0.00200	0.0382	0.0948		<0.000500		00 < 0.00400			<0.000150	0.00483	<0.00200	<0.00200	0.18	0.55		CLW-3	17.95	7.73			5.5	1.57	1.07
CLW-4	< 0.500	31.8	289	1.35	7.91	76.4	836	<0.00200	0.0358	0.0801		<0.000500		00 < 0.00400			<0.000150	0.00459	< 0.00200	< 0.00200	0.13	0.85			17.85	7.73			2.8	1.64	1
CLW-5	< 0.500	33.1	318	1.59	7.79	75.3	804	<0.00200	0.0215	0.0689		<0.000500		00 < 0.00400			<0.000150	0.00519	< 0.00200	< 0.00200	0.11	0.76	0.87		17.16	7.72			8.2	1.29	1.07
CLW-6	< 0.500	29.9	292	1.45	7.88	66.3	796	<0.00200	0.0109	0.0902		<0.000500		00 < 0.00400			<0.000150	0.00711	<0.00200	<0.00200	0.27		1.12		17.86	7.83			8	2.56	1.01
CLW-7	< 0.500	40.6	321	0.945	7.68	58.6	900	<0.00200	0.0234	0.0514		<0.000500	< 0.0020				<0.000150	0.00329	<0.00200	<0.00200	0.16	0.97	0.97		17.32	7.0	-150		15.7	3.84	1.03 0.985
CLW-8	< 0.500	38.8	314	0.933	7.73	63.5	768	<0.00200	0.0244	0.0632	<0.00200	<0.000500	<0.0020	00 <0.00400	<0.00200	0.188 <	<0.000150	0.00359	<0.00200	<0.00200	0.18	1.26	1.26	CLW-8	17.1	7.61	-194	1550	2	0.73	0.985
													Results															Field Resu	ha		
Bottom Ash													Results										Radium 226 and	Bottom Ash				Field Resul			
Bottom Ash	Boron C	alcium C	hloride F	luorido	рН	Sulfate	TDS	Antimony	Arconic	Barium	Bondlium	Cadmium	Chromiur	n Cobalt	Lood	Lithium	Moreury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	Bottom Ash	Temp	рH	PEDOX	Conductanco	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	140	799	0.818	рн 7.54	254	1970	Antimony <0.00200	Arsenic 0.0199	0.0636	Beryllium	<0.000500		06 < 0.00400	Lead <0.00200		Mercury	0.00279	0.00324		0.39	1.94		BA-U-1	19.26	<u>рп</u> 7.41				0.46	2.33
BA-U-2	< 0.500	70.1	578	0.818	7.68	63.5	1370	<0.00200	0.0208	0.0030		<0.000500		00 <0.00400 00 <0.00400			<0.000150	0.00215	0.00324	<0.00200	0.16	1.13		BA-U-2	19.20	7.63			2.1	1.31	1.51
BAC-1	2.16	113	1190	0.315	7.92	971	3120	0.00158		0.0393		<0.000500		14 <0.00400			<0.000150	0.0288	0.00201	<0.00200	0.24	1.06	1.15	BAC-1	17.87	8.86			53.2	2.95	4.04
BAC-2	8.44	263	2210	0.684	7.1	3430	7720	< 0.00200	0.0445	0.021		< 0.000500		33 < 0.00400			<0.000150	0.143	0.0154		0.12	1.03	1.03	BAC-2	16.94	6.98			2.3	4.29	7.68
BAC-3	7.26	347	3870	1.52	7.42	5080	12700	< 0.00200	0.0588	0.0327		< 0.000500	0.0052				< 0.000150	0.0467	0.0229	< 0.00200	0.27		1.71	BAC-3	17.19	7.16	-356		15.2	0.87	11.4
BAC-4	< 0.500	62.8	510	1.01	7.95	221	1290	< 0.00200	0.0322	0.0672		< 0.000500		00 < 0.00400			<0.000150	0.0165	< 0.00200	< 0.00200	0.06		0.98		17.11	7.64			1.5	0.75	1.6
BAC-5	< 0.500	73.5	591	0.916	7.82	302	1180	<0.00200	0.0292	0.0763		<0.000500		00 < 0.00400			<0.000150	0.0128	<0.00200	<0.00200	0.19	1.56	1.75	BAC-5	17.63	7.61	-126	2850	1.2	0.65	1.83
BAC-6	4.12	134	694	0.582	7.65	1120	2980	<0.00200	0.0217	0.0235	<0.00200	<0.000500	<0.0020	00 < 0.00400	<0.00200	0.25 <	<0.000150	0.0938	0.00229	<0.00200	0.14	1.02	1.02	BAC-6	17.58	7.51	-112	4210	0	0.51	2.63
BAC-7	4.36	130	709	1.09	7.74	1280	2760	<0.00200	0.0275	0.0204	<0.00200	<0.000500	<0.0020	00 < 0.00400	< 0.00200	0.269 <	<0.000150	0.0757	0.00541	<0.00200	0.06	0.87	0.93	BAC-7	17.32	7.6	-127	4440	0	0.56	2.84
		•	•			•																									
													Results															Field Resu	ts		
Waste Water																							Radium 226 and	Waste Water							
	Boron C	alcium C	hloride F	luoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromiun	n Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	123	873	0.499	7.62	209	2040	<0.00200	0.00839	0.0653	<0.00200	< 0.000500	0.00060	02 <0.00400	<0.00200	0.254 <	<0.000150	0.00182	<0.00200	<0.00200	0.32	1.34	1.66	SI-U-1	18.38	7.39	-108	3510	1.7	0.79	2.25
WW-U-1	1.19	289	1940	0.265	7.17	1140	5450	<0.00200	0.00477	0.0479	<0.00200	< 0.000500	0.0012	24 <0.00400	<0.00200	0.443 <	<0.000150	0.00591	0.00663	<0.00200	0.23	1.49	1.72	WW-U-1	21.81	6.92	-77	8180	0.1	0.51	5.14
WW-U-2	1.23	337	2130	1.01	7.3	985	5120	<0.00200	0.0102	0.0459	<0.00200	< 0.000500	0.0013	37 <0.00400	<0.00200	0.508 <	<0.000150	0.00277	0.0112	<0.00200	0.05	0.93	0.93	WW-U-2	18.76	7.09	-16	8130	7.6	1.06	5.12
WWC-1	8.22	504	4710	0.114	7.2	2730	11100	<0.00200	0.0173	0.0268	<0.00200	< 0.000500	<0.0020	00 <0.00400	<0.00200	0.831	0.000168	0.00896	0.0139	<0.00200	0.25	1.16	1.16	WWC-1	16.92	6.94		15600	1.5	4.48	9.65
WWC-2	< 0.500	50	340	0.358	7.91	119	852	<0.00200	0.0143	0.0338	<0.00200	< 0.000500	<0.0020	00 <0.00400	<0.00200	0.11 <	<0.000150	0.00372	<0.00200	<0.00200	0.08	0.27	0.35	WWC-2	17.4	7.75	-163	1570	1.2	0.4	1
WWC-3	< 0.500	27.3	230	0.897	8.05	88.4	644	<0.00200	0.0226	0.0278	<0.00200	<0.000500	< 0.0020	00 <0.00400	< 0.00200	0.125 <	<0.000150	0.00527	<0.00200	<0.00200	-0.03	0.15	0.12	WWC-3	17.01	7.89	-191	1220	2.6	0.42	0.782
WWC-4	0.998	184	1080	0.435	7.43	620	2640	<0.00200	0.0129	0.0495	<0.00200	<0.000500	<0.0020	00 <0.00400	<0.00200	0.309 <	<0.000150	0.00215	0.00201	<0.00200	0.28	0.35	0.63	WWC-4	18.39	7.27	-106		2.4	1.17	2.77
WWC-5	2.64	314	1820	0.219	7.26	1660	5200	<0.00200	0.0104	0.0327	<0.00200	<0.000500	<0.0020	00 <0.00400	<0.00200	0.472 <	<0.000150	0.00324	0.00395	<0.00200	0.1	1.58	1.58	WWC-5	15.81	6.98	-84	7740	0.8	0.58	4.88

									Rou	und 11 (all i	results ppm)	Assessment	: Monitoring	- October 8	8-18, 2018											F	Round 11			
													Results													•	Field Resu	ts		
Landfill Wells																						Radium 226 and	Landfill Wells							
		1		Fluoride	рН	Sulfate	TDS	Antimony		Barium	Beryllium		Chromium		Lead	Lithium Mercury	, ,			Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	61.9	415	0.981	7.79	122	1060		0.029	0.0796		<0.000500	<0.00200		0 <0.00200	0.229 <0.000150	0.00383	<0.00200		0.09	0.32		CL-U-1	17.4	7.85			40.9	0.61	1.15
CL-U-2	< 0.500	67.5	414	0.995	7.73	128	1010	<0.00200	0.0255	0.0919		<0.000500	<0.00200		0 <0.00200	0.212 < 0.000150	0.00408	<0.00200		0.12	0.94		CL-U-2	18.15	7.83			0	3.95	1.13
CLW-1	< 0.500	39.6	288	1.06		61.9	784	<0.00200	0.0298	0.0582		<0.000500	0.0157	-	0 <0.00200	0.194 <0.000150	0.00589	<0.00200		0.11	1.2		CLW-1	17.83	7.93			0	1.48	0.951
CLW-2	< 0.500	49.7	475	1.19		88.1	904	<0.00200	0.0244	0.0716	<0.00200		0.014		0 <0.00200	0.227 < 0.000150	0.00593	<0.00200	<0.00200	0.17	0.39		CLW-2	16.04	7.84			0.6	2.72	1.18
CLW-3	< 0.500	42	325	1.27		95	888		0.0384	0.0941	<0.00200		<0.00200	-	0 <0.00200	0.217 < 0.000150	0.0052	<0.00200	<0.00200	0.33	0.68		CLW-3	17.52	7.98			3.6	3.1	1.06
CLW-4	< 0.500	35.2	297	1.45		80.7	792		0.0375	0.0786		<0.000500	<0.00200		0 <0.00200	0.211 < 0.000150	0.00525	<0.00200		1.89	0.65		CLW-4	18.53	8.02			7.2	1.63	0.983
CLW-5	< 0.500	36.9	320	1.7		85.3	852	<0.00200	0.0229	0.0714		<0.000500	0.00999	_	0 <0.00200	0.213 < 0.000150	0.00679	<0.00200	<0.00200	1.87	0.17		CLW-5	21	7.94			0	1.29	1.05
CLW-6	< 0.500	33.8	292	1.6		73.3	804	<0.00200	0.0152	0.0873	<0.00200		0.0116		0 <0.00200	0.204 < 0.000150	0.00746	<0.00200	<0.00200	0.18	0.41		CLW-6	16.49	8.02			0	2.23	1
CLW-7	< 0.500	46.5	399	1.02	7.65	73.2	780	<0.00200	0.0232	0.0491	<0.00200		<0.00200		0 <0.00200	0.19 <0.000150	0.00416	<0.00200	<0.00200	0.05	0.07	0.12	CLW-7	17.12	7.83		1000	2.4	2.97	1
CLW-8	< 0.500	43	300	1.04	7.71	66.5	796	<0.00200	0.0254	0.0643	<0.00200	<0.000500	<0.00200	< 0.00400	0 <0.00200	0.192 <0.000150	0.00503	<0.00200	<0.00200	0.19	1.2	1.2	CLW-8	17.05	7.91	-130	1510	0	1.37	0.963
													Results														Field Resu	ts		
Bottom Ash	_												- · ·									Radium 226 and	Bottom Ash	_						
		1	Chloride	Fluoride	рН	Sulfate	TDS	Antimony		Barium	Beryllium		Chromium	Cobalt	Lead	Lithium Mercury	,		Thallium	Radium 226	Radium 228	228 combined		Temp	рН			Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	73.9	561	0.881	7.97	62.2	1050		0.0216	0.149		< 0.000500	< 0.00200		0 <0.00200	0.276 < 0.000150	0.00237	< 0.00200		0.44	0.74		BA-U-1	16.4	7.71		3010	0	0.7	1.94
BA-U-2	< 0.500	143	885	0.977	7.58	298	1750	<0.00200	0.0209	0.0728		< 0.000500	0.0125		0 <0.00200	0.321 < 0.000150	0.00574	< 0.00200		0.22	0.62		BA-U-2	18.72	8.31			0	0.56	1.28
BAC-1	4.87	225	1840	0.582		1760	6420		0.0129	0.0391		< 0.000500	0.0184	_	0 <0.00200	0.629 < 0.000150	0.0232	0.00818		0.45	0.88		BAC-1	16.12	7.43			77.8	0.85	6.2
BAC-2	9.98	255	1660	1.1		2730	7800	<0.00200	0.0565	0.0204	<0.00200		0.0111		0 < 0.00200	0.472 < 0.000150	0.156	0.0157		0.08	0.96		BAC-2	16.79	7.15			2.5	1.3	6.93
BAC-3	8.33	469	3280	1.63	7.31	4450	12300		0.0496	0.0317		< 0.000500	0.00968		0 <0.00200	1.06 < 0.000150	0.038	0.022	<0.00200	0.39	1.06		BAC-3	16.79	7.31		10000	7	5.15	11.3
BAC-4	0.523	68.1	501	1.15		273	1300		0.00882	0.0171		< 0.000500	< 0.00200		0 <0.00200	0.267 < 0.000150	0.017	< 0.00200		-0.16	0.48		BAC-4	15.08	7.77			0.2	0.61	1.6
BAC-5	< 0.500	82.2	557	1.04	7.86	353	1460	<0.00200	0.0325	0.0714	<0.00200		< 0.00200		0 <0.00200	0.323 < 0.000150	0.0134	< 0.00200	<0.00200	0.26	0.81		BAC-5	16.95	7.88		2800	0	0.52	1.83
BAC-6	4.57	138	624	0.847	7.75	1080	2340	<0.00200	0.0248	0.0245	<0.00200		< 0.00200		0 <0.00200	0.276 < 0.000150	0.0842	< 0.00200	<0.00200	0.17	1.02		BAC-6	17.13	7.74		3570	0	0.49	2.54
BAC-7	4.24	143	649	1.51	7.75	1210	2830	<0.00200	0.0434	0.0214	<0.00200	<0.000500	<0.00200	< 0.00400	0 <0.00200	0.303 < 0.000150	0.075	0.00579	<0.00200	0.19	0.71	0.9	BAC-7	17	7.76	-71	4420	1.9	0.48	2.84
													a 1:																	
													Results													1	Field Resu	ts		
Waste Water	_		a			o. 16		.	. .		_	.	a .					·			5 II 666		Waste Water	_		555 6 V				
				Fluoride	<u> </u>	Sulfate		Antimony			Beryllium					Lithium Mercury		Selenium		Radium 226	Radium 228	228 combined	<u> </u>	Temp	•			Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	139	805	0.533		394		< 0.00200							0 <0.00200				<0.00200	0.07	0.85		SI-U-1	17.1	7.65		3290	0	0.58	2.11
WW-U-1	1.36	357	2150	0.41		1360		<0.00200							0 <0.00200	0.456 < 0.000150	0.0101	0.00682		0.43	1.2		WW-U-1	16.29	7.25		8350	0.6	0.87	5.27
WW-U-2	1.23	380	2160	0.604		1090	4570					< 0.000500			0 <0.00200			0.0105		0.14	0.83		WW-U-2	16.41	7.44			0	1.5	4.87
WWC-1	12	607	4430	0.331		3210		<0.00200		0.0223		<0.000500			0 <0.00200	0.964 0.000312	0.00835	0.0145		0.15	1.2		WWC-1	16.6	7.11		19600	0	4.49	12.1
WWC-2	< 0.500	59.5	344	0.448		139	832			0.0344		<0.000500			0 <0.00200		0.00304	<0.00200		0.17	0.03		WWC-2	17.73	7.91		1600	2.1	0.62	1.03
WWC-3	< 0.500	29.7	209	1.06		84.2	436	<0.00200	0.0247	0.0289		<0.000500	<0.00200		0 <0.00200	0.139 < 0.000150	0.00482	<0.00200		0	0.76		WWC-3	16.97	8.12			0.2	0.56	0.759
WWC-4	1.34	219	1030	0.481		692	2880			0.0507		<0.000500			0 <0.00200	0.36 < 0.000150				0.03	0.8		WWC-4	16.27	7.4			0.7	0.54	3.06
WWC-5	3.07	364	1720	0.431	7.38	1620	5000	<0.00200	0.0131	0.034	<0.00200	< 0.000500	<0.00200	< 0.00400	0 <0.00200	0.523 < 0.000150	0.0031	0.00478	<0.00200	0.2	-0.56	-0.36	WWC-5	15.76	7.16	-11	7580	1	3.51	4.77

									Rou	nd 12 (all r	esults ppm) Assessment N	Aonitoring -	April 4 - Ma	y 15, 2019												Round 12			
												Results														Field Results			
Landfill Wells																					Radium 226 and	Landfill Wells							
				luoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead			Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX		urbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	61.1	388	0.989	7.74	112	932			0.0841	<0.00200 <0.000500		<0.00400		0.231 < 0.000150	0.0036	<0.00200		0.13	0.4		CL-U-1	15.92	7.84			1.6	0.42	1.2
CL-U-2	< 0.500	68.4	378	1.02	7.74	97.6	920			0.0943	<0.00200 <0.000500	<0.00200			0.214 < 0.000150	0.00405	<0.00200		0.31	0.94		CL-U-2	15.68	7.81			4.7	0.6	,
CLW-1	< 0.500	39.4	303	1.12	7.88	64.5	692	<0.00200		0.0589	<0.00200 <0.000500	0.00742			0.203 < 0.000150	0.00481	<0.00200	<0.00200	0	0.41		CLW-1	15.59	7.68			0.9	2.06	0.984
CLW-2	< 0.500	55.1	416	1.25	7.8	96.4	976	<0.00200		0.0743	<0.00200 <0.000500	< 0.00200			0.253 < 0.000150	0.00423	< 0.00200	<0.00200	0.21	0.75	0.96	CLW-2	15.77	7.86			1.7	1.5	1.2
CLW-3	< 0.500	44.5	351	1.34	7.83	98.4	884	<0.00200		0.0970	<0.00200 <0.000500	< 0.00200			0.243 < 0.000150	0.00488	< 0.00200	<0.00200	0.16	0.49		CLW-3	15.45	7.93			2.1	1.37	1.1
CLW-4	< 0.500	38.8	321	1.45	7.90	85.5	968			0.0819	<0.00200 <0.000500	< 0.00200			0.232 < 0.000150	0.00425	< 0.00200	<0.00200	0.47	0.54		CLW-4	15.51	7.97			12.7	1.55	1.03
CLW-5	< 0.500	38.5	340	1.85	7.93	85.6	936	<0.00200		0.0707	<0.00200 <0.000500	< 0.00200			0.226 < 0.000150	0.00515	<0.00200	<0.00200	0.14	0.28		CLW-5	15.07	7.94			3.8	3.03	1.08
CLW-6	< 0.500	38.4	270 336	1.55	7.89	72.8	828	<0.00200		0.0896	<0.00200 <0.000500	< 0.00200			0.214 < 0.000150	0.00478	<0.00200	<0.00200	0.2	0.78	0.98	CLW-6	16.62	8.04			1.1	1.54	1
CLW-7	< 0.500 < 0.500	51.3 44.3	336	1.07	7.76 7.81	68.9 67.2	792 776	<0.00200 <0.00200		0.0511 0.0621	<0.00200 <0.000500 <0.00200 <0.000500	<0.00200			0.205 <0.000150 0.212 <0.000150	0.00323	<0.00200 <0.00200	<0.00200 <0.00200	-0.09 0.27	0.54 0.22	0.45	CLW-7 CLW-8	16.75 16.41	7.76 7.82			0.5	0.91	1.05
CLW-8	< 0.500	26.2	298	1.11 2.02	7.81	86.4	760	<0.00200		0.0621	<0.00200 <0.000500	< 0.00200			0.168 < 0.000150	0.00358	<0.00200	<0.00200	0.27	0.22		CLW-8 CLW-9		7.82			3.6	1.7	0.993
CLW-9 CL-U-3	< 0.500	26.2 59.6	390	0.872	7.91	86.4	760 984	<0.00200		0.0462	<0.00200 <0.000500		<0.00400		0.212 < 0.000150	0.00518	<0.00200		0.21	0.21		CL-U-3	15.39 15.07	7.98			3.6 0.3	0.83 2.51	
CL-U-3	< 0.500	59.0	390	0.872	7.05	114	964	<0.00200	0.0183	0.0495	<0.00200 <0.000500	0.00565	<0.00400	<0.00200	0.212 <0.000150	0.00372	<0.00200	<0.00200	0	0.48	0.48	CL-0-5	15.07	7.55	-197	1030	0.5	2.51	1.17
												Results														Field Results			
Bottom Ash												Results									Radium 226 and	Bottom Ash					T		
Dottom Ash	Boron C	alcium (Chloride F	luoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Bervllium Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	Bottom Ash	Temp	pН	REDOX	Conductance T	urbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	174	934	0.919	7.61	271	2050	,		0.0776	<0.00200 <0.000500	< 0.00200			0.354 < 0.000150	0.00312	0.00458	< 0.00200		0.4		BA-U-1	18.39	7.67				0.31	2.38
BA-U-2	< 0.500	91.8	718	0.844	7.68	102	1350	<0.00200		0.1670	<0.00200 <0.000500	<0.00200			0.300 < 0.000150	0.0022	0.00430	<0.00200	0.18	0.62		BA-U-2	16.57	7.81			2	0.38	1.74
BAC-1	1.31	72.4	431	0.197	8.42	404	1830			0.0567	<0.00200 <0.000500	0.00359			0.172 < 0.000150	0.142	0.00278	< 0.00200	0.28	0.02		BAC-1	19.56	8.75			22.8	1.17	0.852
BAC-2	10.3	233	1700	1.11	7.2	2590	8310	<0.00200		0.0180	<0.00200 <0.000500	0.00556			0.491 < 0.000150	0.163	0.0145	<0.00200	0.17	0.48		BAC-2	18.83	7.25		5370	2.2	1.1	3.38
BAC-3	8.64	417	3400	1.3	7.24	4090	12900			0.0272	<0.00200 <0.000500	0.00593			1.030 0.000105	0.0388	0.0206		0.17	0.77			17.57	7.34			1.1	1.61	5.64
BAC-4	0.553	72.4	488	1.22	7.76	269	1270	<0.00200	0.0319	0.0641	<0.00200 <0.000500	< 0.00200			0.281 < 0.000150	0.0196	< 0.00200	< 0.00200	0.16	0.58		BAC-4	15.14	7.6	-57	2600	0	1.94	
BAC-5	< 0.500	91.8	585	1.07	7.73	393	1540	<0.00200	0.0294	0.0594	<0.00200 <0.000500	< 0.00200	< 0.00400	< 0.00200	0.334 < 0.000150	0.0168	<0.00200	<0.00200	-0.1	0.27	0.17	BAC-5	15.26	7.68	-62	2960	0	2.03	1.9
BAC-6	4.4	137	536	0.866	7.84	963	2260	<0.00200	0.0248	0.0206	<0.00200 <0.000500	<0.00200	<0.00400	< 0.00200	0.283 < 0.000150	0.0923	<0.00200		-0.09	-0.38	-0.47	BAC-6	15.21	7.63			0	1.48	2.48
BAC-7	5.17	142	529	1.34	7.72	985	2760	<0.00200	0.0298	0.0184	<0.00200 <0.000500	<0.00200	<0.00400	< 0.00200	0.284 < 0.000150	0.0908	0.00388	<0.00200	0.09	0.34	0.43	BAC-7	15.95	7.74	-71	4210	0	1.37	2.7
BAC-8	< 0.500	27.8	266	1.61	7.92	81.1	708	<0.00200	0.0519	0.0732	<0.00200 <0.000500	<0.00200	< 0.00400	< 0.00200	0.165 <0.000150	0.0055	<0.00200	<0.00200	0.31	0.41	0.72	BAC-8	17.34	7.98	-91	1490	3.9	1.21	0.954
BAC-9	< 0.500	28.4	283	1.7	7.91	82.6	736	<0.00200	0.583	0.051	<0.00200 <0.000500	< 0.00200	< 0.00400	< 0.00200	0.167 < 0.000150	0.00451	<0.00200	<0.00200	0.06	0.53	0.59	BAC-9	16.49	8.02	-69	1460	1.6	0.96	0.937
BAC-10	< 0.500	31.1	273	1.66	7.91	85	788	<0.00200	0.0527	0.0612	<0.00200 <0.000500	< 0.00200	<0.00400	< 0.00200	0.171 < 0.000150	0.00567	<0.00200	<0.00200	0.15	0.5	0.65	BAC-10	17.35	8	-80	1500	2.9	0.94	0.963
Waste Water	Results																									Field Results	,		
																					Radium 226 and	Waste Water							
	Boron C	alcium (Chloride F	luoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance T	urbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	147	744	0.519	7.59	263	1840	<0.00200	0.00927	0.0634	<0.00200 <0.000500	<0.00200	<0.00400	<0.00200	0.271 < 0.000150	0.00206	<0.00200	<0.00200	0.27	0.59	0.86	SI-U-1	16.23	7.68	-37	3470	1.9	0.36	2.22
WW-U-1	1.39	323	1820	0.416	7.27	1140	5120	<0.00200	0.00592	0.0442	<0.00200 <0.000500	0.00432	<0.00400	< 0.00200	0.431 <0.000150	0.00702	0.00748	<0.00200	0.38	0.89	1.27	WW-U-1	16.64	7.24	-17	8020	0	0.41	5.05
WW-U-2	1.16	347	1170	0.633	7.45	872	4270	<0.00200	0.0114	0.0473	<0.00200 <0.000500	0.00237	< 0.00400	< 0.00200	0.484 <0.000150	0.00411	0.0113	<0.00200	0.19	0.54	0.73	WW-U-2	17.11	7.41	8	7650	1.1	0.51	4.82
WWC-1	12.9	584	4600	0.245	7.1	3190	13800	<0.00200	0.0215	0.0183	<0.00200 <0.000500	<0.00200	<0.00400	<0.00200	1.000 0.00018	0.00794	0.0146	<0.00200	0.13	0.82	0.95	WWC-1	16.68	7.13	2	9830	0	1.37	6.19
WWC-2	< 0.500	54.2	316	0.534	7.75	128	824	<0.00200	0.0161	0.0296	<0.00200 <0.000500	<0.00200	<0.00400	<0.00200	0.128 < 0.000150	0.00348	<0.00200	<0.00200	-0.06	0.5	0.44	WWC-2	15.94	8.03	-95	1550	2.9	1.56	0.989
WWC-3	< 0.500	35.3	244	1.14	7.79	86	764	<0.00200	0.0226	0.0306	<0.00200 <0.000500	<0.00200	<0.00400	<0.00200	0.151 <0.000150	0.00471	<0.00200	<0.00200	0.06	0.38	0.44	WWC-3	16.07	8.01	-144	1310	0	2.09	0.841
WWC-4	1.34	240	1030	0.449	7.97	673	2780	<0.00200	0.0133	0.0412	<0.00200 <0.000500	<0.00200	< 0.00400	<0.00200	0.388 < 0.000150	< 0.00200	<0.00200	<0.00200	-0.03	0.56	0.53	WWC-4	15.29	7.38	-19	4910	0	1.4	3.14

									Rou	nd 12 (all r	esults ppm)	Assessment N	Aonitoring -	- April 4 - N	lay 15, 2019												Round 12			
													Results												T		Field Resu	ılts		
Landfill Wells																						Radium 226 and	Landfill Wells							
		T		luoride		Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium		Chromium		Lead	,	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	.	Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	61.1	388	0.989	7.74	112	932					< 0.000500			0 <0.00200	0.231 < 0.000150	0.0036			0.13	0.4		CL-U-1	15.92		_	8 1880	1.6	0.42	
CL-U-2	< 0.500	68.4	378	1.02	7.74	97.6	920					<0.000500			0 <0.00200	0.214 < 0.000150	0.00405	<0.00200		0.31	0.94		CL-U-2	15.68		_		4.7	0.6	
CLW-1	< 0.500	39.4	303	1.12	7.88	64.5	692		0.002			<0.000500	0.00742		0 <0.00200	0.203 < 0.000150	0.00481	<0.00200		0 21	0.41		CLW-1	15.59				0.9	2.06	0.984
CLW-2	< 0.500	55.1 44.5	416	1.25	7.8	96.4 98.4	976		0.0259			<0.000500 <0.000500	<0.00200		0 < 0.00200	0.253 < 0.000150	0.00423	<0.00200		0.21	0.75		CLW-2 CLW-3	15.77				1.7	1.5	1.2
CLW-3	< 0.500 < 0.500	44.5 38.8	351 321	1.34 1.45	7.83 7.90	98.4 85.5	884		0.0382			<0.000500	<0.00200		0 <0.00200 0 <0.00200	0.243 <0.000150 0.232 <0.000150	0.00488 0.00425	<0.00200 <0.00200		0.16 0.47	0.49 0.54		CLW-3 CLW-4	15.45 15.51				2.1 12.7	1.37	1.1
CLW-4 CLW-5	< 0.500	38.8	321	1.45	7.90	85.5	968 936		0.0376			<0.000500	<0.00200		0 <0.00200	0.226 < 0.000150	0.00425	<0.00200		0.47	0.54		CLW-4 CLW-5	15.51					1.55 3.03	
CLW-6	< 0.500	38.4	270	1.85	7.95	72.8	828	40100200	0.0238	0.0707		< 0.000500	<0.00200		0 <0.00200	0.214 < 0.000150	0.00313	<0.00200		0.14				16.62		_		5.0	1.54	
CLW-7	< 0.500	51.3	336	1.55	7.89	68.9	792		0.0271			< 0.000500	<0.00200		0 <0.00200	0.205 < 0.000150	0.00478	<0.00200		-0.09			CLW-8 CLW-7	16.02				1.1	0.91	
CLW-8	< 0.500	44.3	317	1.07	7.81	67.2	792		0.0228			< 0.000500	0.00200		0 <0.00200	0.212 < 0.000150	0.00323	<0.00200		0.27			CLW-8	16.41					1.7	1.05
CLW-9	< 0.500	26.2	298	2.02	7.91	86.4	760					< 0.000500	< 0.00200		0 <0.00200	0.168 < 0.000150	0.00518	<0.00200		0.27	0.22		CLW-8	15.39					0.83	0.993
CL-U-3	< 0.500	59.6	390	0.872	7.91	11/	984					< 0.000500	0.0020		0 <0.00200	0.212 < 0.000150	0.00318	<0.00200		0.21	0.48		CL-U-3	15.07					2.51	
CL-0-3	< 0.500	55.0	350	0.872	7.85	114	504	<0.00200	0.0185	0.0495	<0.00200	<0.000500	0.0050.	5 \0.0040	0 <0.00200	0.212 <0.000150	0.00372	<0.00200	<0.00200	0	0.48	0.48	CL-0-3	15.07	7.5	-157	1850	0.5	2.51	1.17
													Results														Field Resu	ilts		
Bottom Ash													Results									Radium 226 and	Bottom Ash							
Dottom Ash	Boron	Calcium	Chloride F	luoride	nH	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	Dottom Ash	Temp	Hq	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	174	934	0.919	7.61	271	2050		0.002	T		< 0.000500	<0.00200		0 < 0.00200	0.354 < 0.000150	0.00312	0.00458		0	0.4		BA-U-1	18.39	•			1.1	0.31	2.38
BA-U-2	< 0.500	91.8	718	0.844	7.68	102	1350					< 0.000500	<0.00200		0 <0.00200	0.300 < 0.000150	0.0022	0.00234		0.18	0.62	_	BA-U-2	16.57				2	0.38	
BAC-1	1.31	72.4	431	0.197	8.42	404	1830		0.0121			< 0.000500	0.00359		0 <0.00200	0.172 < 0.000150	0.142	0.00278		0.28			BAC-1	19.56					1.17	0.852
BAC-2	10.3	233	1700	1.11	7.2	2590	8310		0.0519			< 0.000500	0.00556	_	0 <0.00200	0.491 < 0.000150	0.163	0.0145		0.17			BAC-2	18.83			9 5370	2.2	1.1	3.38
BAC-3	8.64	417	3400	1.3	7.24	4090	12900					<0.000500	0.00593		0 <0.00200	1.030 0.000105	0.0388	0.0206		0.17			BAC-3	17.57					1.61	5.64
BAC-4	0.553	72.4	488	1.22	7.76	269	1270	<0.00200	0.0319	0.0641	<0.00200	<0.000500	<0.00200	_	0 <0.00200	0.281 < 0.000150	0.0196	<0.00200		0.16	0.58	0.74	BAC-4	15.14	7.6	6 -57	7 2600	0	1.94	1.66
BAC-5	< 0.500	91.8	585	1.07	7.73	393	1540	<0.00200	0.0294	0.0594	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.334 < 0.000150	0.0168	<0.00200	< 0.00200	-0.1	0.27	0.17	BAC-5	15.26	7.68	3 -62	2 2960	0	2.03	1.9
BAC-6	4.4	137	536	0.866	7.84	963	2260	<0.00200	0.0248	0.0206	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.283 < 0.000150	0.0923	<0.00200	< 0.00200	-0.09	-0.38	-0.47	BAC-6	15.21	7.63	3 -44	4 3880	0	1.48	2.48
BAC-7	5.17	142	529	1.34	7.72	985	2760	<0.00200	0.0298	0.0184	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.284 < 0.000150	0.0908	0.00388	< 0.00200	0.09	0.34	0.43	BAC-7	15.95	7.74	+ -7:	1 4210	0	1.37	2.7
BAC-8	< 0.500	27.8	266	1.61	7.92	81.1	708	<0.00200	0.0519	0.0732	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.165 <0.000150	0.0055	<0.00200	< 0.00200	0.31	0.41	0.72	BAC-8	17.34	7.98	3 -91	1 1490	3.9	1.21	0.954
BAC-9	< 0.500	28.4	283	1.7	7.91	82.6	736	<0.00200	0.583	0.051	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.167 <0.000150	0.00451	<0.00200	< 0.00200	0.06	0.53	0.59	BAC-9	16.49	8.02	-69	9 1460	1.6	0.96	0.937
BAC-10	< 0.500	31.1	273	1.66	7.91	85	788	<0.00200	0.0527	0.0612	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.171 < 0.000150	0.00567	<0.00200	< 0.00200	0.15	0.5	0.65	BAC-10	17.35	8	3 -80	0 1500	2.9	0.94	0.963
Waste Water	Results																										Field Resu	ults		
																						Radium 226 and	Waste Water							
	Boron	Calcium	Chloride F	luoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	147	744	0.519	7.59	263	1840	< 0.00200	0.00927	0.0634	< 0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	0.271 < 0.000150	0.00206	<0.00200	< 0.00200	0.27	0.59	0.86	SI-U-1	16.23	7.68	-3 ⁻	7 3470	1.9	0.36	2.22
WW-U-1	1.39	323	1820	0.416	7.27	1140	5120	<0.00200	0.00592	0.0442	<0.00200	< 0.000500	0.00432	2 <0.0040	0 <0.00200	0.431 < 0.000150	0.00702	0.00748	< 0.00200	0.38	0.89	1.27	WW-U-1	16.64	7.24	4 -17	7 8020	0	0.41	5.05
WW-U-2	1.16	347	1170	0.633	7.45	872	4270	<0.00200	0.0114	0.0473	<0.00200	< 0.000500	0.00237	7 <0.0040	0 <0.00200	0.484 < 0.000150	0.00411	0.0113	< 0.00200	0.19	0.54	0.73	WW-U-2	17.11	7.41	-{	3 7650	1.1	0.51	4.82
WWC-1	12.9	584	4600	0.245	7.1	3190	13800	<0.00200	0.0215	0.0183	<0.00200	< 0.000500	<0.00200	0 < 0.0040	0 <0.00200	1.000 0.00018	0.00794	0.0146	<0.00200	0.13	0.82	0.95	WWC-1	16.68	7.13	s T	2 9830	0	1.37	6.19
WWC-2	< 0.500	54.2	316	0.534	7.75	128	824	<0.00200	0.0161	0.0296		< 0.000500	<0.00200		0 <0.00200	0.128 < 0.000150	0.00348			-0.06	0.5	0.44	WWC-2	15.94		<u>-9</u> ۴	5 1550	2.9	1.56	0.989
WWC-3	< 0.500	35.3	244	1.14	7.79	86	764	<0.00200	0.0226	0.0306		< 0.000500	<0.00200		0 <0.00200	0.151 <0.000150	0.00471	<0.00200		0.06	0.38		WWC-3	16.07		1 -144	4 1310	0	2.09	0.841
WWC-4	1.34	240	1030	0.449	7.97	673	2780		0.0133			<0.000500	<0.00200		0 <0.00200	0.388 < 0.000150	<0.00200			-0.03			WWC-4	15.29		_		0	1.4	3.14

									Rou	nd 12 (all re	sults ppm) As	ssessment N	Monitoring - Ap	oril 4 - May 15, 2019												Round 12			
													Results												T	Field Resul	ts		
Landfill Wells																					Radium 226 and	Landfill Wells							
			Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium		Cadmium		Cobalt Lead	Lithium Mercury		Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	-	Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	61.1	388			112	932			0.0841	<0.00200			<0.00400 <0.00200		0.0036	< 0.00200		0.13	0.4		CL-U-1	15.92	7.84		1880	1.6	0.42	1.2
CL-U-2	< 0.500	68.4	378			97.6	920			0.0943				<0.00400 <0.00200		0.00405	<0.00200	<0.00200	0.31	0.94		CL-U-2	15.68	7.81			4.7	0.6	1.17
CLW-1	< 0.500	39.4	303			64.5	692	<0.00200		0.0589	<0.00200	<0.000500		<0.00400 <0.00200	0.203 < 0.000150	0.00481	<0.00200	<0.00200	0	0.41		CLW-1	15.59	7.68			0.9	2.06	0.984
CLW-2 CLW-3	< 0.500 < 0.500	55.1 44.5	416 351	1.25 1.34		96.4 98.4	976 884	<0.00200		0.0743	<0.00200 <0.00200	<0.000500 <0.000500		<0.00400 <0.00200 <0.00400 <0.00200	0.253 <0.000150	0.00423	<0.00200 <0.00200	<0.00200 <0.00200	0.21 0.16	0.75 0.49		CLW-2 CLW-3	15.77 15.45	7.86 7.93			2.1	1.5	1.2
CLW-3	< 0.500	38.8	321			98.4 85.5	968			0.0970	<0.00200			<0.00400 <0.00200	0.232 < 0.000150	0.00488	<0.00200	<0.00200	0.18	0.49		CLW-3 CLW-4	15.45	7.93			12.7	1.57	1.1
CLW-4 CLW-5	< 0.500	38.5	340			85.6	908	<0.00200		0.0707				<0.00400 <0.00200		0.00423	<0.00200	<0.00200	0.14	0.34		CLW-4 CLW-5	15.07	7.94			3.8	3.03	1.05
CLW-5	< 0.500	38.4	270			72.8	828	<0.00200		0.0896	<0.00200	<0.000500		<0.00400 <0.00200	0.214 < 0.000150	0.00478	<0.00200	<0.00200	0.14	0.28		CLW-5	16.62	8.04			1 1	1.54	1.00
CLW-7	< 0.500	51.3	336			68.9	792	<0.00200		0.0511	<0.00200	<0.000500		<0.00400 <0.00200	0.205 < 0.000150	0.00323	<0.00200	<0.00200	-0.09	0.54		CLW-0	16.75	7.76			0.5	0.91	1.05
CLW-8	< 0.500	44.3	317	_		67.2	776	< 0.00200		0.0621	<0.00200	<0.000500		<0.00400 <0.00200	0.212 < 0.000150	0.00358	<0.00200	<0.00200	0.27	0.22		CLW-8	16.41	7.82			0.07	1.7	1.01
CLW-9	< 0.500	26.2	298			86.4	760	< 0.00200		0.0462	< 0.00200			<0.00400 <0.00200	0.168 < 0.000150	0.00518	< 0.00200	< 0.00200	0.21	0.21		CLW-9	15.39	7.98			3.6	0.83	0.993
CL-U-3	< 0.500	59.6	390			114	984			0.0495	< 0.00200	<0.000500		<0.00400 <0.00200		0.00372	< 0.00200	< 0.00200	0.21	0.48		CL-U-3	15.07	7.55			0.3	2.51	
																											0.0		
													Results													Field Resul	ts		
Bottom Ash																					Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	174	934	0.919	7.61	271	2050			0.0776	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	· · · · ·	0.00312	0.00458	<0.00200	0	0.4		BA-U-1	18.39	. 7.67			1.1	0.31	2.38
BA-U-2	< 0.500	91.8	718	0.844	7.68	102	1350	< 0.00200	0.0211	0.1670	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.300 < 0.000150	0.0022	0.00234	<0.00200	0.18	0.62	0.8	BA-U-2	16.57	7.81	97	2710	2	0.38	1.74
BAC-1	1.31	72.4	431	0.197	8.42	404	1830	< 0.00200	0.0121	0.0567	<0.00200	< 0.000500	0.00359	<0.00400 <0.00200	0.172 <0.000150	0.142	0.00278	<0.00200	0.28	0.09	0.37	BAC-1	19.56	8.75	-282	1340	22.8	1.17	0.852
BAC-2	10.3	233	1700	1.11	7.2	2590	8310	< 0.00200	0.0519	0.0180	<0.00200	< 0.000500	0.00556	<0.00400 <0.00200	0.491 <0.000150	0.163	0.0145	<0.00200	0.17	0.48	0.65	BAC-2	18.83	7.25	-39	5370	2.2	1.1	3.38
BAC-3	8.64	417	3400	1.3	7.24	4090	12900	< 0.00200	0.0472	0.0272	<0.00200	< 0.000500	0.00593	< 0.00400 < 0.00200	1.030 0.000105	0.0388	0.0206	<0.00200	0.17	0.77	0.94	BAC-3	17.57	7.34	-11	. 8.95	1.1	1.61	5.64
BAC-4	0.553	72.4	488	1.22	7.76	269	1270	< 0.00200	0.0319	0.0641	<0.00200	< 0.000500	<0.00200	< 0.00400 < 0.00200	0.281 < 0.000150	0.0196	<0.00200	<0.00200	0.16	0.58	0.74	BAC-4	15.14	7.6	5 -57	2600	0	1.94	1.66
BAC-5	< 0.500	91.8	585	1.07	7.73	393	1540	< 0.00200	0.0294	0.0594	<0.00200	< 0.000500	<0.00200	< 0.00400 < 0.00200	0.334 <0.000150	0.0168	<0.00200	<0.00200	-0.1	0.27	0.17	BAC-5	15.26	7.68	-62	2960	0	2.03	1.9
BAC-6	4.4	137	536	0.866	7.84	963	2260	< 0.00200	0.0248	0.0206	<0.00200	< 0.000500	<0.00200	<0.00400 <0.00200	0.283 <0.000150	0.0923	<0.00200	<0.00200	-0.09	-0.38	-0.47	BAC-6	15.21	7.63	-44	3880	0	1.48	2.48
BAC-7	5.17	142	529	1.34	7.72	985	2760	< 0.00200	0.0298	0.0184	<0.00200	< 0.000500	<0.00200	< 0.00400 < 0.00200	0.284 < 0.000150	0.0908	0.00388	<0.00200	0.09	0.34	0.43	BAC-7	15.95	7.74	71	. 4210	0	1.37	2.7
BAC-8	< 0.500	27.8	266	1.61	7.92	81.1	708	< 0.00200	0.0519	0.0732	<0.00200	< 0.000500		<0.00400 <0.00200		0.0055	<0.00200	<0.00200	0.31	0.41		BAC-8	17.34	7.98	-91	. 1490	3.9	1.21	0.954
BAC-9	< 0.500	28.4	283	1.7	7.91	82.6	736	<0.00200		0.051	<0.00200			<0.00400 <0.00200		0.00451	<0.00200		0.06	0.53		BAC-9	16.49	8.02	-69	1460	1.6	0.96	0.937
BAC-10	< 0.500	31.1	273	1.66	7.91	85	788	< 0.00200	0.0527	0.0612	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.171 < 0.000150	0.00567	<0.00200	<0.00200	0.15	0.5	0.65	BAC-10	17.35	8	-80	1500	2.9	0.94	0.963
Waste Water	Results																									Field Resu	ts		
																						Waste Water							
		Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic					Cobalt Lead	Lithium Mercury				Radium 226	Radium 228	228 combined		Temp	рН		Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	147	744	0.519		263	1840		0.00927					<0.00400 <0.00200		0.00206			0.27	0.59		SI-U-1	16.23	7.68		3470	1.9	0.36	2.22
WW-U-1	1.39	323	1820			1140	5120		0.00592	0.0442	<0.00200			<0.00400 <0.00200		0.00702	0.00748		0.38	0.89		WW-U-1	16.64	7.24			0	0.41	5.05
WW-U-2	1.16	347	1170			872	4270	< 0.00200			<0.00200			<0.00400 <0.00200		0.00411	0.0113		0.19	0.54		WW-U-2	17.11	7.41		7650	1.1	0.51	4.82
WWC-1	12.9	584	4600			3190	13800				<0.00200			<0.00400 <0.00200		0.00794	0.0146		0.13	0.82		WWC-1	16.68	7.13		9830	0	1.37	6.19
WWC-2	< 0.500	54.2	316			128	824			0.0296	<0.00200			<0.00400 <0.00200		0.00348	< 0.00200		-0.06	0.5		WWC-2	15.94	8.03		1550	2.9	1.56	0.989
WWC-3	< 0.500	35.3	244			86	764			0.0306	<0.00200			<0.00400 <0.00200		0.00471	< 0.00200		0.06	0.38		WWC-3	16.07	8.01			0	2.09	0.841
WWC-4	1.34	240	1030	0.449	7.97	673	2780	< 0.00200	0.0133	0.0412	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.388 < 0.000150	<0.00200	<0.00200	<0.00200	-0.03	0.56	0.53	WWC-4	15.29	7.38	-19	4910	0	1.4	3.14

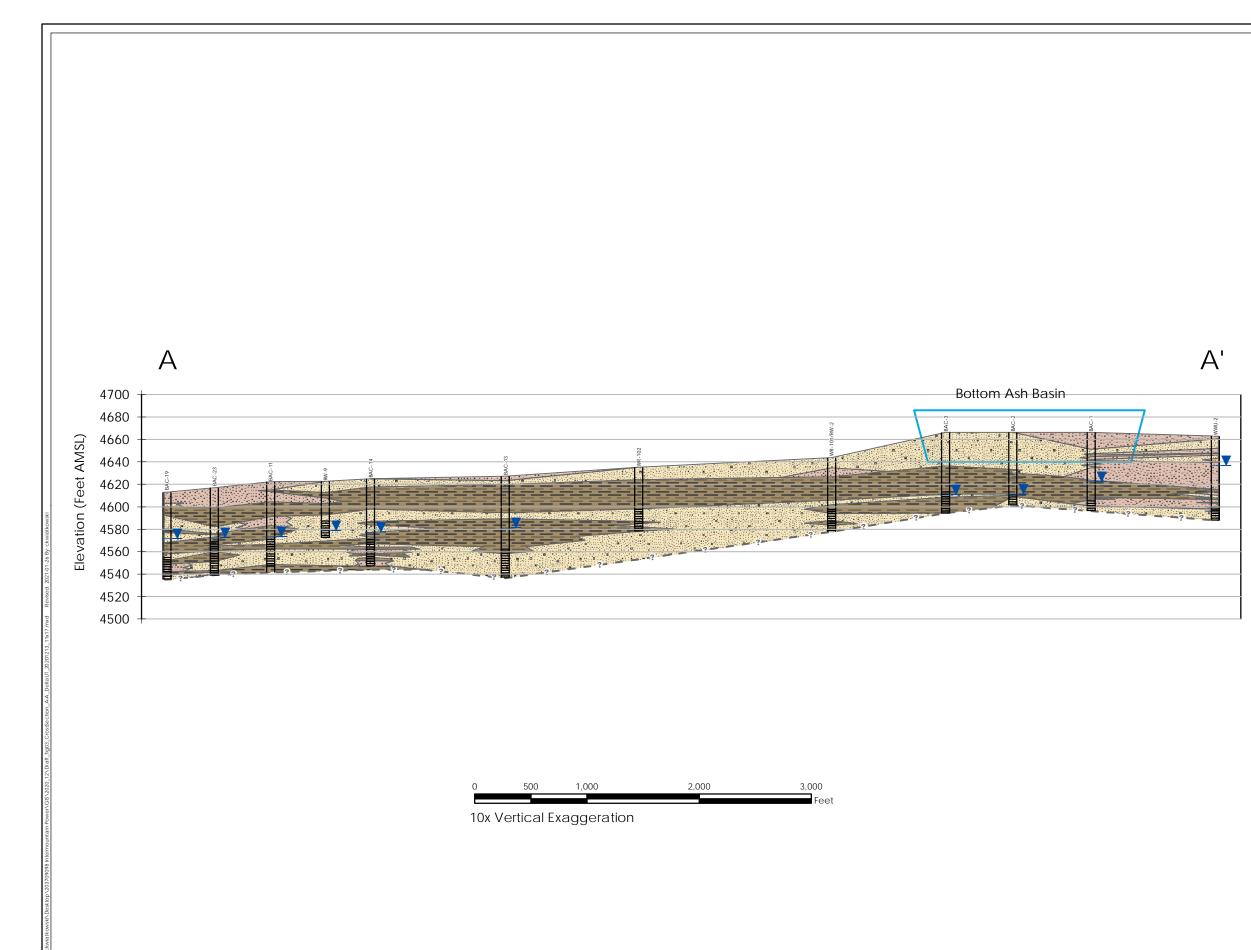
									Round 13	(all result	s ppm) Asses	sment Monite	oring - Sep	tember 23	- October 15,	2019											Round 13			
													Results												-		Field Resu	lts		
Landfill Wells																						Radium 226 and	Landfill Wells							
				Fluoride	<u> </u>	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium			Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	58.9	432	0.753	7.94	109	976					<0.000500			00 < 0.00200		0.0035	<0.00200		0.03	0.75		CL-U-1	15.85				0	1.62	0.497
CL-U-2	< 0.500	60.6	424	0.792	7.87	112	968	<0.00200				<0.000500			00 <0.00200		0.00412	<0.00200		0.03	0.57		CL-U-2	15.96				0	1.01	0.476
CLW-1	< 0.500	36	328	1.11	8.03	69.1	852			0.0612		<0.000500			00 <0.00200	0.187 <0.000150	0.00357	<0.00200	<0.00200	0.29			CLW-1	15.83			2.00	1.3	2.01	0.948
CLW-2	< 0.500	50.8	438	1.13	8.15	88.1	924					< 0.000500			00 < 0.00200	0.253 < 0.000150	0.0102	<0.00200	<0.00200	0.08			CLW-2	16.6				0	2	0.488
CLW-3	< 0.500	47	363	1.24	7.99	90.8	828		0.039	0.0976		<0.000500	< 0.0020		00 < 0.00200	0.242 <0.000150	0.00504	<0.00200	<0.00200	0.6	0.43		CLW-3	17.14				0.5	1.43	1.11
CLW-4	< 0.500	34.6	332	1.55	7.97	75.6	768					<0.000500			00 < 0.00200	0.235 < 0.000150	0.00441	< 0.00200	<0.00200	0.22	1.06		CLW-4	16.47				2.7	1.61	1.03
CLW-5	< 0.500	37.5	351	1.89	8	76.9	1060	<0.00200		0.0685		<0.000500			00 < 0.00200		0.00479	<0.00200	<0.00200	0.25	0.44		CLW-5	17.05	-			1.9	1.84	1.09
CLW-6	< 0.500	34.5	330	1.7	7.98	74.4	1110	<0.00200				<0.000500	< 0.0020		00 < 0.00200	0.239 <0.000150	0.00607	<0.00200	<0.00200	0.42	1.05		CLW-6	16.65				1.6	2.69	1.02
CLW-7	< 0.500	43.7	362	1	7.89	71.4	796	<0.00200				<0.000500			00 < 0.00200	0.192 < 0.000150	0.00402	< 0.00200	<0.00200	0.12	-0.03		CLW-7	17.74				0.6	1.24	1.01
CLW-8	< 0.500	39.9	337	1.04	7.98	70.7	836	<0.00200	0.0266	0.0521		<0.000500	0.0000			0.196 < 0.000150	0.00449	<0.00200	<0.00200	-0.05	0.32		CLW-8	16.37				1	1.51	0.969
CLW-9	< 0.500	26.9	288	1.94	8.12	88.7	792	<0.00200		0.0469		<0.000500	0.0028			0.181 < 0.000150	0.00573	<0.00200	<0.00200	0.36	0.02			16.03				0.2	7.56	1.03
CL-U-3	< 0.500	64.6	304	0.429	8.85	168	596	<0.00200	<0.00200	0.0342	< 0.00200	<0.000500	0.073	88 < 0.0040	00 <0.00200	0.152 <0.000150	0.00964	<0.00200	<0.00200	2.13	0.21	2.13	CL-U-3	16.1	9.08	-76	5 503	0	1.84	0.322
													Results														Field Resu	lts		
Bottom Ash																						Radium 226 and	Bottom Ash							
				Fluoride	<u> </u>	Sulfate	TDS	Antimony		Barium	Beryllium	· · · ·	Chromium			· · · · · · · · · · · · · · · · · · ·	1	Selenium		Radium 226	Radium 228	228 combined		Temp	рН			Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	173	1140	0.587	7.71	314	2290					<0.000500			00 <0.00200		0.00302	0.00502		0.16	0.73		BA-U-1	16.68				0	1.29	1.03
BA-U-2	< 0.500	47.1	400	0.893	8.18	56.6	972					<0.000500			00 <0.00200	0.247 <0.000150	0.00332	<0.00200	<0.00200	0.26	0.7		BA-U-2	16.37				1.4	0.8	0.99
BAC-1	1.43	93.7	801	0.307	8.16	701	2730	<0.00200				<0.000500			00 < 0.00200		0.128	0.00436		0	0.14		BAC-1	17.09				1.32	3.4	2.53
BAC-2	9.49	208	1730	1.07	7.45	2760	7240	<0.00200		0.0192		<0.000500	0.005		00 <0.00200	0.466 0.00028	0.19	0.0145	<0.00200	0.12	0.39		BAC-2	16.92				3.3	2.45	6.59
BAC-3	7.32	441	3500	0.675	7.49	4310	13900					<0.000500	0.0044		00 <0.00200	0.957 <0.000150	0.0255	0.0236		0	0.45		BAC-3	17.34				2	0.61	10.4
BAC-4	0.606	66.7	573	1.13	7.95	330	1820	<0.00200		0.0637		<0.000500	<0.0020			0.279 <0.000150	0.0218	<0.00200	<0.00200	0.15	0.16		BAC-4	16.73		_		0.6	1.18	1.64
BAC-5	< 0.500	66.2	568	1.11	8.07	250	1410	<0.00200				<0.000500	<0.0020		00 <0.00200	0.289 <0.000150	0.00941	<0.00200	<0.00200	0.25	0.36		BAC-5	17.52		_		0.4	1.33	1.63
BAC-6	2.66	119	625	0.796	7.86	646	1870	<0.00200	0.0225			<0.000500			00 <0.00200	0.288 < 0.000150	0.0651	0.00273	<0.00200	0.31	0.83		BAC-6	16.78				0.7	0.87	1.71
BAC-7	5.06	107	566	1.31	7.96	1170	2320	<0.00200				<0.000500			00 <0.00200	0.248 <0.000150	0.0887	0.00276	<0.00200	0.04	0.22		BAC-7	17.16	7.83	_		3.1	0.86	2.56
BAC-8	< 0.500	23.2	280	1.53	8.05	95.5	784			0.0389		<0.000500			00 <0.00200	0.156 <0.000150	0.00545	<0.00200	<0.00200	0.03	1.21		BAC-8	15.03			10 10	0.2	5.45	0.989
BAC-9	< 0.500	27.1	299	1.45	8.06	87.6	788			0.0388		<0.000500			00 <0.00200		0.00483	<0.00200		0.09	0		BAC-9	15.03		,	5 1500	0.3	1.2	0.993
BAC-10	< 0.500	25.7	280	1.51	8.09	87.4	808	<0.00200	0.0595	0.045	< 0.00200	<0.000500	<0.0020	00 < 0.0040	00 <0.00200	0.16 < 0.000150	0.00584	<0.00200	<0.00200	0.8	1	1.8	BAC-10	14.98	7.65	-32	L 1560	0.1	1.15	0.999
Waste Water	Results																										Field Resu	lts		
																							Waste Water							
	Boron C	alcium	Chloride	Fluoride	рН	Sulfate	TDS			Barium	Beryllium					Lithium Mercury		Selenium		Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	136	824	0.38	7.71	281	1850	<0.00200	0.00981	0.0599	< 0.00200	<0.000500	<0.0020	00 <0.0040	00 <0.00200	0.277 <0.000150	<0.00200	<0.00200	<0.00200	0.19	1.61	1.61	SI-U-1	16.51	7.63	-12	2 3290	0.1	0.78	2.11
WW-U-1	1.41	311	1010	<0.100	7.37	588	5720	<0.00200	0.00594	0.0419	< 0.00200	< 0.000500	0.0016	66 < 0.0040	00 <0.00200	0.485 <0.000150	0.00689	0.0077	<0.00200	-0.08	1.42	1.42	WW-U-1	16.11	7.19	14	4 8000	2.8	1.93	5.04
WW-U-2	1.02	346	2020	<0.100	7.3	855	4400	<0.00200	0.00735	0.0499	< 0.00200	<0.000500	<0.0020	00 <0.0040	00 <0.00200	0.54 <0.000150	0.00317	0.011	<0.00200	-0.2	1.36	1.36	WW-U-2	16.06	7.38	8 22	2 7390	0.6	1.32	4.66
WWC-1	13.2	473	4940	0.292	7.42	3570	14900	<0.00200	0.0264	0.0205	< 0.00200	<0.000500	<0.0020	00 < 0.0040	00 <0.00200	0.974 0.000278	0.0113	0.016	<0.00200	0.23	0.9	0.9	WWC-1	15.13	6.79	36	5 1910	0	3.67	11.8
WWC-2	< 0.500	57.6	349	0.427	7.99	141	876	<0.00200	0.0166	0.0336	< 0.00200	<0.000500	< 0.0020	00 < 0.0040	00 <0.00200	0.126 <0.000150	0.00327	<0.00200	<0.00200	-0.15	0.81	0.81	WWC-2	14.82	7.32	29	9 1720	0.3	0.47	1.1
WWC-3	< 0.500	33.3	262	0.986	8.13	95.3	776	<0.00200	0.0236	0.0331	< 0.00200	<0.000500	<0.0020	00 <0.0040	00 <0.00200	0.151 <0.000150	0.00477	<0.00200	<0.00200	3.1	0.58	3.1	WWC-3	15.96	7.72	-244	1 1420	0	0.2	0.909
WWC-4	1.06	176	968	0.453	7.61	594	3080	<0.00200	0.0154	0.0456	< 0.00200	<0.000500	<0.0020	00 < 0.0040	00 <0.00200	0.329 <0.000150	<0.00200	0.00177	< 0.00200	0.72	0.57	1.29	WWC-4	14.38	7.22	34	4460	0	2.35	2.86

									Round 13	(all results	ppm) Assess	ment Monito	oring - Septe	mber 23 - C	ctober 15,	2019										F	ound 13			
													Results														Field Resul	ts		
Landfill Wells																						Radium 226 and	Landfill Wells							
			Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium		Chromium	Cobalt	Lead	<u> </u>	Molybdenum	Selenium		Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)		TDS
CL-U-1	< 0.500	58.9	432	0.753	7.94	109	976	<0.00200	0.0289	0.0799		<0.000500	<0.00200		<0.00200		0.0035	<0.00200		0.03	0.75		CL-U-1	15.85	7.75	-159	777	0	1.62	0.497
CL-U-2	< 0.500	60.6	424	0.792	7.87	112	968	<0.00200	0.0251	0.0935		<0.000500	<0.00200		<0.00200	0.229 <0.000150	0.00412	<0.00200	<0.00200	0.03			CL-U-2	15.96	7.7	-158		0	1.01	0.476
CLW-1	< 0.500	36	328	1.11	8.03	69.1	852	<0.00200	0.0295	0.0612		<0.000500	0.00742		<0.00200	0.187 <0.000150	0.00357	<0.00200	<0.00200	0.29				15.83	7.73	-48	1480	1.3	2.01	0.948
CLW-2	< 0.500	50.8	438	1.13	8.15	88.1	924	<0.00200	0.0283	0.1510		<0.000500	<0.00200		<0.00200	0.253 < 0.000150	0.0102	<0.00200	<0.00200	0.08				16.6	7.79	-191		0	2	0.488
CLW-3	< 0.500	47	363	1.24	7.99	90.8	828	<0.00200	0.039	0.0976		<0.000500	<0.00200		<0.00200	0.242 <0.000150	0.00504	<0.00200	<0.00200	0.6			CLW-3	17.14	7.84			0.5	1.43	1.11
CLW-4	< 0.500	34.6	332	1.55	7.97	75.6	768	<0.00200	0.0387	0.0797		<0.000500	<0.00200		<0.00200	0.235 <0.000150	0.00441	<0.00200	<0.00200	0.22				16.47	7.88	-233	1600	2.7	1.61	1.03
CLW-5	< 0.500	37.5	351	1.89	8	76.9	1060	<0.00200	0.0231	0.0685		<0.000500	<0.00200		<0.00200	0.237 <0.000150	0.00479	<0.00200	<0.00200	0.25				17.05	7.83			1.9	1.84	1.09
CLW-6	< 0.500	34.5	330	1.7	7.98	74.4	1110	<0.00200	0.0145	0.0936		<0.000500	<0.00200		<0.00200	0.239 <0.000150	0.00607	<0.00200	<0.00200	0.42			CLW-6	16.65	7.7	-229		1.6	2.69	1.02
CLW-7	< 0.500	43.7	362	1	7.89	71.4	796	<0.00200	0.0238	0.0523		<0.000500	<0.00200		<0.00200	0.192 <0.000150	0.00402	<0.00200	<0.00200	0.12				17.74	7.76	-57	1580	0.6	1.24	1.01
CLW-8	< 0.500	39.9	337	1.04	7.98	70.7	836	<0.00200	0.0266	0.0521		<0.000500	0.00000		<0.00200	0.196 <0.000150	0.00449	<0.00200	<0.00200	-0.05			CLW-8	16.37	7.81	-36		1	1.51	0.969
CLW-9	< 0.500	26.9	288	1.94	8.12	88.7	792	<0.00200	0.0398	0.0469		<0.000500	0.00287		<0.00200	0.181 <0.000150	0.00573	<0.00200	<0.00200	0.36			0 0	16.03	7.72	-299	1610	0.2	7.56	1.03
CL-U-3	< 0.500	64.6	304	0.429	8.85	168	596	<0.00200	<0.00200	0.0342	<0.00200	<0.000500	0.0738	<0.00400	<0.00200	0.152 <0.000150	0.00964	<0.00200	<0.00200	2.13	0.21	2.13	CL-U-3	16.1	9.08	-76	503	0	1.84	0.322
													Results														Field Resul	ts		
Bottom Ash																						Radium 226 and	Bottom Ash							
		Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic				Chromium	Cobalt	Lead	<u> </u>		Selenium		Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	173	1140	0.587	7.71	314	2290	<0.00200	0.0223	0.0770		<0.000500	<0.00200		<0.00200		0.00302	0.00502		0.16	0.73		BA-U-1	16.68	7.47			0	1.29	1.03
BA-U-2	< 0.500	47.1	400	0.893	8.18	56.6	972	<0.00200	0.0283	0.1270		<0.000500	<0.00200		<0.00200	0.247 < 0.000150	0.00332	<0.00200	<0.00200	0.26			BA-U-2	16.37	8.94	-255		1.4	0.8	0.99
BAC-1	1.43	93.7	801	0.307	8.16	701	2730	<0.00200	0.0126	0.0460		<0.000500	0.00163		<0.00200		0.128		<0.00200	0	0.14		BAC-1	17.09	7.98	-50		1.32	3.4	2.53
BAC-2	9.49	208	1730	1.07	7.45	2760	7240	<0.00200	0.0647	0.0192		<0.000500	0.0058		<0.00200	0.466 0.00028	0.19	0.0145	<0.00200	0.12			BAC-2	16.92	7.19	28	10600	3.3	2.45	6.59
BAC-3	7.32	441	3500	0.675	7.49	4310	13900	0.0027	0.0356	0.0321		<0.000500	0.00449		<0.00200	0.957 <0.000150	0.0255	0.0236	<0.00200	0	0.45		BAC-3	17.34	7.1	20	16700	2	0.61	10.4
BAC-4	0.606	66.7	573	1.13	7.95	330	1820	<0.00200	0.0322	0.0637	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.279 <0.000150	0.0218	<0.00200	<0.00200	0.15	0.16	0.31	BAC-4	16.73	7.81	-57	2570	0.6	1.18	1.64
BAC-5	< 0.500	66.2	568	1.11	8.07	250	1410	<0.00200	0.0321	0.0814	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.289 <0.000150	0.00941	<0.00200	<0.00200	0.25			BAC-5	17.52	7.84	-50		0.4	1.33	1.63
BAC-6	2.66	119	625	0.796	7.86	646	1870	<0.00200	0.0223	0.0338	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.288 < 0.000150	0.0651	0.00273	<0.00200	0.31	0.83	1.14	BAC-6	16.78	7.74	-52	2670	0.7	0.87	1.71
BAC-7	5.06	107	566	1.31	7.96	1170	2320	<0.00200	0.0314	0.0174	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.248 < 0.000150	0.0887	0.00276	<0.00200	0.04	0.22	0.26	BAC-7	17.16	7.83	-156	4000	3.1	0.86	2.56
BAC-8	< 0.500	23.2	280	1.53	8.05	95.5	784	<0.00200	0.0639	0.0389	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.156 < 0.000150	0.00545	<0.00200	<0.00200	0.03	1.21	1.21	BAC-8	15.03	7.65	-41	1540	0.2	5.45	0.989
BAC-9	< 0.500	27.1	299	1.45	8.06	87.6	788	<0.00200	0.0593	0.0388	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.16 < 0.000150	0.00483	<0.00200	<0.00200	0.09	0	0.53	BAC-9	15.03	7.68	-23	1560	0.3	1.2	0.993
BAC-10	< 0.500	25.7	280	1.51	8.09	87.4	808	<0.00200	0.0595	0.045	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.16 < 0.000150	0.00584	<0.00200	<0.00200	0.8	1	1.8	BAC-10	14.98	7.65	-31	1560	0.1	1.15	0.999
Waste Water	Results																										Field Resul	ts		
																						Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	136	824	0.38	7.71	281	1850	<0.00200	0.00981	0.0599	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.277 < 0.000150	<0.00200	<0.00200	<0.00200	0.19	1.61	1.61	SI-U-1	16.51	7.63	-12	3290	0.1	0.78	2.11
WW-U-1	1.41	311	1010	<0.100	7.37	588	5720	<0.00200	0.00594	0.0419	<0.00200	<0.000500	0.00166	<0.00400	<0.00200	0.485 < 0.000150	0.00689	0.0077	<0.00200	-0.08	1.42	1.42	WW-U-1	16.11	7.19	14	8000	2.8	1.93	5.04
WW-U-2	1.02	346	2020	<0.100	7.3	855	4400	<0.00200	0.00735	0.0499	<0.00200	< 0.000500	<0.00200	< 0.00400	<0.00200	0.54 < 0.000150	0.00317	0.011	<0.00200	-0.2	1.36	1.36	WW-U-2	16.06	7.38	22	7390	0.6	1.32	4.66
WWC-1	13.2	473	4940	0.292	7.42	3570	14900	<0.00200	0.0264	0.0205	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.974 0.000278	0.0113	0.016	<0.00200	0.23	0.9	0.9	WWC-1	15.13	6.79	36	1910	0	3.67	11.8
WWC-2	< 0.500	57.6	349	0.427	7.99	141	876	<0.00200	0.0166	0.0336	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.126 < 0.000150	0.00327	<0.00200	<0.00200	-0.15	0.81	0.81	WWC-2	14.82	7.31	-29	1720	0.3	0.47	1.1
WWC-3	< 0.500	33.3	262	0.986	8.13	95.3	776	<0.00200	0.0236	0.0331	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.151 < 0.000150	0.00477	<0.00200	<0.00200	3.1	0.58	3.1	WWC-3	15.96	7.72	-244	1420	0	0.2	0.909
WWC-4	1.06	176	968	0.453	7.61	594	3080	<0.00200	0.0154	0.0456	<0.00200	<0.000500	<0.00200	<0.00400	<0.00200	0.329 < 0.000150	<0.00200	0.00177	<0.00200	0.72	0.57	1.29	WWC-4	14.38	7.21	-34	4460	0	2.35	2.86

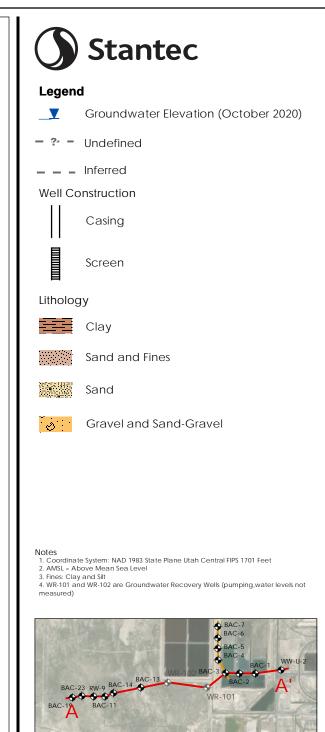
									Round 13	B (all results	s ppm) Assessment Monit	oring - Sept	ember 23 - C	October 15, 2	019										F	Round 13			
												Results														Field Resu	ts		
Landfill Wells																					Radium 226 and	Landfill Wells			1 /				
				Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium		Chromium		Lead			Selenium	Thallium		adium 228	228 combined		Temp	рН			Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	58.9	432	0.753	7.94	109	976	< 0.00200							0.239 < 0.000150	0.0035	< 0.00200		0.03	0.75		CL-U-1	15.85	7.75			0	1.62	0.497
CL-U-2	< 0.500	60.6	424	0.792	7.87		968	< 0.00200	0.0101	0.0935	<0.00200 <0.000500	< 0.00200			0.229 < 0.000150	0.00412	< 0.00200	< 0.00200	0.03	0.57		CL-U-2	15.96	7.7			0	1.01	0.476
CLW-1	< 0.500	36	328		8.03		852	<0.00200		0.0612	<0.00200 <0.000500	0.00742			0.187 < 0.000150	0.00357	<0.00200	<0.00200	0.29	0.38		CLW-1	15.83	7.73		1.00	1.3	2.01	0.948
CLW-2	< 0.500	50.8	438	1.13	8.15		924			0.1510	<0.00200 <0.000500	<0.00200			0.253 < 0.000150	0.0102	<0.00200	<0.00200	0.08	0.56			16.6	7.79			0	1 42	0.488
CLW-3	< 0.500 < 0.500	24.6	363 332	1.24 1.55	7.99 7.97	90.8 75.6	828 768		0.039	0.0976 0.0797	<0.00200 <0.000500 <0.00200 <0.000500	<0.00200			0.242 <0.000150 0.235 <0.000150	0.00504 0.00441	<0.00200 <0.00200	<0.00200 <0.00200	0.6	0.43		CLW-3 CLW-4	17.14	7.84			0.5	1.43	1.11
CLW-4 CLW-5	< 0.500	34.6 37.5	332	1.55	7.97	75.6	1060	<0.00200		0.0797	<0.00200 <0.000500	<0.00200			0.233 <0.000150	0.00441	<0.00200	<0.00200	0.22	1.06 0.44		CLW-4 CLW-5	16.47 17.05	7.88 7.83			2.7	1.61 1.84	1.03
CLW-6	< 0.500	34.5	330	1.05	0 7 08	76.9	1110	<0.00200		0.0085	<0.00200 <0.000300	<0.00200			0.239 < 0.000150	0.00479	<0.00200	<0.00200	0.42	1.05		CLW-5 CLW-6	16.65	7.83			1.9	2.69	1.09
CLW-7	< 0.500	43.7	362	1.7	7.98	74.4	796	<0.00200		0.0523	<0.00200 <0.000500	<0.00200			0.192 < 0.000150	0.00402	<0.00200	<0.00200	0.42	-0.03		CLW-0	17.74	7.76			1.0	1.24	1.02
CLW-9	< 0.500	39.9	337	1.04	7.98	70.7	836	<0.00200	0.0238	0.0523	<0.00200 <0.000500	0.00000			0.192 <0.000150	0.00402	<0.00200	<0.00200	-0.05	0.32		CLW-8	16.37	7.81			0.0	1.51	0.969
CLW-9	< 0.500	26.9	288	1.94	8.12	88.7	792	<0.00200		0.0321	<0.00200 <0.000500	0.00287			0.181 < 0.000150	0.00573	<0.00200	<0.00200	0.36	0.02	0.27	CLW-9	16.03	7.72			0.2	7.56	1.03
CL-U-3	< 0.500	64.6	304	0.429	8.85	168	596	<0.00200		0.0342	<0.00200 <0.000500	0.0738			0.152 < 0.000150	0.00964	<0.00200	<0.00200	2.13	0.02	2.13	CL-U-3	16.1	9.08			0	1.84	0.322
0100		0.110		01120	0.00	100				0.0011		0.0700								0.22			10.1					1.0.1	0.011
		I										Results														Field Resu	ts		
Bottom Ash																					Radium 226 and	Bottom Ash							
	Boron (Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum	Selenium	Thallium	Radium 226 Ra	adium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	173	1140	0.587	. 7.71	314	2290	<0.00200	0.0223	0.0770	<0.00200 <0.000500	<0.00200	0 <0.00400	<0.00200	0.385 < 0.000150	0.00302	0.00502	<0.00200	0.16	0.73	0.73	BA-U-1	16.68	. 7.47	-58	1610	0	1.29	1.03
BA-U-2	< 0.500	47.1	400	0.893	8.18	56.6	972	<0.00200	0.0283	0.1270	<0.00200 <0.000500	<0.00200	0 <0.00400	< 0.00200	0.247 < 0.000150	0.00332	<0.00200	<0.00200	0.26	0.7	0.96	BA-U-2	16.37	8.94	-255	1550	1.4	0.8	0.99
BAC-1	1.43	93.7	801	0.307	8.16	701	2730	<0.00200	0.0126	0.0460	<0.00200 <0.000500	0.00163	3 <0.00400	<0.00200	0.259 <0.000150	0.128	0.00436	<0.00200	0	0.14	0.14	BAC-1	17.09	7.98	-50	3950	1.32	3.4	2.53
BAC-2	9.49	208	1730	1.07	7.45	2760	7240	<0.00200	0.0647	0.0192	<0.00200 <0.000500	0.0058	8 <0.00400	<0.00200	0.466 0.00028	0.19	0.0145	<0.00200	0.12	0.39	0.51	BAC-2	16.92	7.19	28	10600	3.3	2.45	6.59
BAC-3	7.32	441	3500	0.675	7.49	4310	13900	0.0027	0.0356	0.0321	<0.00200 <0.000500	0.00449	9 <0.00400	<0.00200	0.957 <0.000150	0.0255	0.0236	<0.00200	0	0.45	0.45	BAC-3	17.34	7.1	20	16700	2	0.61	10.4
BAC-4	0.606	66.7	573	1.13	7.95	330	1820	<0.00200	0.0322	0.0637	<0.00200 <0.000500	<0.00200	0 <0.00400	<0.00200	0.279 <0.000150	0.0218	<0.00200	<0.00200	0.15	0.16	0.31	BAC-4	16.73	7.81	-57	2570	0.6	1.18	1.64
BAC-5	< 0.500	66.2	568	1.11	8.07	250	1410	<0.00200	0.0321	0.0814	<0.00200 <0.000500	<0.00200			0.289 <0.000150	0.00941	<0.00200	<0.00200	0.25	0.36	0.61	BAC-5	17.52	7.84			0.4	1.33	1.63
BAC-6	2.66	119	625	0.796	7.86	646	1870	<0.00200	0.0223	0.0338	<0.00200 <0.000500	<0.00200			0.288 <0.000150	0.0651	0.00273	<0.00200	0.31	0.83		BAC-6	16.78	7.74			0.7	0.87	1.71
BAC-7	5.06	107	566	1.31	7.96	1170	2320	<0.00200		0.0174		<0.00200			0.248 < 0.000150	0.0887	0.00276	<0.00200	0.04	0.22		BAC-7	17.16	7.83			3.1	0.86	2.56
BAC-8	< 0.500	23.2	280	1.53	8.05	95.5	784			0.0389	<0.00200 <0.000500	<0.00200			0.156 <0.000150	0.00545	<0.00200	<0.00200	0.03	1.21		BAC-8	15.03	7.65		1540	0.2	5.45	0.989
BAC-9	< 0.500	27.1	299	1.45	8.06	87.6	788	<0.00200				<0.00200			0.16 < 0.000150	0.00483	<0.00200		0.09	0	0.53	BAC-9	15.03	7.68	20	1560	0.3	1.2	0.993
BAC-10	< 0.500	25.7	280	1.51	8.09	87.4	808	<0.00200	0.0595	0.045	<0.00200 <0.000500	<0.00200	0 <0.00400	<0.00200	0.16 < 0.000150	0.00584	<0.00200	<0.00200	0.8	1	1.8	BAC-10	14.98	7.65	-31	1560	0.1	1.15	0.999
																									<u>'</u> ــــــــــــــــــــــــــــــــــــ				
Waste Water	Results																									Field Resu	ts		
				-		6 K.	-		• • • •									-				Waste Water	-		DEDOX		- 1.1.1. (NIT(1.))	20	700
		Calcium	Chloride		рн	Sulfate	-	/	Arsenic	Barium	Beryllium Cadmium									adium 228	228 combined		Temp	pH			Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	136	824	0.38	7.71	281	1850		0.00981	0.0599					0.277 < 0.000150	< 0.00200	<0.00200		0.19	1.61		SI-U-1	16.51	7.63		3290	0.1	0.78	2.11
WW-U-1 WW-U-2	1.41	311 346	1010 2020	<0.100 <0.100	7.37 7.3	588 855	5720 4400		0.00594	0.0419 0.0499			6 <0.00400 0 <0.00400		0.485 <0.000150 0.54 <0.000150	0.00689 0.00317	0.0077 0.011	<0.00200 <0.00200	-0.08 -0.2	1.42 1.36		WW-U-1 WW-U-2	16.11 16.06	7.19 7.38		8000 7390	2.8	1.93	5.04 4.66
																											0.6	1.32	
WWC-1	13.2 < 0.500	473	4940	0.292	7.42 7.99		14900	<0.00200 <0.00200				<0.00200			0.974 0.000278 0.126 <0.000150	0.0113	0.016	<0.00200 <0.00200	0.23	0.9		WWC-1	15.13 14.82	6.79			03	3.67 0.47	11.8
WWC-2	< 0.500	57.6 33.3	262	0.427 0.986		141 95.3	876 776	<0.00200				<0.00200			0.126 < 0.000150	0.00327	<0.00200 <0.00200		-0.15 3.1	0.81 0.58		WWC-2 WWC-3	14.82	7.31			0.3	0.47	0.909
WWC-3	< 0.500	33.3	968	0.986	8.13 7.61	95.3 594	3080					<0.00200			0.329 < 0.000150	<0.00477	<0.00200	<0.00200	0.72	0.58		WWC-3	15.96	7.72			0	2.35	2.86
WWC-4	1.00	1/0	908	0.455	10.1	594	3080	<0.00200	0.0154	0.0450	<u>\0.00200</u> \0.000500	<u><u></u> </u>	<0.00400	<0.00200	0.529 < 0.000150	<0.00200	0.00177	<0.00200	0.72	0.57	1.29	WWC-4	14.38	/.21	-54	4400	0	2.33	2.00

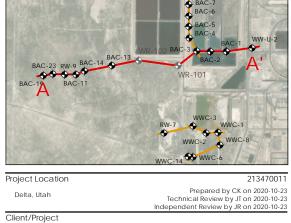
									Roun	d 14 (all re	sults ppm) A	ssessment M	onitoring - N	/larch 25 - /	April 9, 2020											Rc	ound 14	
													Results														Field Res	sults
Landfill Wells																					I	Radium 226 and	Landfill Wells					
	Boron			Fluoride		Sulfate	TDS	Antimony		Barium	Beryllium		Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum		Thallium	Radium 226		228 combined		Temp	рН	REDOX	Conductance	
CL-U-1	< 0.500		429	0.979	7.70	122	916	<0.00200	0.0310		<0.00200	<0.000500	0.00551	<0.00400			0.00505		<0.00200			1.29	-	14.31	7.53	-172	1970	
CL-U-2	< 0.500		408	1.01	7.68	118	964	<0.00200	0.0266	0.0901	<0.00200	<0.000500	<0.00200		< 0.00200	0.221 < 0.000150	0.00404		<0.00200			1.23	CL-U-2	14.47	7.47	-132	1890	
CLW-1	< 0.500		304	0.979	7.91	61.0	856	<0.00200	0.0300	0.0612	<0.00200	<0.000500	0.00551			0.172 < 0.000150	0.00527	< 0.00200	<0.00200			0	CLW-1	15.51	7.45	-110	1500	
CLW-2	< 0.500		418	1.23	7.84	86.0	992	<0.00200	0.0258	0.0770	<0.00200	<0.000500	0.00337		< 0.00200	0.212 0.000278	0.00556		<0.00200			0	CLW-2	15.46	7.59	-189	1950	
CLW-3	< 0.500		361	1.27	7.88	101	488	<0.00200	0.0387	0.0991	<0.00200	<0.000500	0.00251		< 0.00200	0.206 < 0.000150	0.00560		<0.00200			0	CLW-3	15.26	7.66	-230	1760	
CLW-4	< 0.500		323	1.34	7.88	85.5	960	<0.00200	0.0381	0.0822	<0.00200	<0.000500	0.00245		< 0.00200	0.204 < 0.000150	0.00508		<0.00200			0	CLW-4	15.25	7.67	-237	1650	
CLW-5	< 0.500		340	1.58	7.86	83.9	800	<0.00200	0.0227	0.0737	<0.00200	<0.000500	<0.00200		< 0.00200	0.198 < 0.000150	0.00585	< 0.00200	<0.00200			0	CLW-5	15.20	7.57	-234	1730	
CLW-6	< 0.500	33.0	312	1.48	7.94	81.2	544	<0.00200	0.0225	0.0878	<0.00200	<0.000500	<0.00200		-	0.203 < 0.000150	0.00540		<0.00200			0	CLW-6	14.63	7.57	-236	1650	
CLW-7	< 0.500		329	1.03	7.79	60.5	1020	<0.00200	0.0242	0.0526	<0.00200	<0.000500	<0.00200			0.180 < 0.000150	0.00392	< 0.00200	<0.00200			0	CLW-7	16.02	7.45	-97	1610	
CLW-8	< 0.500		316	1.03	7.86	63.7	880	<0.00200	0.0267	0.0634	<0.00200	<0.000500	<0.00200		< 0.00200	0.182 < 0.000150	0.00400		<0.00200			0	CLW-8	16.24	7.47	-106	1540	
CLW-9	< 0.500	25.2	296	1.90	7.96	83.5	932	<0.00200	0.0402	0.0499	<0.00200	<0.000500	<0.00200			0.170 < 0.000150	0.00597	< 0.00200	<0.00200			0	CLW-9	13.95	7.72	-276	1590	
CL-U-3	< 0.500	57.7	386	0.889	7.75	116	1090	<0.00200	0.0206	0.0478	<0.00200	<0.000500	0.00553	<0.00400	< 0.00200	0.205 < 0.000150	0.00467	< 0.00200	<0.00200	-0.06	0.95	0.95	CL-U-3	14.31	7.51	-210	1870	0
													Results														Field Res	sults
																							-				Tield Kes	
Bottom Ash																						Radium 226 and	Bottom Ash				Tield Kes	
Bottom Ash	Boron			Fluoride		Sulfate	TDS	· · · · · · · · · · · · · · · · · · ·	Arsenic	Barium	Beryllium		Chromium	Cobalt	Lead	Lithium Mercury	Molybdenum		Thallium	Radium 226	Radium 228	Radium 226 and 228 combined		Тетр	рН		Conductance	Turbidit
BA-U-1	< 0.500	188	1090	0.817	7.50	367	3050	<0.00200	0.0226	0.0774	<0.00200	<0.000500	Chromium 0.0711	<0.00400	< 0.00200	0.375 < 0.000150	0.0152	0.00519	<0.00200	0.28	Radium 228 1.20		BA-U-1	15.43	7.22	-203	Conductance 4340	Turbidit
BA-U-1 BA-U-2	< 0.500 < 0.500	188 2.47	1090 395	0.817 0.912	7.50 10.70	367 42.7	3050 872	<0.00200 <0.00200	0.0226 0.00683	0.0774 0.0804	<0.00200 <0.00200	<0.000500 <0.000500	Chromium 0.0711 0.00611	<0.00400 <0.00400	<pre>0 <0.00200 0 <0.00200</pre>	0.375 <0.000150 0.327 <0.000150	0.0152	0.00519 <0.00200	<0.00200 <0.00200	0.28	Radium 228 1.20 0.70		BA-U-1 BA-U-2	15.43 15.98	7.22 10.31	-203 -330	Conductance 4340 469	Turbidit
BA-U-1 BA-U-2 BAC-1	< 0.500 < 0.500 3.00	188 2.47 239	1090 395 1890	0.817 0.912 0.645	7.50 10.70 7.39	367 42.7 1300	3050 872 5270	<0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154	0.0774 0.0804 0.0340	<0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219	<0.00400 <0.00400 <0.00400	<pre>> <0.00200 <0.00200 <0.00200</pre>	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150	0.0152 0.00629 0.0170	0.00519 <0.00200 0.00791	<0.00200 <0.00200 <0.00200	0.28 -0.03 0.09	Radium 228 1.20 0.70 0.83	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1	15.43 15.98 17.25	7.22 10.31 7.20	-203 -330 -60	Conductance 4340 469 8060	Turbidit
BA-U-1 BA-U-2 BAC-1 BAC-2	< 0.500 < 0.500 3.00 8.38	188 2.47 239 210	1090 395 1890 1710	0.817 0.912 0.645 1.16	7.50 10.70 7.39 7.27	367 42.7 1300 2440	3050 872 5270 6380	<0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609	0.0774 0.0804 0.0340 0.0206	<0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986	<0.00400 <0.00400 <0.00400 <0.00400	 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192	0.0152 0.00629 0.0170 0.172	0.00519 <0.00200 0.00791 0.0128	<0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33	Radium 228 1.20 0.70 0.83 1.21	228 combined 1.2 0	BA-U-1 BA-U-2 BAC-1 BAC-2	15.43 15.98 17.25 16.70	7.22 10.31 7.20 7.16	-203 -330	Conductance 4340 469 8060 10100	Turbidity
BA-U-1 BA-U-2 BAC-1	< 0.500 < 0.500 3.00 8.38 7.47	188 2.47 239 210 447	1090 395 1890 1710 3620	0.817 0.912 0.645 1.16 1.26	7.50 10.70 7.39 7.27 7.21	367 42.7 1300 2440 4380	3050 872 5270 6380 12500	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321	0.0774 0.0804 0.0340 0.0206 0.0284	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251	0.00519 <0.00200 0.00791 0.0128 0.0204	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16	Radium 228 1.20 0.70 0.83 1.21 0.51	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3	15.43 15.98 17.25 16.70 16.05	7.22 10.31 7.20 7.16 7.18	-203 -330 -60 -30 -5	Conductance 4340 469 8060 10100 16500	Turbidity
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-4	< 0.500 < 0.500 3.00 8.38 7.47 0.613	188 2.47 239 210 447 70.5	1090 395 1890 1710 3620 541	0.817 0.912 0.645 1.16 1.26 1.09	7.50 10.70 7.39 7.27 7.21 7.89	367 42.7 1300 2440 4380 295	3050 872 5270 6380 12500 1540	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211	0.00519 <0.00200 0.00791 0.0128 0.0204 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06	Radium 228 1.20 0.70 0.70 1.21 0.51 0.17	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-4	15.43 15.98 17.25 16.70 16.05 15.70	7.22 10.31 7.20 7.16 7.18 7.53	-203 -330 -60 -30 -5 -107	Conductance 4340 469 8060 10100 16500 2600	Turbidit
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547	188 2.47 239 210 447 70.5 83.5	1090 395 1890 1710 3620 541 552	0.817 0.912 0.645 1.16 1.26 1.09 0.991	7.50 10.70 7.39 7.27 7.21 7.89 7.79	367 42.7 1300 2440 4380 295 416	3050 872 5270 6380 12500 1540 1760	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242	0.00519 <0.00200 0.00791 0.0128 0.0204 <0.00200 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03	Radium 228 1.20 0.70 0.83 1.21 0.51 0.17 0.22	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-4 BAC-5	15.43 15.98 17.25 16.70 16.05 15.70 15.76	7.22 10.31 7.20 7.16 7.18 7.53 7.51	-203 -330 -60 -30 -5 -107 -74	Conductance 4340 469 8060 10100 16500 2600 2900	Turbidity
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-4	< 0.500 < 0.500 3.00 8.38 7.47 0.613	188 2.47 239 210 447 70.5 83.5 115	1090 395 1890 1710 3620 541 552 560	0.817 0.912 0.645 1.16 1.26 1.09	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74	367 42.7 1300 2440 4380 295 416 1020	3050 872 5270 6380 12500 1540	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242 0.0805	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14	Radium 228 1.20 0.70 0.70 1.21 0.51 0.17 0.22 0.52	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-6	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49	-203 -330 -60 -30 -5 -107	Conductance 4340 469 8060 10100 16500 2600 2900 3540	Turbidity
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-4 BAC-5	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02 5.48	188 2.47 239 210 447 70.5 83.5 115 92.6	1090 395 1890 1710 3620 541 552 560 532	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91	367 42.7 1300 2440 4380 295 416 1020 1090	3050 872 5270 6380 12500 1540 1760 2340 2400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255 0.0350	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215 0.0168	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242 0.0805 0.0805	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21	Radium 228 1.20 0.700 0.833 1.211 0.511 0.511 0.177 0.222 0.525 0.255	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.49 7.66	-203 -330 -60 -30 -5 -107 -74 -63 -115	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840	Turbidity
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-6	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02	188 2.47 239 210 447 70.5 83.5 115 92.6 25.4	1090 395 1890 1710 3620 541 552 560 532 264	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48 1.61	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91 7.91 7.97	367 42.7 1300 2440 4380 295 416 1020	3050 872 5270 6380 12500 1540 1760 2340	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150 0.183 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242 0.0805 0.0805	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21 0	Radium 228 1.20 0.70 0.70 1.21 1.21 0.51 0.51 0.52 0.52 0.25 0.16	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-6	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35 14.78	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49 7.66 7.54	-203 -330 -60 -30 -5 -107 -74 -63 -115 68	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840 1510	Turbidity 0
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02 5.48	188 2.47 239 210 447 70.5 83.5 115 92.6 25.4	1090 395 1890 1710 3620 541 552 560 532 264 305	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91 7.91 7.94	367 42.7 1300 2440 4380 295 416 1020 1090	3050 872 5270 6380 12500 1540 1760 2340 2400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255 0.0350	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215 0.0168	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150 0.183 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0251 0.0242 0.0805 0.0805 0.0805 0.0805	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21 0 0 0.09	Radium 228 1.20 0.70 0.70 1.21 1.21 0.51 0.51 0.52 0.52 0.25 0.16	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49 7.66 7.54 7.55	-203 -330 -60 -30 -5 -107 -74 -63 -115	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840 1510 1590	Turbidit 0
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7 BAC-8	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02 5.48 < 0.500 < 0.500 0.571	188 2.47 239 210 447 70.5 83.5 115 92.6 25.4 31.4 26.1	1090 395 1890 1710 3620 541 552 560 532 264 305 278	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48 1.61 1.47 1.62	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91 7.91 7.97 7.94 7.95	367 42.7 1300 2440 4380 295 416 1020 1090 84.4	3050 872 5270 6380 12500 1540 1760 2340 2400 784	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255 0.0350 0.0596	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215 0.0168 0.0370	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150 0.183 <0.000150 0.185 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242 0.0805 0.0805 0.0805 0.00581 0.00487 0.00487	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21 0 0 0.09 0.09	Radium 228 1.20 0.70 0.83 1.21 0.51 0.51 0.52 0.52 0.52 0.16 0.29 0.19	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7 BAC-8	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35 14.78 15.30 15.23	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49 7.66 7.54 7.55 7.55	-203 -330 -60 -30 -5 -107 -74 -63 -115 68	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840 1510 1590 1540	Turbidit 0
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7 BAC-8 BAC-9	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02 5.48 < 0.500 < 0.500	188 2.47 239 210 447 70.5 83.5 115 92.6 25.4 31.4 26.1	1090 395 1890 1710 3620 541 552 560 532 264 305	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48 1.61 1.47	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91 7.91 7.94	367 42.7 1300 2440 4380 295 416 1020 1090 84.4 77.5	3050 872 5270 6380 12500 1540 1760 2340 2400 784 824	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255 0.0350 0.0596 0.0488	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215 0.0168 0.0370 0.0400	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150 0.183 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0251 0.0242 0.0805 0.0805 0.0805 0.0805	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21 0 0 0.09 0.09 0.22	Radium 228 1.20 0.70 0.83 1.21 0.51 0.51 0.52 0.52 0.52 0.16 0.29 0.19	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-6 BAC-7 BAC-8 BAC-9	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35 14.78 15.30	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49 7.66 7.54 7.55	-203 -330 -60 -30 -5 -107 -74 -63 -115 68 -28	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840 1510 1590	Turbidit 0
BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7 BAC-7 BAC-8 BAC-9 BAC-10	< 0.500 < 0.500 3.00 8.38 7.47 0.613 0.547 4.02 5.48 < 0.500 < 0.500 0.571	188 2.47 239 210 447 70.5 83.5 115 92.6 25.4 31.4 26.1 84.4	1090 395 1890 1710 3620 541 552 560 532 264 305 278	0.817 0.912 0.645 1.16 1.26 1.09 0.991 0.847 1.48 1.61 1.47 1.62	7.50 10.70 7.39 7.27 7.21 7.89 7.79 7.74 7.91 7.91 7.97 7.94 7.95	367 42.7 1300 2440 4380 295 416 1020 1090 84.4 77.5 84.0	3050 872 5270 6380 12500 1540 1760 2340 2400 784 824 804	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.0226 0.00683 0.0154 0.0609 0.0321 0.0330 0.0297 0.0255 0.0350 0.0596 0.0488 0.0531	0.0774 0.0804 0.0340 0.0206 0.0284 0.0649 0.0560 0.0215 0.0168 0.0370 0.0400 0.0381	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500 <0.000500	Chromium 0.0711 0.00611 0.00219 0.00986 0.0150 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	<0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400 <0.00400	<0.00200	0.375 <0.000150 0.327 <0.000150 0.547 <0.000150 0.431 0.000192 0.913 <0.000150 0.272 <0.000150 0.306 <0.000150 0.242 0.000278 0.218 <0.000150 0.183 <0.000150 0.185 <0.000150	0.0152 0.00629 0.0170 0.172 0.0251 0.0211 0.0242 0.0805 0.0805 0.0805 0.00581 0.00487 0.00487	0.00519 <0.00200	<0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200 <0.00200	0.28 -0.03 0.09 0.33 0.16 -0.06 0.03 0.14 0.21 0 0 0.09 0.22 0.36	Radium 228 1.20 0.70 0.70 1.21 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.54 0.55	228 combined 1.2 0 0.83	BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 BAC-3 BAC-4 BAC-5 BAC-5 BAC-6 BAC-7 BAC-8 BAC-9 BAC-9 BAC-10	15.43 15.98 17.25 16.70 16.05 15.70 15.76 16.17 15.35 14.78 15.30 15.23	7.22 10.31 7.20 7.16 7.18 7.53 7.51 7.51 7.49 7.66 7.54 7.55 7.55	-203 -330 -60 -30 -5 -107 -74 -63 -115 68 -28 -28	Conductance 4340 469 8060 10100 16500 2600 2900 3540 3840 1510 1590 1540	Turbidit D<

									Rou	nd 14 (all re	sults ppm) Assessment M	Ionitoring - March 25 - April 9	9, 2020												Round 14			
												Results												•	Field Resu	ts		
Landfill Wells																				Radium 226 and	Landfill Wells							
			1	Fluoride	pH	Sulfate	TDS	Antimony	Arsenic	Barium							Thallium		lium 228	228 combined		Temp	pH	REDOX		Turbidity (NTUs)	DO	TDS
CL-U-1	< 0.500	57.6	429	0.979	7.70	122	916	<0.00200		0.0800	<0.00200 <0.000500	0.00551 <0.00400 <0.0		0.241 < 0.000150	0.00505	<0.00200	<0.00200	0.36	0.93	1.29	Round 13	14.31	7.53			1.0	0.46	1.26
CL-U-2	< 0.500	60.0 36.6	408	1.01	7.68	118	964			0.0901	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.221 < 0.000150	0.00404	<0.00200	<0.00200	0.09	1.23	1.23	CL-U-2	14.47	7.47			1.1	4.72	1.21 0.96
CLW-1	< 0.500 < 0.500	36.6 47.0	304		7.91 7.84	61.0 86.0	856	<0.00200 <0.00200			<0.00200 <0.000500 <0.00200 <0.000500	0.00551 <0.00400 <0.0		0.172 < 0.000150	0.00527	<0.00200	<0.00200	0.25	0.12	0	CLW-1	15.51 15.46	7.45 7.59			0.3	0.40	0.96
CLW-2 CLW-3	< 0.500	47.0 39.4	418 361	1.23 1.27	7.84	86.0	992 488	<0.00200	0.0258	0.0770 0.0991	<0.00200 <0.000500	0.00337 <0.00400 <0.0 0.00251 <0.00400 <0.0		0.212 0.000278 0.206 <0.000150	0.00556	<0.00200 <0.00200	<0.00200 <0.00200	0.03	0.54 -0.04	0	CLW-2 CLW-3	15.46	7.66			1.0	0.14	1.25
CLW-4	< 0.500	33.6	323	1.27	7.88	85.5	400	<0.00200		0.0991	<0.00200 <0.000300	0.00231 <0.00400 <0.0		0.208 < 0.000150	0.00508	<0.00200	<0.00200	-0.03	-0.04	0	CLW-S CLW-4	15.25	7.60			2.2	0.18	1.15
CLW-5	< 0.500	34.5	323	1.54	7.86	83.9	800	<0.00200		0.0822	<0.00200 <0.000300	<pre><0.00243 <0.00400 <0.0</pre>		0.198 < 0.000150	0.00585	<0.00200	<0.00200	0.15	0.47	0	CLW-4 CLW-5	15.20	7.57			7.5	0.17	1.00
CLW-6	< 0.500	33.0	340	1.38	7.80	83.9	544	<0.00200		0.0737	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.203 < 0.000150	0.00540	<0.00200	<0.00200	0.43	-0.06	0	CLW-5 CLW-6	14.63	7.57			0.9	0.40	1.11
CLW-7	< 0.500	44.3	312	1.48	7.79	60.5	1020	<0.00200		0.0526	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.180 < 0.000150	0.00340	<0.00200	<0.00200	0.20	-0.08	0	CLW-0 CLW-7	14.03	7.45			0.2	0.20	1.00
CLW-7	< 0.500	40.8	316	1.03	7.86	63.7	880	<0.00200		0.0634	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.182 < 0.000150	0.00392	<0.00200	<0.00200	0.12	0.12	0	CLW-8	16.24	7.45			6.0	0.24	0.98
CLW-9	< 0.500	25.2	296	1.90	7.96	83.5	932	<0.00200	0.0207	0.0499	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.170 < 0.000150	0.00597	<0.00200	<0.00200	0.12	0.12	0	CLW-9	13.95	7.72			1.9	6.57	1.02
CL-U-3	< 0.500	57.7	386	0.889	7.75	116	1090	<0.00200	0.0402	0.0433	<0.00200 <0.000500	0.00553 <0.00400 <0.0		0.205 < 0.000150	0.00467	<0.00200	<0.00200	-0.06	0.95	0.95	CL-U-3	14.31	7.51			1.7	5.53	1.02
	. 0.500	57.7	500	0.005	7.75	110	1050	40.00200	0.0200	0.0470	0.00200 0.000300	0.00000 0.000000 0.00	00200	0.203 (0.000130	0.00407	40.00200	\$0.00200	0.00	0.55	0.55		14.01	7.51	210	10/0		5.55	1.20
												Results													Field Resu	ts		
Bottom Ash																				Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium Cobalt Le	ead Lit	thium Mercury N	Molybdenum S	Selenium	Thallium	Radium 226 Rad	lium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	< 0.500	188	1090	0.817	7.50	367	3050	<0.00200	0.0226	0.0774	<0.00200 <0.000500	0.0711 <0.00400 <0.0	00200	0.375 < 0.000150	0.0152	0.00519	<0.00200	0.28	1.20	1.2	BA-U-1	15.43	7.22	-203	4340	5.7	0.20	2.78
BA-U-2	< 0.500	2.47	395	0.912	10.70	42.7	872	<0.00200	0.00683	0.0804	<0.00200 <0.000500	0.00611 <0.00400 <0.0	00200	0.327 < 0.000150	0.00629	< 0.00200	< 0.00200	-0.03	0.70	0	BA-U-2	15.98	10.31	-330	469	0.0	0.35	0.305
BAC-1	3.00	239	1890	0.645	7.39	1300	5270	<0.00200	0.0154	0.0340	<0.00200 <0.000500	0.00219 <0.00400 <0.0	00200	0.547 < 0.000150	0.0170	0.00791	< 0.00200	0.09	0.83	0.83	BAC-1	17.25	7.20	-60	8060	2.4	0.32	5.09
BAC-2	8.38	210	1710	1.16	7.27	2440	6380	<0.00200	0.0609	0.0206	<0.00200 <0.000500	0.00986 <0.00400 <0.0	00200	0.431 0.000192	0.172	0.0128	< 0.00200	0.33	1.21	1.21	BAC-2	16.70	7.16	-30	10100	8.1	5.44	6.26
BAC-3	7.47	447	3620	1.26	7.21	4380	12500	<0.00200	0.0321	0.0284	<0.00200 <0.000500	0.0150 <0.00400 <0.0	00200	0.913 < 0.000150	0.0251	0.0204	<0.00200	0.16	0.51	0	BAC-3	16.05	7.18	-5	16500	3.7	0.50	10.2
BAC-4	0.613	70.5	541	1.09	7.89	295	1540	<0.00200	0.0330	0.0649	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.272 < 0.000150	0.0211	< 0.00200	<0.00200	-0.06	0.17	0	BAC-4	15.70	7.53	-107	2600	0.0	0.18	1.67
BAC-5	0.547	83.5	552	0.991	7.79	416	1760	<0.00200	0.0297	0.0560	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.306 < 0.000150	0.0242	< 0.00200	<0.00200	0.03	0.22	0	BAC-5	15.76	7.51	-74	2500	0.2	0.16	1.86
BAC-6	4.02	115	560	0.847	7.74	1020	2340	<0.00200	0.0255	0.0215	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.242 0.000278	0.0805	< 0.00200	<0.00200	0.14	0.52	0	BAC-6	16.17	7.49	-63	3540	0.9	0.33	2.26
BAC-7	5.48	92.6	532	1.48	7.91	1090	2400	<0.00200	0.0350	0.0168	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.218 < 0.000150	0.0805	0.00202	<0.00200	0.21	0.25	0	BAC-7	15.35	7.66	-115	3840	1.9	2.47	2.46
BAC-8	< 0.500	25.4	264	1.61	7.97	84.4	784	<0.00200	0.0596	0.0370	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.183 < 0.000150	0.00581	< 0.00200	<0.00200	0	0.16	0	BAC-8	14.78	7.54	68	1510	0.8	0.89	0.969
BAC-9	< 0.500	31.4	305	1.47	7.94	77.5	824	<0.00200	0.0488	0.0400	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.185 <0.000150	0.00487	< 0.00200	<0.00200	0.09	0.29	0	BAC-9	15.30	7.55	-28		2.4	1.12	
BAC-10	0.571	26.1	278	1.62	7.95	84.0	804	<0.00200	0.0531	0.0381	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.171 < 0.000150	0.00617	< 0.00200	<0.00200	0.22	0.19	0	BAC-10	15.23	7.60	-50	1540	3.2	0.92	0.991
BAC-11	< 0.500	84.4	676	0.984	7.71	147	1100	<0.00200	0.0312	0.1160	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.244 < 0.000150	0.00345	< 0.00200	<0.00200	0.36	0.09	0	BAC-11	15.03	7.41	12	2980	7.1	7.33	1.91
BAC-12	< 0.500	25.9	210		7.99	71.7	360						00200	0.132 < 0.000150	0.00479	<0.00200		0.23	0.18	0	BAC-12	14.93	7.75			1.4	6.36	0.821
BAC-13	0.604	115	929	0.957	7.50	276	46400							0.285 <0.000150	0.00250	< 0.00200		0.35	0.55	0	BAC-13	14.46	7.28		3850	1.1	6.99	2.47
BAC-14	0.565	158	940		7.53	432	1180	<0.00200						0.321 < 0.000150	0.00222	<0.00200		0.03	0.08	0	BAC-14	14.81	7.20			2.0	4.84	2.7
BAC-15	< 0.500	26.2	263	1.75	8.01	78.9	600	<0.00200		0.0395	<0.00200 <0.000500	<0.00200 <0.00400 <0.0		0.172 <0.000150	0.00827	<0.00200		0.08	0.18	0	BAC-15	14.67	7.72		1550	1.5	7.69	0.99
BAC-16	< 0.500	24.2	304	1.89	8.15	77.8	900	<0.00200	0.0783	0.0346	<0.00200 <0.000500	<0.00200 <0.00400 <0.0	00200	0.183 <0.000150	0.00732	<0.00200	<0.00200	0.20	0.22	0	BAC-16	14.41	7.71	-64	. 1710	0.5	7.76	1.1
																										L		
Waste Water	Results																							1	Field Resu	ts		
	Daman	Calainna	Chlorida	Flux a wind a		Cultata	TDC	A1 ¹	•	Deviews	Demillion Cadraine	Characteria Cabalta Ia					The literat			Radium 226 and	Waste Water	T		DEDOV	Conductor	Taultidity (NTUs)	20	TDC
			Chloride		рн	Sulfate	TDS	Antimony	Arsenic		Beryllium Cadmium								lium 228	228 combined		Temp	pH			Turbidity (NTUs)	DO	TDS
SI-U-1	< 0.500	113	699			279	1230					0.00305 <0.00400 <0.0		0.239 < 0.000150	0.00280	< 0.00200		0.20	1.04		SI-U-1	16.33	7.30		789	0.0	3.90	0.505
WW-U-1	1.42	286	1940		7.24		4740			0.0391		0.00544 <0.00400 <0.0		0.412 < 0.000150	0.00811	0.00724		0.21	1.38		WW-U-1	15.39	7.01		3910		0.17	2.5
WW-U-2	1.23 13.4	337	2020 4800									0.00696 <0.00400 <0.0 <0.00200 <0.00400 <0.0		0.498 <0.000150 0.936 0.000238	0.00309	0.0112		0.22	1.08		WW-U-2	13.24	7.19 6.90		3800 19400	0.7	1.02	2.43
WWC-1	< 0.500	464 51 7	4800	<0.100 0.452	7.29	124	13000 644	<0.00200 <0.00200			<0.00200 <0.000500 <0.00200 <0.000500	<pre><0.00200 <0.00400 <0.0 0.00332 <0.00400 <0.0</pre>		0.119 < 0.000150	0.0136 0.00455	0.0133 <0.00200		0.32	0.36 -0.15	0	WWC-1	14.71	7.59		19400	2.8 12.8	0.31 0.54	1.09
WWC-2 WWC-3	< 0.500	51.7 31.8	254		7.88	85.8	712					0.00332 <0.00400 <0.0		0.142 < 0.000150	0.00435	<0.00200		-0.08	-0.15	0	WWC-2 WWC-3	13.47 14.65	7.59			12.8	0.54	0.916
WWC-4	1.20		935		7.96	620	2730				<0.00200 <0.000300	<pre></pre>		0.314 < 0.000150	0.00336		<0.00200	0.47	0.19		WWC-3	14.65	7.13		4750		0.17	3 04
vv vv C-4	1.20	102	322	0.420	7.44	030	2/30	<u>\0.00200</u>	0.0140	0.0437	<0.00200 <0.000500	~0.00200 ~0.00400 <0.0	00200	0.514 \0.000150	0.00207	0.00228	<u>\0.00200</u>	0.47	0.27	0	VV VV C-4	14.01	/.13	-12	4750	<u>1.4</u>	0.40	5.04

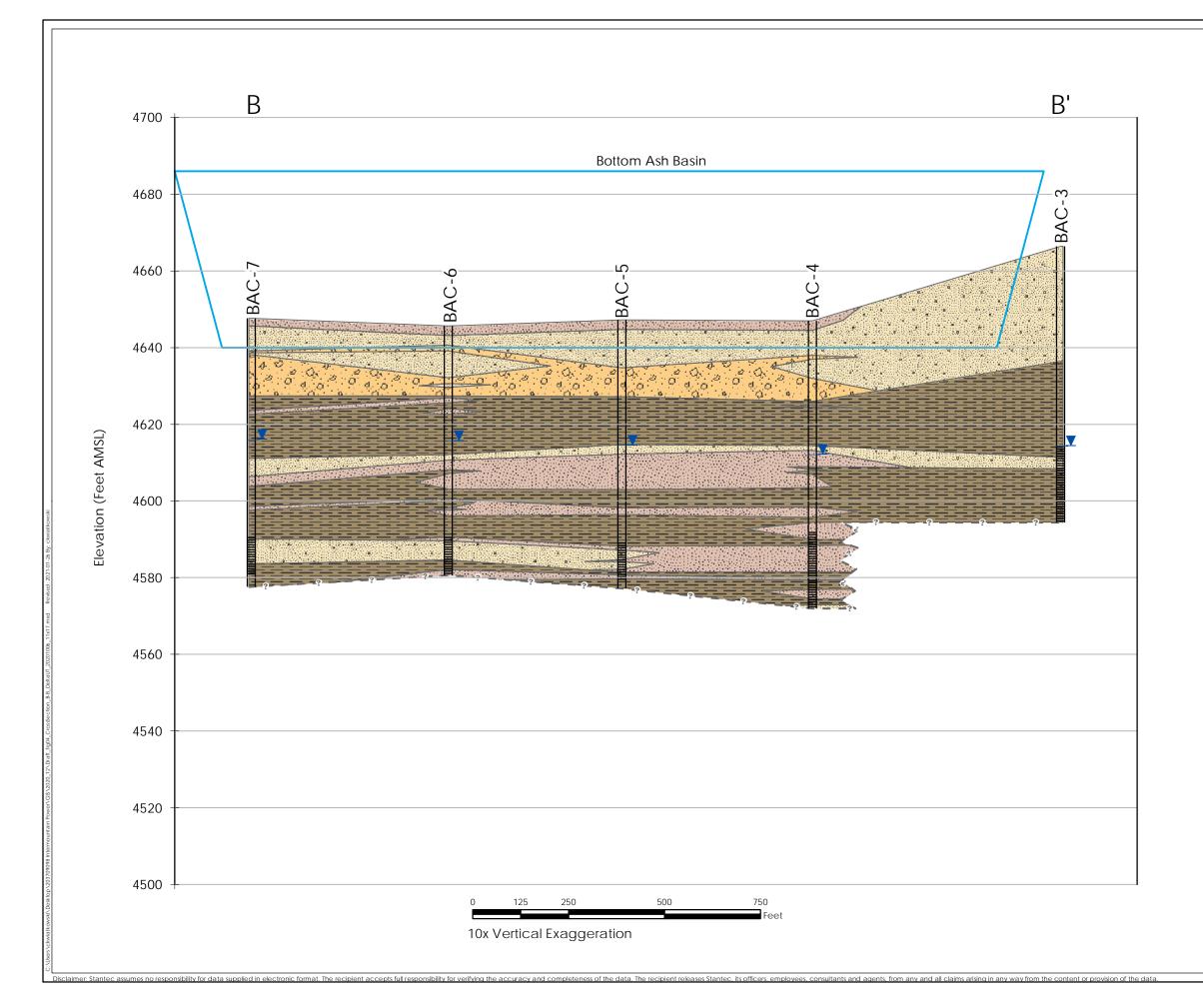

									Round	15 (all resul	lts ppm) Asse	ssment Mon	itoring - Octo	ober 6 - Nove	mber 12, 20	20												Field Res			
Landfill Wells													Results										Radium 226 and	Landfill Wells			1	Field Res	ults	- T	
			Chloride		pH	Sulfate		Antimony										Molybdenum			Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1 CL-U-2	< 0.500	56.7 59.3	423 408	1.23	8.02 7.98	118 123	1050 1600	<0.00400		0.0866	<0.00200	<0.000500 <0.000500	0.00537	<0.00400 <			0.000150	0.00422 0.00461	<0.00200 <0.00200	<0.00200	0.73	0.54	0.81	CL-U-1 CL-U-2	16.7 16.77	7.39	-168 -109	1980 1920	3.2	0.21 3.13	1.27
CLW-1	< 0.500	34.8	305	1.15	8.06	64.4	972	< 0.00400	0.0340	0.0640	< 0.00200	< 0.000500	0.00814	<0.00400 <	0.00200	0.183 <0	0.000150	0.00407	< 0.00200	< 0.00200	0.14	0.61	0	CLW-1	17.12	7.41	-17	1560	1.1	2.97	1.00
CLW-2	< 0.500	44.4	432	1.26	8.10	95.5	1040 904	< 0.00400		0.0825	< 0.00200		0.00576	< 0.00400 <			0.000150	0.00482	< 0.00200	< 0.00200	0.10	0.66	0 2.02	CLW-2	17.25 17.34	7.56	-194	1980	0.9	0.18	1.26
CLW-3 CLW-4	< 0.500	37.1 30.8	356 316	1.57	8.04 8.14	103 85.8	904 844	<0.00400	0.0426	0.1040 0.0837	<0.00200 <0.00200	<0.000500	0.00346	<0.00400 <			0.000150	0.00554	<0.00200	<0.00200	0.31	1./1	2.02	CLW-3 CLW-4	17.34	7.6 7.53	-243	1770	1.8	4.44 0.23	1.14
CLW-5	< 0.500	32.6	345	2.03	8.11	88.5	952	< 0.00400	0.0253	0.0740	< 0.00200	< 0.000500	<0.00200	<0.00400 <			0.000150	0.00503	<0.00200	< 0.00200	-0.05	1.07	1.07	CLW-5	16.56	7.49	-219	1760	4.9	0.30	1.13
CLW-6 CLW-7	< 0.500	30.7 41.7	320 338	1.84	8.13 8.04	83.5 70.4	884 880	<0.00400	0.0173	0.0985	<0.00200	<0.000500	0.00335	<0.00400 <			0.000150	0.00645	<0.00200	<0.00200	0.04	0.76	0	CLW-6 CLW-7	16.65 16.77	7.62	-254 -68	1640 1660	2.0	0.34	1.05
CLW-7 CLW-8	< 0.500	38.4	338	1.24	7.99	68.3	880	< 0.00400	0.0270	0.0558	<0.00200	< 0.000500	0.00421	<0.00400 <			0.000150	0.00348	<0.00200	<0.00200	0.09	0.66	0	CLW-7	16.98	-72	-68	1580	1.5	2.14	1.06
CLW-9	2	36.1	287	1.37	8.09	80.7	832	< 0.00400	0.0411	0.0489	< 0.00200		<0.00200	<0.00400 <			0.000150	0.0059	<0.00200	< 0.00200	0.16	0.51	0	CLW-9	14.93	7.62	-265	1570	1.4	0.26	1.01
CL-U-3	< 0.500	56.3	374	1.08	7.89	115	1080	<0.00400	0.0202	0.0509	<0.00200	<0.000500	<0.00200	<0.00400 <	0.00200	0.223 <0	0.000150	0.00351	< 0.00200	<0.00200	0.10	1.1	1.1	CL-U-3	15.72	7.36	-496	1900	1.7	2.81	1.21
									1				Results	I			-											Field Resu	ults		
Bottom Ash																							Radium 226 and	Bottom Ash	_						
BA-U-1	Boron < 0.500	Calcium 209	Chloride 1220	Fluoride 1.1	pH 7.59	Sulfate 510	TDS 2660	Antimony <0.00400				Cadmium <0.000500	<0.00200	Cobalt <0.00400 <		ithium N 0.44 <0	0000900	0.00274	Selenium 0.00518	<pre>Thallium <0.00200</pre>	Radium 226 0.10	Radium 228 1.28	228 combined 1.28	BA-U-1	Temp 17.46	pH 7.25	-37	Conductance 4770	Turbidity (NTUs) 1.4	DO 2.35	TDS 3.05
BA-U-2	< 0.500	86.8	691	0.844	7.62	86.3	1780	< 0.00400	0.0222	0.1470	<0.00200		<0.00200	< 0.00400 <			.0000900	0	0.00227	<0.00200	0.13	0.88	0.88	BA-U-2	16.52	7.45	-118	2730	0.0	0.39	1.75
BAC-1	2.28	177	1240	0.687	7.16	1010	3510	< 0.00400	0.2	0.0528	< 0.00200		0.00365	< 0.00400 <			.0000900	0.0979	0.00798	< 0.00200	0.08	1	1	BAC-1	17.54	6.80	-175	5330	1.5	0.29	3.36
BAC-2 BAC-3	7.08	205 410	1840 3790	1.2	7.27	2670 4940	6940 13800	<0.00400	0.0632	0.0230	<0.00200 <0.00200	<0.000500	0.00573	<0.00400 <			.0000900	0.182	0.0137	<0.00200	0.02	1.27 0.83	1.27 0.83	BAC-2 BAC-3	19.40 17.87	7.14	-2	9990 17200	7.6	6.61 4.81	6.29 10.7
BAC-4	0.913	70.2	506	1.33	8.01	327	3500	< 0.00400	0.0338	0.0656	<0.00200		<0.00200	<0.00400 <			.0000900	0.0262	<0.00200	<0.00200	-0.06	0.56	0.05	BAC-4	18.04	7.59	-20	2680	1.5	0.16	1.71
BAC-5	0.677	83.7	552	1.2	7.99	451	1030	< 0.00400	0.0322	0.0556	<0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.0276	<0.00200	< 0.00200	0.07	0.6	0	BAC-5	17.47	7.58	-89	2950	0.7	0.14	1.89
BAC-6 BAC-7	4.26 6.05	115 90.1	507 560	1.09 2.28	7.88	958 1110	1480 2220	<0.00400	0.0270	0.0187 0.0192	<0.00200	<0.000500	<0.00200	<0.00400 <		0.00	.0000900	0.0772 0.0691	<0.00200 0.00239	<0.00200	0.12 0.21	0.7	0	BAC-6 BAC-7	15.98 17.02	7.44	-92 -125	3720 4120	3.3	0.18	2.38
BAC-7 BAC-8	< 0.500	24.1	254	1.63	7.99	91.9	724	< 0.00400	0.0418	0.0192	<0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.00644	<0.00239	<0.00200	0.21	1.16	1.42	BAC-8	14.65	7.66	-125	4120	1.5	0.87	1.01
BAC-9	< 0.500	30.6	298	1.44	7.95	100	744	< 0.00400	0.0504	0.0427	< 0.00200	< 0.000500	<0.00200	<0.00400 <	0.00200	0.16 <0	.0000900	0.0045	< 0.00200	< 0.00200	-0.06	0.63	0	BAC-9	14.76	7.66	16	1690	2.0	1.31	1.08
BAC-10 BAC-11	< 0.500	25.6 78.6	256 742	1.63	7.99	82.6 168	836 1490	<0.00400	0.0559	0.0373 0.1270	<0.00200 <0.00200	<0.000500 <0.000500	<0.00200	<0.00400 <			.0000900	0.00581 0.00314	<0.00200 <0.00200	<0.00200	0	0.01 0.61	0	BAC-10 BAC-11	14.79 15.23	7.70	17 98	1600 3050	2.0	0.98	1.03
BAC-11 BAC-12	< 0.500	30.9	291	1.17	7.92	77.8	832	< 0.00400		0.0983	<0.00200		<0.00200	<0.00400 <			.0000900	0.00314	<0.00200	<0.00200	-0.06	0.61	0	BAC-11 BAC-12	15.23	7.38	98	1590	2.7	3.03	1.95
BAC-13	0.613	111	973	1.1	7.62	326	1980	< 0.00400	0.0351	0.0613	< 0.00200	< 0.000500	<0.00200	<0.00400 <	0.00200	0.278 <0	.0000900	< 0.00200	< 0.00200	< 0.00200	0	0.90	0.9	BAC-13	14.35	7.24	5	4190	4.0	1.29	2.69
BAC-14 BAC-15	0.55	147 25.5	1040 248	1.05	7.50	465 79.5	2540 720	<0.00400	0.0313	0.0519 0.0399	<0.00200 <0.00200	<0.000500	<0.00200	<0.00400 <			.0000900	0	<0.00200	<0.00200	0.19	0.47	0	BAC-14 BAC-15	15.80 14.66	7.38	46 9	4360 1570	1.1	0.83	2.79
BAC-15 BAC-16	< 0.500	25.5	477	1.76	8.00	206	720	< 0.00400	0.0573	0.0399	<0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.00707	<0.00200	<0.00200	0.04	0.30	0	BAC-15 BAC-16	14.66	7.69	15	1570	1.3	1.37	1.01
BAC-17	< 0.500	24.1	123	0.799	8.16	99.6	400	< 0.00400	0.0321	0.0316	< 0.00200	<0.000500	<0.00200	<0.00400 <	0.00200		.0000900	0.00421	<0.00200	< 0.00200	0	0.47	0	BAC-17	15.16	7.73	-102	0.907	2.6	0.20	0.58
BAC-18 BAC-19	< 0.500	23.8 28.4	177 238	1.38	8.05 7.93	88.3 86.7	672 768	<0.00400	0.044	0.0618 0.0471	<0.00200 <0.00200	<0.000500 <0.000500	<0.00200	<0.00400 <			.0000900	0.00544 0.00432	<0.00200 <0.00200	<0.00200	0.04	0.36	0	BAC-18 BAC-19	15.29 15.26	7.56	-193 -109	1230 1420	2.2	4.38	0.789
BAC-19 BAC-20	< 0.500	28.4	238	1.27	8.08	86.7	768	< 0.00400	0.0436	0.0604	<0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.00432	<0.00200	<0.00200	-0.06	0.46	0.92	BAC-19 BAC-20	15.26	7.61	-109	1420	0.0	3.21	0.909
BAC-21	< 0.500	29.1	233	1.3	8.04	81.5	776	< 0.00400	0.0431	0.0822	< 0.00200		<0.00200	<0.00400 <			.0000900	0.00429	<0.00200	< 0.00200	0.05	0.81	0.81	BAC-21	15.61	7.58	-103	1390	0.8	6.18	0.89
BAC-22 BAC-23	< 0.500	27.7 29.2	221 226	1.34	7.97	93 89.9	780 628	<0.00400	0.0487	0.0344 0.0430	<0.00200	<0.000500	<0.00200	<0.00400 <			.0000900	0.0047 0.00419	<0.00200	<0.00200	0.16	2.03	2.03	BAC-22 BAC-23	16.07 15.93	7.57	-27 -57	1380 1360	0.3	1.62	0.883
BAC-23 BAC-24	< 0.500	29.2	226	1.24	7.95	79.3	724	< 0.00400	0.0414	0.0430	<0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.00419	<0.00200	<0.00200	-0.07	2.48	2.48	BAC-23 BAC-24	15.93	7.60	-57	1360	1.2	5.00	0.868
BAC-25	< 0.500	28	193	1.17	7.86	75.1	636	< 0.00400	0.0335	0.1070	< 0.00200	< 0.000500	<0.00200	<0.00400 <			.0000900	0.00466	<0.00200	< 0.00200	-0.15	1.91	1.91	BAC-25	15.31	7.25	-198	1220	0.0	0.33	0.783
BAC-26	< 0.500	20.8	200 266	1.89	7.97	64.5	628	<0.00400	0.0534	0.0777	<0.00200 <0.00200		<0.00200	<0.00400 <			.0000900	0.00494	<0.00200	< 0.00200	0.12	1.15	1.15	BAC-26 BAC-27	15.68 15.77	7.59	-185 -141	1290 1500	1.3	0.14	0.826
BAC-27 BAC-28	< 0.500	25 26.2	200	1.58	7.93	65.6 63.7	864 816	<0.00400	0.0508	0.0790	<0.00200		<0.00200	<0.00400 <			.0000900	0.00514 0.00477	<0.00200	<0.00200	-0.06	0.91	0.91	BAC-27 BAC-28	15.77	7.61 7.63	-141	1500	1.9	0.12	0.96
BAC-29	< 0.500	62.3	581	1.22	7.74	145	1550	< 0.00400	0.0351	0.0729	<0.00200	<0.000500	<0.00200	<0.00400 <	0.00200	0.234 <0	.0000900	0.00346	<0.00200	< 0.00200	-0.03	1.24	1.24	BAC-29	15.64	7.58	-76	2680	1.3	0.11	1.72
BAC-30	< 0.500	57.3	553	1.21	7.78	134	1300	< 0.00400	0.0385	0.0844	<0.00200		<0.00200	<0.00400 <			.0000900	0.00396	<0.00200	< 0.00200	0.03	1.3	1.3	BAC-30	16	7.58	-87	2500	1.4	0.11	1.6
BAC-31 BAC-32	< 0.500	45.1	448 242	1.31	7.80 7.99	101 59.2	920 768	<0.00400	0.0397	0.0824	<0.00200 <0.00200		<0.00200	<0.00400 <			.0000900	0.0043	<0.00200	<0.00200	0	1.52	1.52	BAC-31 BAC-32	15.71	7.59	-70	2120	1.3	0.19	1.36
BAC-32 BAC-33	< 0.500	26.4	265	1.6	7.90	69.5	812	<0.00400	0.0509	0.1080	<0.00200		<0.00200	<0.00400 <		0.200	.0000900	0.00728	<0.00200	<0.00200	0.10	1.05	1.05	BAC-33	16.27	7.37	-190	1400	0.0	0.18	0.917
BAC-34	< 0.500	20.9	209	1.7	8.05	60.9	744	< 0.00400	0.0542	0.0678	< 0.00200		<0.00200	< 0.00400 <			.0000900	0.00476	< 0.00200	< 0.00200	0.23	1.22	1.22	BAC-34	15.36	7.47	-80	1280	0.0	5.29	0.818
BAC-35 BAC-36	< 0.500	23.5 25.5	234 198	1.66	8.00 8.10	69.4 90.4	724 688	<0.00400	0.0556	0.0744	<0.00200	<0.000500	<0.00200	<0.00400 <			.0000900	0.00509	<0.00200	<0.00200	0.32	1.15 0.33	1.47	BAC-35 BAC-36	16.15 15.88	7.41	-76	1350	0.0	0.17	0.864
BAC-37	< 0.500	24.4	176	1.20	8.04	89.5	668	< 0.00400	0.041	0.0541		< 0.000500	<0.00200	<0.00400 <		0.200	.00000900	0.00511	<0.00200	<0.00200	-0.06	1.22	1.22	BAC-37	15.18	7.43	-190	1170	0.0	6.89	0.746
BAC-38	< 0.500	30.1	247	1.29	8.06	87.4	844	< 0.00400	0.0361	0.0653	<0.00200	< 0.000500	<0.00200	<0.00400 <	0.00200	0.124 <0	.0000900	0.00523	<0.00200	<0.00200	-0.03	1.12	1.12	BAC-38	15.42	7.60	-86	1440	2.5	0.34	0.923
						1			-														1						-	ł	
Waste Water	Results																											Field Resu	ults		
		Calaina	Chlorid	Fluxed		C	-			Dearling	Dentille	Cardenter	Character	Calart					Colorius	The History	De d'une DC C	D - 1 200	Radium 226 and	Waste Water	-			Construction	Tool dia an		TOC
SI-U-1	Boron < 0.500	Calcium 90.5	Chloride 512	Fluoride 0.779	pH 7.69	Sulfate 366	TDS 1650	Antimony <0.00400		Barium 0.0465	<0.00200	Cadmium <0.000500	<0.00200				Aercury N .0000900	0.00000	Selenium <0.00200	<0.00200	Radium 226 -0.02	Radium 228 1.47	228 combined 1.47	SI-U-1	Temp 15.97	pH 7.46	-10	Conductance 2530	Turbidity (NTUs) 0.00	DO 1.76	TDS 1.62
WW-U-1	1.35	268	1860	0.444	7.48	1310	5280	< 0.00400	0.00635	0.0381	< 0.00200	< 0.000500	0.00275	<0.00400 <	0.00200	0.488 <0	.0000900	0.00732	0.00717	<0.00200	0.25	1.1	1.1	WW-U-1	16.15	7.14	-13	7490	0.00	1.95	4.72
WW-U-2 WWC-1	1.35 13.9	314 508	1860 4860	0.67	7.47	1080 3680	4780 13600	<0.00400	0.0135	0.0497 0.0226	<0.00200 <0.00200	<0.000500	0.00224	<0.00400 <			.0000900	0.00211 0.0127	0.0107 0.0139	<0.00200	0.12	1.31	1.31	WW-U-2 WWC-1	14.69 16.07	7.19 6.88	1 16	7140	0.00	2.32 0.12	4.5 11.9
WWC-1 WWC-2	< 0.500	508	4860	0.274	7.35	133	13600 920	<0.00400	0.0264	0.0226	<0.00200	<0.000500	<0.00200	<0.00400 <			.000212	0.0127	<0.00200	<0.00200	0.10	1.83	1.83	WWC-1 WWC-2	16.07	6.88	-24	19200	3.40	0.12	11.9
WWC-3	< 0.500	31	239	1.28	8.09	88	700	< 0.00400	0.0235	0.0312	< 0.00200	<0.000500	0.00000	<0.00400 <	0.00200	0.152 <0	.0000900	0.00486	<0.00200	< 0.00200	0.06	0.96	0.96	WWC-3	15.36	7.62	-201	1400	1.90	0.16	0.899
WWC-4	1.40	204	1100	0.524	7.65	835	2820	< 0.00400	0.0161	0.0489	< 0.00200	< 0.000500	< 0.00200	< 0.00400 <	0.00200	0.374 <0	.0000900	0	0.00229	< 0.00200	0.06	0.58	0	WWC-4	15.4	7.02	7	5040	1.80	0.82	3.18

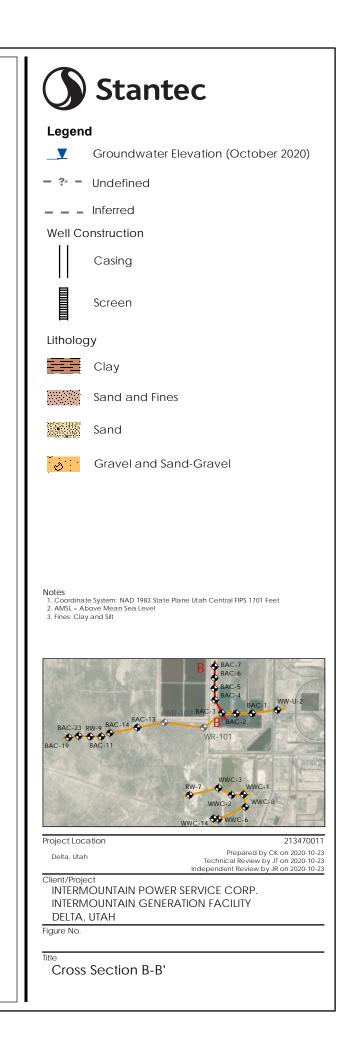
Round 16					

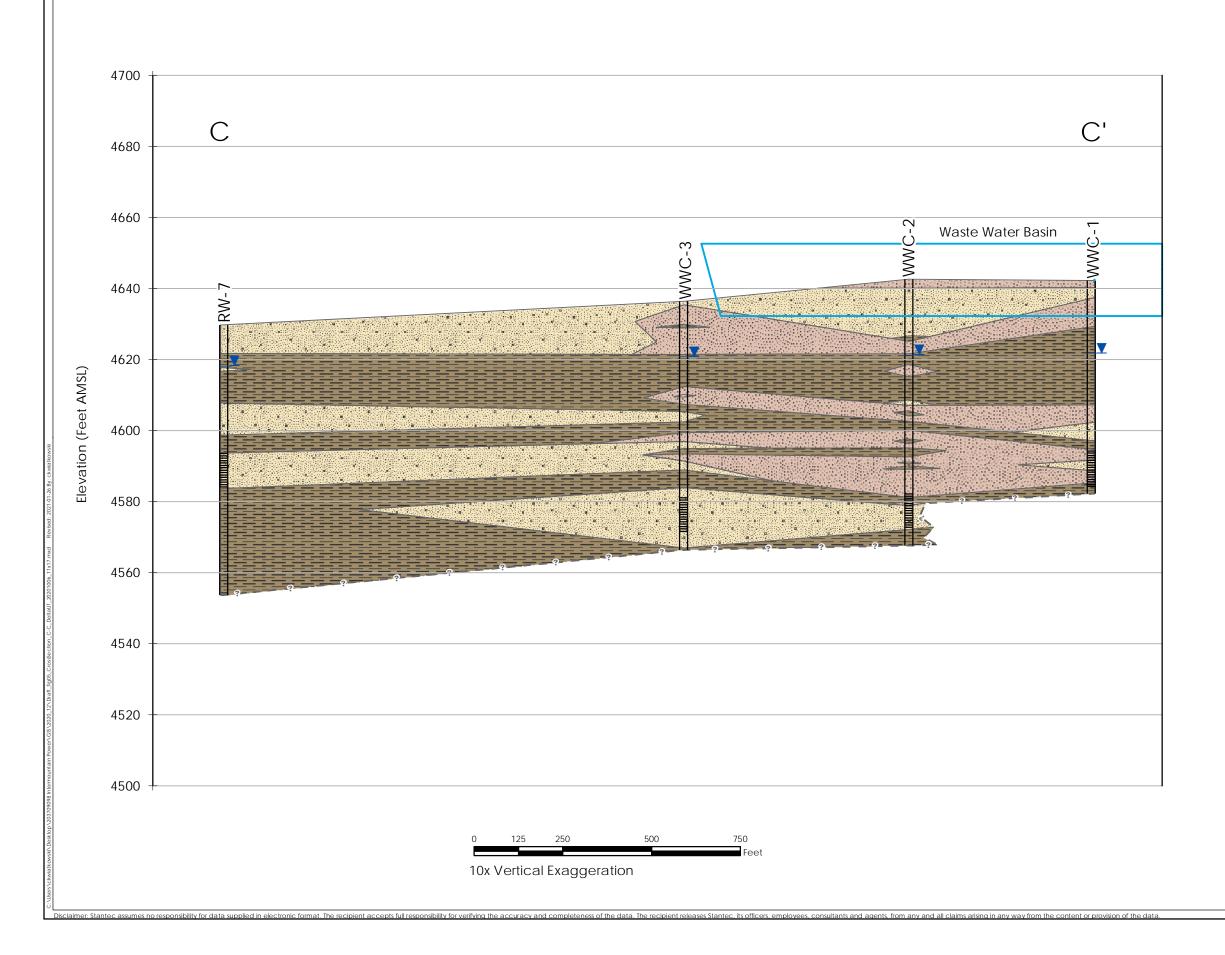

												Rour	nd 16 Results														Field Res	ults		
Landfill Wells																						Radium 226 and	Landfill Wells							
	Boron	Calcium	Chloride	Fluoride	pH	Sulfate	TDS	Antimony		Barium	Beryllium	Cadmium		Cobalt Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1 CL-U-2	<0.500	54.0 57.3	435	1.07	7.69	123	932 480	<0.00400	0.0319	0.0856	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.209	<0.0000900		<0.00200	<0.00200	0.14	0.84	0.84	CL-U-1	14.83 15	7.52	-134	1940 1880	2.2	0.19	1.24
CL-0-2 CLW-1	<0.500	34.7	301	1.09	8.73	121 62.4	480	<0.00400		0.0998	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.198	<0.0000900		<0.00200	<0.00200	0.09	0.79	0.79	CL-U-2 CLW-1	15	7.13	-121	1880	0.4	1.38	1.20 0.96
CLW-1 CLW-2	<0.500	45.8	456	1.11	7.75	99.7	1060	<0.00400		0.0822	<0.00200	<0.000500	0.00239	<0.00400 <0.00200	0.218	<0.0000900		<0.00200	<0.00200	-0.03	0.42	0.81	CLW-1 CLW-2	15.54	7.53	-00	1920	1.1	1.50	1.23
CLW-2	<0.500	37.5	377	1.43	7.81	104	952	< 0.00400		0.1040	<0.00200	<0.000500	<0.00224	<0.00400 <0.00200	0.203	<0.0000900		<0.00200	<0.00200	0.24	0.41	0	CLW-2	15.65	7.56	-194	1710	2.6	0.37	1.10
CLW-4	<0.500	33.3	341	1.45	7.85	90.7	688	< 0.00400		0.0833	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.197	<0.0000900		< 0.00200	< 0.00200	0.18	0.86	0.86	CLW-4	15.61	7.57	-174	1620	2.5	0.28	1.04
CLW-5	< 0.500	33.7	358	1.91	7.87	88.9	944	< 0.00400	0.0242	0.0745	<0.00200	< 0.000500	0.00297	<0.00400 <0.00200	0.197	<0.0000900	0.00490	<0.00200	< 0.00200	0.23	0.66	0	CLW-5	15.13	7.5	-210	1720	7.5	0.25	1.10
CLW-6	<0.500	31.9	342	1.56	7.92	91.1	1010	< 0.00400		0.0866	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.190	<0.0000900		<0.00200	<0.00200	0.34	0.54	0	CLW-6	14.82	7.36	-222	1620	0.5	0.40	1.04
CLW-7	<0.500	41.0	335	1.07	8.18	66.1	376	< 0.00400		0.0532	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.185	< 0.0000900		<0.00200	<0.00200	0.08	0.53	0	CLW-7	16.01	7.29	-78	1610	0.8	3.81	1.03
CLW-8	<0.500	38.8	315	1.08	8.33	66.9	840	< 0.00400		0.0679	<0.00200	< 0.000500	0.00622	<0.00400 <0.00200	0.184	<0.0000900		<0.00200	<0.00200	0.3	0.67	0	CLW-8	15.98	7.24	-82	1530	7.2	0.64	0.98
CLW-9	0.332	24.9	288	1.87	8.01	87.3	856	<0.00400		0.051	<0.00200	<0.000500	0.0156	<0.00400 <0.00200	0.160	<0.0000900		<0.00200	<0.00200	0.06	0.39	0	CLW-9	14.74	7.46	-248	1580 1840	0.0	0.32	1.01
CL-U-3	<0.500	54.8	414	0.938	7.78	123	1080	< 0.00400	0.0213	0.0511	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.197	<0.0000900	0.00337	<0.00200	<0.00200	0.09	0.7	U	CL-U-3	15.40	7.5	-185	1840	1.5	0.21	1.18
				-		-	-		-				Results								1	1					Field Res	ults		
Bottom Ash																						Radium 226 and	Bottom Ash		1	1	1	1	1	
	Boron	Calcium	Chloride		pН	Sulfate	TDS	Antimony		Barium	Beryllium		Chromium	Cobalt Lead	Lithium	Mercury	Molybdenum		Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0.559	197	1240	0.945	7.49	557	2760	< 0.00400		0.0660	<0.00200		0.00314	<0.00400 <0.00200	0.367	< 0.0000900		0.00599	<0.00200	-0.15	0.48	0	BA-U-1	15.51	7.31	-66	4760	1.6	0.3	3.04
BA-U-2	< 0.500	84.9	809	0.851	7.68	99.1	1620	< 0.00400		0.1500	<0.00200	< 0.000500	<0.00200	<0.00400 <0.00200	0.287	<0.0000900		0.00253	<0.00200	0.22	1.09	1.09	BA-U-2	14.72	7.37	-140	2830	1.6	0.59	1.81
BAC-1 BAC-2	3.20 6.49	267 228	2020 2070	0.928	7.44	1480 2430	5900 7140	<0.00400 <0.00400		0.0402	<0.00200 <0.00200	<0.000500	<0.00200 0.00721	<0.00400 <0.00200 <0.00400 <0.00200	0.542	<0.0000900		0.00905	<0.00200	0.34	0.87	1.21 0.91	BAC-1 BAC-2	16.61 16.2	7.13	-23	8440 9900	7.7	0.21	5.31
BAC-2 BAC-3	8.4	388	3890	1.57	7.42	5120	13900	<0.00400		0.0215	<0.00200	<0.000500	0.00721	<0.00400 <0.00200	0.992	<0.0000900		0.012	<0.00200	-0.04	1.21	1.21	BAC-2 BAC-3	15.67	7.17	-12	17100	3	1.46	6.24 10.6
BAC-4	0.735	66	545	1.15	7.98	335	1560	< 0.00400		0.0285	<0.00200	<0.000500	< 0.00200	<0.00400 <0.00200	0.265	<0.0000900		<0.00200	<0.00200	0.11	-0.07	0	BAC-4	15.12	7.3	-69	2680	0	0.26	1.72
BAC-5	0.685	79.6	555	1.05	7.88	488	1780	< 0.00400	0.0303	0.0466	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.301	< 0.0000900		< 0.00200	< 0.00200	0.08	0.32	0	BAC-5	14.99	7.43	-67	2970	0.6	2.24	1.9
BAC-6	4.15	97.8	519	0.98	7.76	941	2340	< 0.00400	0.0268	0.0188	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.232	<0.0000900	0.0701	<0.00200	< 0.00200	0.08	0.53	0	BAC-6	15.15	7.47	-47	3570	1	0.18	2.29
BAC-7	5.66	97.9	636	1.94	7.77	1150	3210	< 0.00400		0.0196	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.235	<0.0000900		0.00299	<0.00200	-0.02	0.42	0	BAC-7	16.13	7.69	-91	4200	1	0.17	2.69
BAC-8	0.332	25.3	265	1.53	7.99	91.7	872	< 0.00400		0.0402	< 0.00200	< 0.000500	<0.00200	<0.00400 <0.00200	0.157	<0.0000900		< 0.00200	< 0.00200	0.06	0.28	0	BAC-8	15.22	7.62	-5	1540	1.3	1.44	0.984
BAC-9 BAC-10	0.306	30.9	314	1.27	7.92	80.1	860 840	<0.00400	0.00.10	0.0485	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200 <0.00400 <0.00200	0.17	<0.0000900		<0.00200	<0.00200	0.078	0.40	0	BAC-9 BAC-10	15.90 14.99	7.39	21 36	1670 1570	0.9	3.18	1.07
BAC-10 BAC-11	0.326	25.3 79.5	270	1.48	8.01 7.68	83.6 167	840 1560	<0.00400		0.0429	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.154	<0.0000900		<0.00200	<0.00200	0.086	0.15	0.91	BAC-10 BAC-11	14.99	7.52	36	3020	4.0	3.37	1.94
BAC-11 BAC-12	0.33	25.5	212	1.25	7.96	74.6	688	<0.00400		0.0684	<0.00200	< 0.000500	<0.00200	<0.00400 <0.00200	0.272	<0.0000900		<0.00200	<0.00200	0.11	0.91	1.1	BAC-11 BAC-12	15.06	7.60	-13	1280	4.0	0.20	0.821
BAC-13	0.667	130	1090	0.962	7.60	433	2960	< 0.00400		0.0571	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.312	<0.0000900		<0.00200	<0.00200	0.05	0.66	0	BAC-13	14.99	7.28	-67	4390	2.5	2.57	2.81
BAC-14	0.587	160	1060	0.936	7.25	480	2470	< 0.00400	0.0298	0.0494	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.344	<0.0000900		<0.00200	<0.00200	0.02	0.61	0	BAC-14	15.56	7.35	36	4290	0.0	1.45	2.75
BAC-15	0.307	25.1	258	1.69	7.86	84	1420	< 0.00400			<0.00200	<0.000500		<0.00400 <0.00200	0.145	<0.0000900		< 0.00200		0.06	-0.14	0	BAC-15	15.36	7.58	-6	1530	2.8	3.04	0.98
BAC-16	0.32	23.8	312	1.84	8.02	82.2	4720	< 0.00400		0.0381	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.165	<0.0000900		< 0.00200	<0.00200	0	0.40	0	BAC-16	14.91	7.42	5	1720	0.5	4.42	1.1
BAC-17	< 0.500	24.6	130	0.606	8.14	103	576	< 0.00400		0.0317	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	<0.100	<0.0000900		<0.00200	<0.00200	0.09	0.41	0.9	BAC-17	15.22	7.76	-122	915	1.6	0.10	0.585
BAC-18 BAC-19	0.266	24.5 30.2	199 243	1.18	8.03 7.95	93.5 86.2	676 696	<0.00400		0.0549 0.0448	<0.00200 <0.00200	<0.000500	<0.00200 <0.00200	<0.00400 <0.00200 <0.00400 <0.00200	0.112	<0.0000900		<0.00200 <0.00200	<0.00200 <0.00200	0.09	0.9	1.42	BAC-18 BAC-19	16.60 15.26	7.70	-193	1200 1430	0.9	0.15	0.771 0.913
BAC-20	0.249	28.2	199	0.904	8.02	94.1	744	< 0.00400		0.0515	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.103	<0.0000900		<0.00200	<0.00200	0.13	0.86	0.86	BAC-20	15.44	7.41	-147	1430	1.0	3.77	0.773
BAC-21	0.276	27.5	195	1.09	8.08	82.5	640	< 0.00400		0.0769	< 0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.105	<0.0000900		<0.00200	<0.00200	0.041	0.93	0.93	BAC-21	15.21	7.65	-194	1220	1.2	0.39	0.78
BAC-22	0.266	29.4	240	1.2	7.95	97.5	668	< 0.00400	0.0476	0.0371	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.125	< 0.0000900	0.00552	< 0.00200	< 0.00200	0.067	1.74	1.74	BAC-22	15.48	7.61	-67	1370	0.5	0.44	0.874
BAC-23	0.272	30.5	243	1.13	7.88	87.9	760	< 0.00400		0.0374	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.138	<0.0000900		<0.00200	< 0.00200	0	0.7	0	BAC-23	15.39	7.56	-63	1410	0.8	0.41	0.903
BAC-24	0.299	30.1	271	1.36	7.88	83.1	824	< 0.00400		0.0644	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.169	<0.0000900		< 0.00200	<0.00200	0	1.03	1.03	BAC-24	15.19	7.51	-71	1550	0.9	0.39	0.989
BAC-25 BAC-26	0.27	29.8	187	0.891	7.99	96.3 66.9	560	<0.00400		0.0748	<0.00200	<0.000500	< 0.00200	<0.00400 <0.00200 <0.00400 <0.00200	<0.100	<0.0000900		<0.00200	<0.00200	0.14	0.93	1.07	BAC-25 BAC-26	15.77	7.51	-95	1160 1340	1.3	1.76	0.742
BAC-26 BAC-27	0.281 0.275	23.6 25.3	236	1.6	8.04 8.02	67.9	780 812	<0.00400		0.0872	<0.00200 <0.00200	<0.000500	<0.00200 <0.00200	<0.00400 <0.00200	0.140	<0.0000900		<0.00200 <0.00200	<0.00200	0.14 -0.03	0.4	0	BAC-26 BAC-27	15.3 15.26	7.62	-217	1340	0.0	0.12	0.855
BAC-28	0.283	28.4	297	1.47	8.02	71.3	732	<0.00400		0.0788	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.176	<0.0000900		<0.00200	<0.00200	0.11	0.3	0	BAC-28	15.37	7.61	-135	1400	0.0	0.13	0.983
BAC-29	0.293	69	639	1.06	7.87	166	1560	< 0.00400		0.0721	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.257	< 0.0000900		< 0.00200	< 0.00200	-0.10	0.82	0	BAC-29	15.09	7.49	-98	2690	0.0	0.15	1.72
BAC-30	0.3	65.4	599	1.09	8.00	155	1340	< 0.00400	0.0381	0.0891	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.243	< 0.0000900		< 0.00200	< 0.00200	0.13	0.39	0	BAC-30	15.16	7.43	-115	2550	0.0	0.21	1.63
BAC-31	0.293	50.2	487	1.15	7.40	115	1150	< 0.00400		0.0859	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.211	<0.0000900		<0.00200	<0.00200	0.04	0.43	0	BAC-31	14.79	7.28	-68	2200	0.0	0.4	1.41
BAC-32	0.283	25.6	265	1.5	8.00	67.5	680	< 0.00400		0.0876	< 0.00200	< 0.000500	0.00277	<0.00400 <0.00200	0.161	<0.0000900		< 0.00200	< 0.00200	-0.03	0.77	0	BAC-32	15.93	7.63	-208	1450	0.3	7.02	0.93
BAC-33 BAC-34	0.279	30.6	317	1.34	7.89	76	848 768	<0.00400		0.1040	<0.00200	<0.000500	<0.00200 0.0097	<0.00400 <0.00200 <0.00400 <0.00200	0.178	<0.0000900		<0.00200	<0.00200	0.05	-0.34	0	BAC-33 BAC-34	15.88 15.8	7.59	-186	1610 1330	0.2	0.16	1.03 0.85
BAC-34 BAC-35	0.275	24.3	228	1.50	8.01	72.3	708	<0.00400		0.0725	<0.00200	<0.000500	< 0.0037	<0.00400 <0.00200	0.148	< 0.0000900		< 0.00200	<0.00200	0.19	-0.34	0	BAC-34 BAC-35	15.88	7.65	-133	1350	0.2	0.87	0.85
BAC-36	0.265	26.7	204	1.09	7.99	97.9	648	<0.00400		0.0695	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.111	<0.0000900		<0.00200	<0.00200	0.083	0.84	0	BAC-36	15.59	7.65	-155	1250	1.2	1.61	0.803
BAC-37	0.268	26.1	195	1.15	7.97	101	632	< 0.00400	0.0447	0.0482	< 0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.108	< 0.0000900	0.00568	< 0.00200	< 0.00200	0.055	0.73	0	BAC-37	15.86	7.65	-171	1220	0.9	0.41	0.779
BAC-38	0.291	32	245	1.09	7.84	88.3	812	< 0.00400	0.0418	0.0673	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.145	<0.0000900	0.00569	< 0.00200	< 0.00200	0.074	1.08	1.08	BAC-38	15.39	7.39	-51	1450	2.1	4.68	0.927
Waste Water	Results																					1					Field Res			
waste water	Results																					Radium 226 and	Waste Water		1	1	Field Res		1	1
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	<0.500	85.9	517	0.617	7.63	405	1840	< 0.00400	0.0131	0.0471	<0.00200	< 0.000500	0.00293	<0.00400 <0.00200	0.207	< 0.0000900	< 0.00200	< 0.00200	< 0.00200	0.15	0.73	0	SI-U-1	14.72	7.25	-19	2550	1.00	0.76	1.63
WW-U-1	1.4	246	1070	0.789	7.29	773	5100	< 0.00400		0.0383			0.00403	<0.00400 <0.00200	0.384	<0.0000900		0.00738		0.2	1.25	1.25	WW-U-1	15.01	14.93	19	7.54	0.60	1.60	4.75
WW-U-2	1.5	333	1460	0.659	7.25	808	4750	<0.00400		0.0480	<0.00200	<0.000500	0.00459	<0.00400 <0.00200	0.498	<0.0000900		0.0116	<0.00200	0.3	1.21	1.51	WW-U-2	13.88	7.13	25	8070	1.00	1.41	5.08
WWC-1 WWC-2	11.3 <0.500	416 36.4	5310 251	0.593	7.00	3870 108	13400 796	<0.00400		0.0216	<0.00200 <0.00200	<0.000500	<0.00200	<0.00400 <0.00200 <0.00400 <0.00200	0.936	0.000192	0.0135	0.0134	<0.00200	0.14 0.18	0.82	0.82	WWC-1 WWC-2	14.78 14.46	6.89 7.31	-83	18600 1390	1.10	0.30	11.5 0.885
WWC-3	<0.500	36.3	231	0.846	7.93	91.3	932	<0.00400		0.0310	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.114	< 0.0000900		<0.00200	<0.00200	0.18	0.46	0	WWC-3	15.32	7.66	-45	1500	0.10	0.17	0.885
WWC-4	1.38	169	996	0.527	8.11	774	3000	< 0.00400			< 0.00200	<0.000500	< 0.00200	<0.00400 <0.00200	0.323	<0.0000900		< 0.00200	<0.00200	0.27	0.44	0	WWC-4	15.48	7.24	-40	4740	1.60	0.11	3.03
WWC-5	2.51	308	1590	0.473	7.26	1410	5020	< 0.00400		0.0369	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.472	<0.0000900	< 0.00200	0.0057	<0.00200	0.11	0.91	0.91	WWC-5	15.43	7.05	-11	7120	0.00	0.15	4.49
WWC-6	0.579	137	1060	0.255	7.49	558	2720	< 0.00400		0.0825	<0.00200	< 0.000500	0.00457	<0.00400 <0.00200	0.201	<0.0000900		<0.00200	<0.00200	0.21	0.95	0.95	WWC-6	14.08	7.18	-70	4250	0.70	0.37	2.72
WWC-7	< 0.500	42.1	205	0.366	7.96	129	780	<0.00400		0.0316	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	<0.100	<0.0000900		<0.00200	<0.00200	0.05	0.15	0	WWC-7	13.82	7.51	-141	1.21 4430	1.50	0.19	0.773
WWC-8 WWC-9	0.673	130 52.5	1110 385	0.453	7.46 7.84	559 119	2570 984	<0.00400		0.0517 0.0741	<0.00200 <0.00200	<0.000500	<0.00200	<0.00400 <0.00200 <0.00400 <0.00200	0.211	<0.0000900		0.00366	<0.00200	0.88	0.42	0.88	WWC-8 WWC-9	14.75 14.91	7.36	-36 -39	4430	1.70	0.17	2.84
WWC-10	<0.500	52.5	382	0.53	7.84	119	1040	< 0.00400		0.0741	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.109	<0.0000900		<0.00200	<0.00200	0.17	0.16	0	WWC-10	13.98	7.35	-39	1/90	0.00	0.21	1.15
WWC-11	<0.500	37.6	209	0.395	8.01	114	608	< 0.00400		0.0767	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	<0.100	<0.0000900		<0.00200	<0.00200	0.1	0.2	0	WWC-11	14.39	7.64	-196	1200	1.30	0.22	0.766
WWC-12	<0.500	82.4	505	0.414	7.81	194	1140	< 0.00400		0.0643	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.119	<0.0000900		<0.00200	<0.00200	0.27	0	0.5	WWC-12	14.29	7.51	-151	2170	1.5	0.17	1.39
WWC-13	<0.500	72.3	427	0.372	7.83	168	708	< 0.00400		0.0489	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.108	<0.0000900		<0.00200	<0.00200	0.17	0.19	0	WWC-13	14.4	7.60	-47	1920	1.0	0.14	1.23
WWC-14	< 0.500	184	1290	0.314	7.59	796	3210	< 0.00400		0.0562	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.259	<0.0000900		< 0.00200	< 0.00200	0.07	0.67	0	WWC-14	14.13	7.33	-111	5460	0.7	0.15	3.44
WWC-15	<0.500	95.3	428	0.375	7.58	192	1600	<0.00400	0.0254	0.0684	<0.00200	-0.0005.00	-0.00200	<0.00400 <0.00200	0.119	<0.0000900	0.0030	<0.00200	<0.00200	-0.06	0.88	0.88	WWC-15	14.52	7.48	-175	2360	1.3	0.22	1.51
WWC-16 WWC-17	<0.500	50.3	351	0.399	7.95	136	724	<0.00400			<0.00200			<0.00400 <0.00200		<0.0000900		<0.00200	<0.00200	0.05	0.27	0	WWC-16 WWC-17	13.72	7.35	-57	1410	0.8	0.23	1.1
	-0.500	54.4		0.557	7.00			10.00400	0.0205	0.0350	.0.00200	0.000500	0.00200		0.15	.0.0000300	0.20000	10.00200	.0.00200	0.05	0.51	-		14.23			1/20	0.0	0.50	
	Results		·	·	•		·	·	·	•		·		• •	•		·		•		•					·	Field Res	ults		
Additional Wells				_															-			Radium 226 and	Additional Wells							
				Fluoride		Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt Lead	Lithium		Molybdenum					228 combined		Temp	pH	REDOX				TDS
RW-1 RW-4		124 80.3												<0.00400 <0.00200 <0.00400 <0.00200			0.00422				0.6	0	RW-1 RW-4		7.21 7.54	119	3870 3280	2.6	1.32 2.68	2.48 2.1
RW-4 RW-5		29.4		0.864										<0.00400 <0.00200		<0.0000900		<0.00200			0.69	0	RW-5		7.54		3280	1.9	0.3	0.711
RW-6		23.4		1.54		82.3	692	<0.00400	0.0659	0.0388	<0.00200	<0.000500	<0.00200	<0.00400 <0.00200	0.152	< 0.0000900	0.00489	<0.00200		0.03	0.14	0	RW-6	15.40		-08	1510	1.9	1.04	0.968
RW-7		44.7	329	0.584	7.94	133	960	< 0.00400	0.0224	0.0351	< 0.00200	< 0.000500	0.00258	<0.00400 <0.00200	0.132				<0.00200	-0.019	0.72	0	RW-7	16.19	7.57	-45	1640	3.9	0.25	1.05
RW-9	< 0.500	84.7	736	1.06				< 0.00400	0.0337	0.0359	<0.00200	< 0.000500	< 0.00200	<0.00400 <0.00200	0.257	<0.0000900	0.00272	< 0.00200	< 0.00200	0.15	0.27	0	RW-9	17.35	7.40	61	3070	1.8	3.17	1.96
WDB-5		22.7	209	1.52								<0.000500		<0.00400 <0.00200		<0.0000900			<0.00200	0.29	0.96	1.25	WDB-5	15.7		-96	1260	22.1	0.19	
WDB-7		25.3		1.37	8.02	59.5	660	< 0.00400	0.0446	0.0826	<0.00200	<0.000500	< 0.00200	<0.00400 <0.00200	0.172	<0.0000900	0.00387		< 0.00200		0.39	0	WDB-7	14.96		-6	1370	1.9		0.876
	< 0.500	37.4	325	1.42	8.03	84.4	868	<0.00400	0.0304	0.0606	<0.00200	<0.000500	0.00992	<0.00400 <0.00200	0.212	<0.0000900	0.00570	<0.00200	<0.00200	0.14	0.34	0	WDB-19	15.49	7.46	-194	1680	50.3	0.29	1.07
WDB-19																														

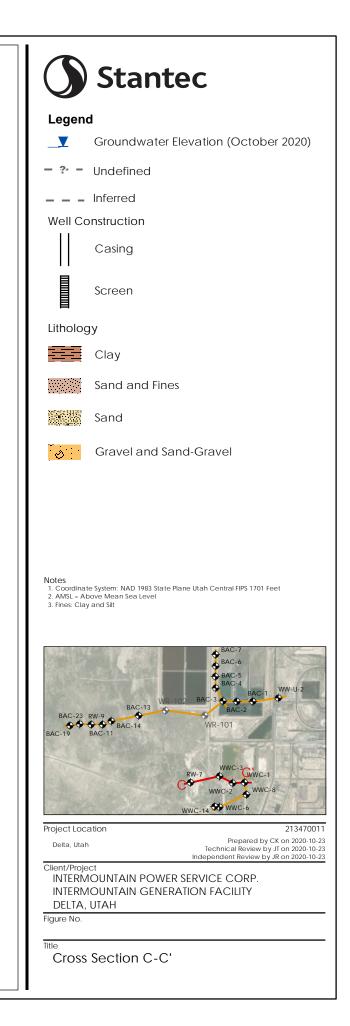

APPENDIX C STANTEC CROSS-SECTIONAL FIGURES June 16, 2021

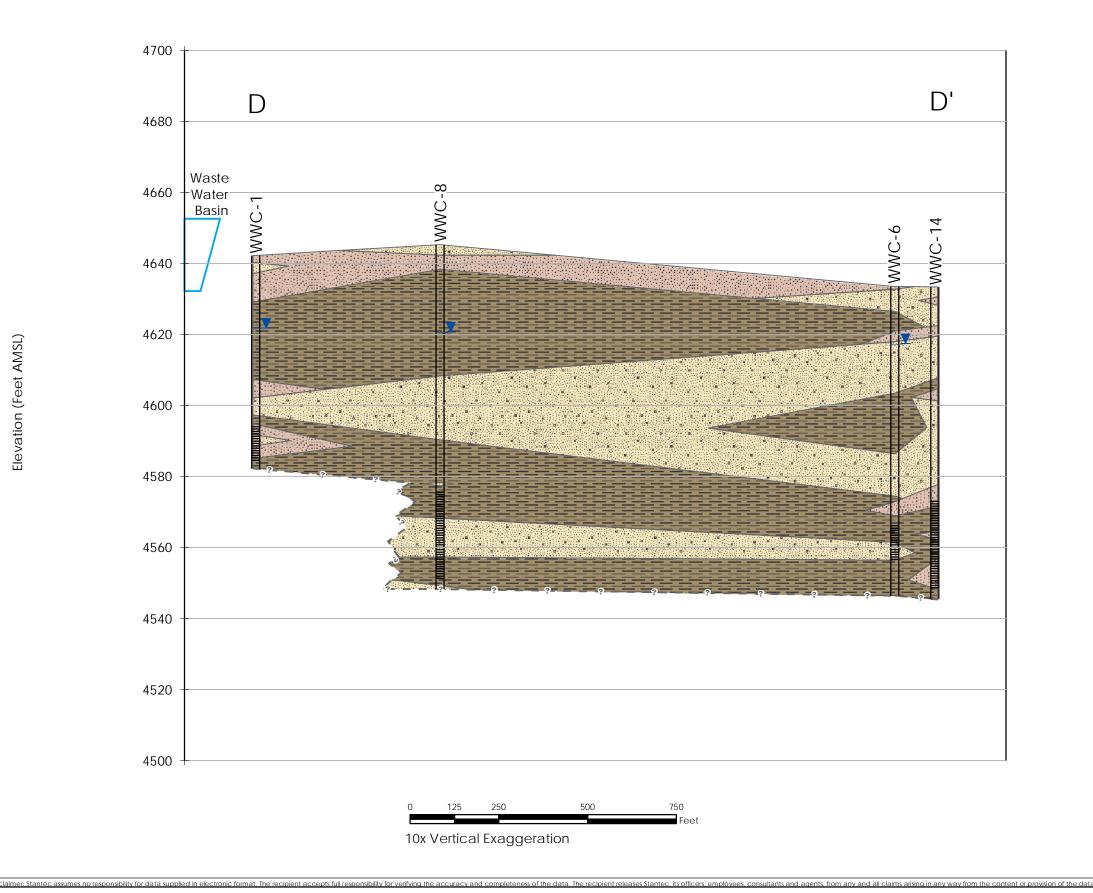
APPENDIX C STANTEC CROSS-SECTIONAL FIGURES

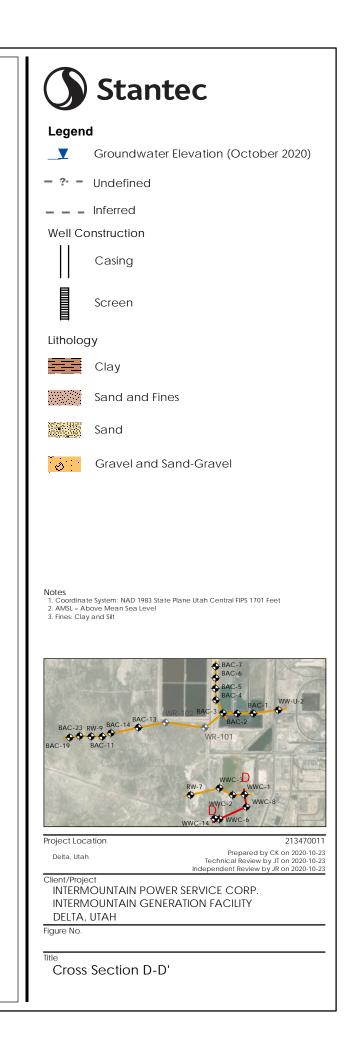

sclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.






INTERMOUNTAIN POWER SERVICE CORP. INTERMOUNTAIN GENERATION FACILITY DELTA, UTAH Figure No.


Cross Section A-A'



Elevation (Feet AMSL)

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

UPDATED GROUNDWATER MODEL FINDINGS

Recently, Stantec updated its three-dimensional, numerical groundwater flow and fate and transport model of TDS in groundwater beneath the IGF site, utilizing data associated with dozens of groundwater monitoring wells that were pump tested during 2020. Numerous pump tests were performed for 12- to 24-hours in duration, with continuous monitoring of water levels in nearby monitoring wells utilizing dedicated electronic pressure-transducers. The model was developed generally in accordance with ASTM International's (American Standard for Testing and Materials) Standard Guide for Application of Groundwater Model to a Site-Specific Problem and the current version of United States Geological Survey (USGS) Modular Three-Dimensional Finite Difference Groundwater Flow Model (MODFLOW-2005).

Typically, TDS tends to migrate at the same rate as the average linear groundwater flow velocity, and as such, Stantec utilized pump tests across the site to estimate average hydraulic conductivity values, which in turn were used to extrapolate linear groundwater flow velocities of the uppermost aquifer and TDS in the vicinity of and downgradient from the two surface impoundments. Hydraulic gradients observed during the operational lifespan of the basins (approximately 35 years, late-1986 through today) were also used in refining our CSM and estimations as to TDS plume migration patterns and flow velocities. All such data were used to help fashion IPSC's groundwater monitoring and remedial strategies, including IPSC's selected remedy which is discussed in detail within preceding report section *3.0 Corrective Measures Assessment and Selected Remedy*.

The following report subsections discuss TDS plume modeling results associated with each of the two respective surface impoundments.

BOTTOM ASH BASIN, MODEL RESULTS

2019 MODEL PREDICTIVE USE FOR MONITORING WELL PLACEMENTS

Stantec's past qualitative evaluation of historical migration of the downgradient, leading edge of the TDS plume located southwest of the Bottom Ash Basin, as indicated by comparison of sequential TDS concentrations in monitoring wells with time, indicated that the TDS plume located southwest of the Bottom Ash Basin appeared to be migrating at a rate of approximately 150 to 180 feet per year. This was a generalized plume migration rate estimate, considering the qualitative observations used for the evaluation and heterogeneous nature of the lithologic characteristics of the uppermost aquifer (highly-variable, intermixed clays, clay-rich sands, etc.), and as such, the qualitative TDS migration rate estimate should be compared with Stantec's recent groundwater model results.

Estimations of linear groundwater flow velocities are contingent upon localized hydraulic gradient, hydraulic conductivity, and effective porosity factors. Each of these factors varies across the IGF, depending on site-specific location. In particular, relatively-small changes in the

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

aquifer's effective porosity can have comparatively-significant impacts to groundwater flow velocities. In consideration of the heterogeneous clay, silt, and sand lithologic characteristics of the uppermost aquifer beneath the IGF, it is anticipated that effective porosity values vary significantly, over relatively-short, lateral distances across the IGF, thereby resulting in highly-variable, linear groundwater flow velocities as well.

In 2019, Stantec used its groundwater fate and transport model to help estimate the total number and locations of vertical groundwater recovery wells that might be installed to intercept the southwestern-most, downgradient leading edge of the TDS plume located southwest of the Bottom Ash Basin. At the time, the precise location of the western-most, downgradient leading edge of the plume had not been delineated (i.e., prior to 2020 installation of additional wells, etc.).

The 2019 groundwater model was used to help locate proposed drilling/installation locations of the 21 BAC-18 through BAC-38 wells that were installed subsequently during 2020 in the vicinity of the estimated western-most, downgradient leading edge of the TDS plume. The intent of the wells was for water quality monitoring and recovery of TDS-impacted groundwater if needed. Each well was constructed as a 6-inch diameter well, with 20- to 25-lineal feet of well screen at the bottom of each well. Figures 3 and 4 identify the locations of all monitoring/recovery wells as of 2021, including the BAC-18 through BAC-38 wells.

The model evaluated use of a line of equally-spaced, groundwater recovery wells located perpendicular to the natural, southwesterly groundwater flow direction and in close proximity to the estimated, TDS plume 1,100 ppm iso-concentration line (IPSC's Groundwater Discharge Permit TDS compliance concentration). Stantec's model indicated that the proposed "BAC" recovery wells be placed at 146-ft. lateral spacings to provide adequate TDS capture at individual recovery well yields of 10 gpm and at 188-ft. spacings for wells producing at 15 gpm.

Subsequently in 2020, Stantec installed the western-most, "BAC" recovery wells at approximate 100- to 125-ft. lateral spacings to provide more conservative spacing of wells for groundwater recovery, based on hopes of each proposed well yielding a recovery rate of at least 10 gpm. Additionally, it is anticipated that well recovery yields will most probably decline with time of use, as has been observed with IPSC's existing recovery wells WR-101, WR-102, and WR-103. Field and site accessing conditions also influenced the locations of some of the wells.

Since the precise downgradient leading edge of the TDS plume was unknown in 2019, Stantec and IPSC agreed to install two separate, horizontal lines of BAC recovery wells during 2020, in hopes of delineating the TDS plume more precisely while also providing TDS mass capture and recovery, if and where deemed warranted. Additionally, wells BAC-18 and BAC-19 were located farther southwest to provide monitoring of groundwater quality in areas located downgradient of the two separate lines of wells, respectively.

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

2021 MODEL RESULTS

As of the April 2021 sampling event, all BAC wells comprising the western-most line of recovery wells (immediately east of well BAC-19 on Figure 4) contained quantified TDS concentrations deemed representative of typical background TDS concentrations. Stantec anticipates that, as the TDS plume migrates in a southwesterly direction, one or more of the wells within the western-most line of recovery wells will most probably be needed for recovery of TDS-impacted groundwater, if and when needed in the future.

Pump tests conducted during 2020 at several of the western BAC monitoring wells indicated highly varied groundwater yields approximating two gallons per minute (gpm) to 15 gpm, with most wells producing approximately 10 to 15 gpm. Historical pump testing of wells located in closer proximity to the basin indicated similar well yields, with no individual well yield exceeding 15 gpm.

In consideration of the varied hydraulic conductivity and effective porosity characteristics of the aquifer, it is not surprising that groundwater linear velocity flow rates may vary considerably beneath the IGF. Stantec's most recent extrapolation of pump test results and corollary hydraulic conductivities indicates that average linear groundwater flow velocity values associated with various wells located throughout the TDS plume located southwest of the Bottom Ash Basin approximate a broad range, with estimates between 52 to 228 feet per year.

Figure 6 herein presents results of Stantec's most recent (May 2021) update to its groundwater fate and transport model, identifying particle-track, groundwater flow lines and corollary linear flow velocities. Flow lines are terminated where Stantec had no nearby pump test data to evaluate via the model. The figure also presents estimations of the lateral, linear distance to which groundwater is estimated to migrate/flow along individual flow lines during an average 10-year timeframe.

The figure presents the flow velocity data in 10-year intervals, so that data might be evaluated in terms of the fact that the Bottom Ash Basin was constructed and placed into operation sometime during 1986-1987 (i.e., approximately 34 to 35 years ago). As may be noted by review of Figure 6, different areas of the TDS plume are migrating toward the southwest at different rates. Average linear groundwater velocity values associated with migration of groundwater toward the southwest in relation to the Bottom Ash Basin were estimated to be between 52 to 228 feet per year. The wide range in velocity estimates is anticipated to be attributable primarily to the heterogenous lithologic characteristics of the uppermost aquifer.

The groundwater flow velocity data presented on Figure 6 should not be confused with TDS (or any contaminant constituent) iso-concentration data. Stantec's comparative analysis of the groundwater velocity data presented on Figure 6 and the TDS concentrations presented on Figure 4 indicates the following observations of particular interest:

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

- Groundwater flowing beneath the generalized, northwestern-most corner of the Bottom Ash Basin may have been impacted by TDS constituents, shortly following initial 'start-up' use of the basin 34 to 35 years ago (as TDS appears to have traveled as far southwest [in vicinity of wells BAC-11, BAC-29, BAC-30, BAC-31, and RW-9] as groundwater would have been expected to migrate in the past 35 years [advection], etc.);
- Groundwater flowing beneath the generalized, middle of the basin *may have* been impacted by TDS constituents, a few to several years after initial startup use of the basin (as TDS does not appear to have traveled as far southwest as groundwater would have been expected to migrate in the past 35 years, etc.); and
- Groundwater located north and south of the basin does not appear to be migrating as fast as the two above-mentioned areas (and specifically, as regards groundwater flowing beneath the southern-most portions and downgradient of the basin: TDS concentrations do not appear to have migrated very far south/southwest of the basin, evidently due to the comparatively-slower groundwater velocities, etc.).

It is possible that the faster groundwater flow velocity values associated with groundwater migrating beneath the northwestern-most corner and middle portions of the Bottom Ash Basin *may* be attributable in part to greater hydraulic gradients associated with past and/or recent release incidents in these general areas. Hypothetically, release of liquid-phase CCR constituents from localized areas of the impoundment might result in localized, subsurface mounding at the water table, which in turn might increase local hydraulic gradients thereby increasing corollary linear groundwater flow velocities, locally.

Model results indicate that use of some of the existing wells for groundwater recovery, as outlined in preceding report section 3.0 Corrective Measures Assessment and Selected Remedy, should be effective in removing total TDS mass from the aquifer located downgradient of the Bottom Ash Basin, controlling the migration of the downgradient leading edge of the TDS plume located southwest of the basin, and providing ongoing protection to human health and the environment.

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

WASTE WATER BASIN, MODEL RESULTS

2019 MODEL PREDICTIVE USE FOR MONITORING WELL PLACEMENTS

As may be noted by review of Figure 4, there appear to be two TDS plumes located west and southwest of the Waste Water Basin, respectively. The TDS plume located near the northwestern-most corner of the basin is migrating toward the west, while the TDS plume located near the southeastern-most corner of the basin is migrating toward the southwest.

In 2019, Stantec used its groundwater fate and transport model to investigate optimal number, spacings, and locations of monitoring/recovery wells located downgradient of the TDS plume positioned southwest of the southeastern corner of the Waste Water Basin. At the time, the precise location of the southwestern-most, downgradient leading edge of the plume had not been delineated.

The model was used to help locate the WWC-12 through WWC-17 wells that were installed during 2020 in the vicinity of the estimated southwestern-most, downgradient leading edge of the TDS plume, based on water quality data associated with the monitoring wells present as of 2019. The intent of the wells was for water quality monitoring and recovery of TDS-impacted groundwater, if needed. Each well was constructed as a 6-inch diameter well, with 20- to 25-lineal feet of well screen at the bottom of each well.

The model evaluated use of a line of groundwater recovery wells located perpendicular to the natural, southwesterly groundwater flow direction and in close proximity to the estimated, TDS plume 1,100 ppm iso-concentration line (IPSC's Groundwater Discharge Permit TDS compliance concentration). Stantec's model indicated that the proposed "WWC" recovery wells be placed at 225-ft. lateral spacings to provide adequate TDS capture at individual recovery well yields of 10 gpm and at 280-ft. spacings for wells producing at 15 gpm.

Subsequently in 2020, Stantec installed the southwestern-most, "WWC" recovery wells at approximate 150- to 200-ft. lateral spacings to provide a more conservative spacing of wells for groundwater recovery, based on hopes of each well yielding a recovery rate of approximately 10 gpm and in anticipation that recovery yields may decline with time. Field and site accessing conditions influenced the locations of some of the wells.

2021 MODEL RESULTS

Figure 6 herein presents results of Stantec's most recent (May 2021) update to its groundwater fate and transport model, identifying particle-track, groundwater flow lines and corollary linear flow velocities. As may be noted by review of Figure 6, different areas of the TDS plume are migrating toward the west and southwest at different rates. In general, average linear groundwater velocity values associated with migration of groundwater toward the southwest in relation to the Waste Water Basin were estimated to be between 98 to 223 feet per year, while linear velocities associated with the smaller, western TDS plume approximate a velocity range

ATTACHMENT 1 UPDATED GROUNDWATER MODEL FINDINGS June 16, 2021

between 39 to 68 feet per year. The wide range in velocity estimates is anticipated to be attributable primarily to the heterogenous lithologic characteristics of the uppermost aquifer.

Reportedly, IPSC has never identified any definitive, historical release incidents associated with the Waste Water Basin. It is possible that the TDS plumes associated with the basin may be attributable to relatively-small volume and/or short-duration release incidents that were never observed/recognized historically.

Stantec's comparative analysis of the groundwater velocity data presented on Figure 6 and the TDS concentrations presented on Figure 4 indicates the following:

- Groundwater flowing beneath the generalized, southeastern-most corner of the Waste Water Basin appears to be migrating at a comparatively-faster velocity than cross-gradient groundwater to the west.
- The TDS plume associated with the southeastern-most corner of the basin may have been associated with a release incident that might have occurred approximately 10 years ago.
- Groundwater flowing beneath the generalized, northwestern-most corner of the basin appears to be migrating at a comparatively-slower velocity than cross-gradient groundwater to the north and south. The TDS plume associated with the northwestern-most corner of the basin may have been associated with a release incident that might have occurred approximately at least 15 years ago.

Model results indicate that use of some of the existing wells for groundwater recovery, as outlined in preceding report section 3.0 Corrective Measures Assessment and Selected Remedy, should be effective in removing total TDS mass from the aquifer located downgradient of the Waste Water Basin, controlling the migration of the downgradient leading edges of the TDS plumes located west and southwest of the basin, and providing ongoing protection to human health and the environment.