Amended Assessment of Corrective Measures Report

Intermountain Generating Facility Delta, Utah

Prepared for:

Intermountain Power Service Corporation 850 West Brush Wellman Road Delta, Utah 84624

Prepared by:

Stantec Consulting Services Inc. 2890 East Cottonwood Parkway, Suite 300 Salt Lake City UT 84121-7283

Project No.: 203709098

November 30, 2020

Sign-off Sheet and Signatures of Environmental Professionals

This document was prepared by Stantec Consulting Services Inc. ("Stantec") for Intermountain Power Service Corporation (the "Client"). The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by:

John G. Russell, III

Utah PG #5216074-2250

Sr. Hydrogeologist, Environmental Risk Manager

Reviewed by:

Chris LaLonde Risk Assessor

Reviewed by:

Chad Tomlinson, PE

Charl Tanlinson

Utah Licensed PE #4777863-2202

Principal Engineer

Table of Contents

ABBF	REVIATION	S	l
1.0	EXECUT	IVE SUMMARY	1.1
1.1	PURPOS	SE OF THIS REPORT	1.1
1.2	BACKG	ROUND	1.2
2.0	CCR RU	LE DETECTION MONITORING PROGRAM, 2015-2017	2.1
3.0	CCR RU	LE ASSESSMENT MONITORING PROGRAM	3.1
3.1	ASSESS <i>N</i>	MENT MONITORING RESULTS	3.1
	3.1.1	Ground Water Flow Characteristics	3.3
	3.1.2	CCR Unit-Specific, Ground Water Quality Results	3.3
4.0		MENT OF CORRECTIVE MEASURES	
4.1		RY GROUND WATER MODELING RESULTS AND FINDINGS	
4.2		ATION OF ALTERNATIVE CORRECTIVE MEASURES	

LIST OF FIGURES

- Figure 1 General Site Location Map
- Figure 2 Site-Specific Location Map
- Figure 3 April 2020 Groundwater Flow Map with Water Quality Data
- Figure 4 25 Newly-Installed 2020 Wells
- Figure 5 Assemblage Excerpted Figures from IPSC's 2016 Updated Corrective Action Plan Report

LIST OF TABLES

Table 1 Ground Water Monitoring Well Construction Details
Table 2 CCR Rule Compliance, Analytical Results and Water Levels

LIST OF APPENDICES

APPENDIX A HISTORICAL ASSESSMENT MONITORING PROGRAM GROUNDWATER FLOW MAPS AND TDS CONCENTRATIONS
APPENDIX B DRILLING LOGS AND WELL SCHEMATIC DIAGRAMS
APPENDIX C TABULATION OF UTL AND GWPS VALUES, CCR UNIT-SPECIFIC

i

Abbreviations

CB Landfill Combustion By-Products Landfill

CoC Chain-of-Custody

DQO Data Quality Objective

ft Foot or feet

IGF Intermountain Generating Facility

IPSC Intermountain Power Service Corporation

LCL Lower Confidence Limit

MCL Maximum Contaminant Level

mg/l milligrams per liter msl mean sea level

ORP Oxygen Reduction Potential

QA/QC Quality Assurance and Quality Control

QAPP Quality Assurance Project Plan

RCRA Resource Conservation and Recovery Act

SAP Sampling and Analysis Plan
SOPs Standard Operating Procedures
Stantec Stantec Consulting Services Inc.
SSI Statistically Significant Increase

UDEQ Utah Department of Environmental Quality

UTL Upper Tolerance Limit

US EPA United States Environmental Protection Agency

i

EXECUTIVE SUMMARY November 30, 2020

1.0 EXECUTIVE SUMMARY

1.1 PURPOSE OF THIS REPORT

On behalf of Intermountain Power Service Corporation ("IPSC"), Stantec Consulting Services Inc. ("Stantec") has prepared this report to amend IPSC's original January 2019 assessment of corrective measures required by the coal combustion residuals rules, and which supplemented IPSC's September 2016 Updated Corrective Action Plan report at the request of the Utah Department of Environmental Quality ("UDEQ"), Division of Water Quality ("DWQ"). The 2016 report presented IPSC's approach for addressing requirements specified by the facility's DWQ Ground Water Discharge Permit No. UGW270004. The most recent permit renewal was issued by the UDEQ to IPSC's Intermountain Generating Facility ("IGF"), effective May 24, 2016.

During the generalized timeframe of December 2015 through today, IPSC has been complying with facility monitoring measures prescribed by the United States Environmental Protection Agency's 2015 Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, 40 CFR 257 Subpart D (the "Federal CCR Rule") (and the corresponding Utah CCR Rule at Utah Admin. Code R315-319 (the "State CCR Rule") (collectively, the "CCR Rules")). IPSC implemented a ground water quality monitoring program prescribed by the CCR Rules that included monitoring of CCR units and installation, monitoring, and sampling of several new, additional monitoring wells that were not part of IPSC's Ground Water Discharge Permit.

Since January 2019, IPSC has been, and still is, conducting semi-annual Assessment Monitoring as prescribed by the CCR Rule, including ongoing monitoring and delineation of CCR constituents, as well as remediation of Total Dissolved Solids (TDS) in groundwater beneath localized areas of the site in compliance with its Groundwater Discharge Permit. This 2020 report incorporates by reference IPSC's September 2016 Updated Corrective Action Plan report and January 2019 Assessment of Corrective Measures and Amended Corrective Action Plan report. This report also incorporates by reference IPSC's routine, semi-annual reports that IPSC has submitted historically to the DWQ as part of ongoing compliance with its Ground Water Discharge Permit and Semi-Annual Progress Reports that have been published on IPSC's public website as part of CCR Rule compliance. Copies of potentiometric and TDS concentration maps, excerpted from historical semi-annual reports, are presented herein in Appendix A.

IPSC commenced a ground water quality monitoring program prescribed sequentially by CCR Rules Parts §257.90 (R315-319-90) Applicability; §257.91 (R315-319-91) Ground Water Monitoring Systems; §257.93 (R315-319-93) Ground Water Sampling and Analysis Requirements; §257.94 (R315-319-94) Detection Monitoring Program; §257.95 (R315-319-95) Assessment Monitoring Program; and §257.96 (R315-319-96) Assessment of Corrective Measures. The CCR Rules apply to each of IPSC's three (3) CCR units (reference Figures 1 and 2 for regional and site-specific, location maps):

Combustion By-Products Landfill ("CB Landfill");

EXECUTIVE SUMMARY November 30, 2020

- Bottom Ash Basin; and
- Waste Water Basin.

The DWQ has regulatory oversight for IPSC's compliance with its Ground Water Discharge Permit. The UDEQ Division of Waste Management and Radiation Control ("DWMRC") also has regulatory oversight pursuant to the State CCR Rule, under which DWMRC issued a permit for the CCR Units. IPSC has prepared this report to provide a summary of its CCR Rule compliance activities while proposing a dove-tailed, ground water monitoring and recovery program intended to comply with the Federal and State CCR Rules and its Ground Water Discharge Permit.

1.2 BACKGROUND

Historically, when complying with its Ground Water Discharge Permit, and as reported to the UDEQ, whenever IPSC identified a potential release from a permitted basin, IPSC implemented investigative and remedial actions to identify the source and then repair the leak area (typically a localized tear in the 80-mil high-density, polyethylene [HDPE] liner material). Investigative and remedial measures were implemented and communicated to the UDEQ in a timely manner and in accordance with Ground Water Discharge Permit requisites.

As a result of localized, historical releases from the Bottom Ash Basin, a plume of Total Dissolved Solids (TDS) in excess of background concentrations impacted the uppermost ground water quality and migrated with ground water toward the southwest (the predominant, uppermost aquifer flow direction in relation to the Bottom Ash Basin). Since March 2010, IPSC has operated three ground water recovery wells that recover ground water from areas that exhibit elevated TDS concentrations within the uppermost aquifer beneath the site. The permit compliance concentration for TDS for Compliance Wells in the Ground Water Discharge Permit is 1,100 ppm. The three recovery wells (wells WR-101, WR-102, and WR-103) collectively recover approximately 25 gallons per minute (gpm) and route recovered ground water to the Ash Recycle Basin.

The three recovery wells were designed to remove TDS mass from the apparent center of the TDS plume, as proposed in IPSC's original June 2007 Corrective Action Plan Report, which was 'approved' by the UDEQ and implemented sequentially, as documented in IPSC's March 2010 Ground Water Recovery Well Installation Report. At the time of installation, the three recovery wells were not intended to control the downgradient migration of the TDS plume, but rather to reduce TDS mass within the uppermost aquifer at locations positioned in relatively close proximity to release source areas.

As of September 2016, TDS water quality data indicated that the down-gradient leading edge of the TDS plume was moving beyond ground water recovery measures in place at the time. IPSC's September 2016 Updated Corrective Action Plan report included a summary of Stantec's ground water modeling and preliminary analysis of subsurface, hydraulic characteristics which were used in part to formulate a proposed enhanced, ground water recovery program. The model was developed generally in accordance with ASTM International's (American Standard for Testing and Materials) Standard Guide for Application of Groundwater Model to a Site-

EXECUTIVE SUMMARY November 30, 2020

Specific Problem and the current version of United States Geological Survey (USGS) Modular Three-Dimensional Finite Difference Groundwater Flow Model (MODFLOW-2005).

IPSC proposed to install and test additional ground water recovery wells near the downgradient leading edge of the TDS plume to enhance TDS plume control measures and help IPSC gain a clearer understanding of the hydraulic characteristics of the leading edge of the TDS plume. The TDS plume associated with historical releases at the Bottom Ash Basin is located within the boundaries of IPA-owned property and as such has posed no risk historically or currently to potential on- and/or off-site receptors.

CCR RULE DETECTION MONITORING PROGRAM, 2015-2017 November 30, 2020

2.0 CCR RULE DETECTION MONITORING PROGRAM, 2015-2017

As detailed in IPSC's November 2015 CCR Unit Monitoring Well Design and Installation Summary Report, IPSC installed a series of ground water monitoring wells to monitor uppermost ground water quality in up-gradient (e.g., "background" water quality) and down-gradient directions in relation to the CB Landfill, Bottom Ash Basin, and Waste Water Basin. Table 1 presents a summary of all CCR Rules-related, ground water monitoring well construction details and completion dates, including numerous wells that were installed during IPSC's Assessment Monitoring Program discussed in the following report section 3.0 CCR Rule, Assessment Monitoring Program. Appendix A includes copies of the drilling logs and well schematic diagrams.

During late-October 2015, IPSC initiated its CCR unit-specific, monitoring, sampling, and analysis program for background and down-gradient, monitoring wells, in accordance with §257.94 (R315-319-94) Detection Monitoring Program and IPSC's November 2015 Ground Water Sampling and Analysis Plan. As prescribed by §257.94(b) (R315-319-94(b)) for existing CCR-regulated landfills and surface impoundments, IPSC analyzed all ground water samples for Appendix III and Appendix IV constituents. As of October 2017, IPSC completed eight (8) independent sampling events from each background and down-gradient monitoring well in accordance with §257.94(b) (R315-319-94(b)).

In accordance with §257.90(e) (R315-319-90(e)), IPSC's January 2018 Annual Ground Water Monitoring Summary Report presented the results of IPSC's eight ground water monitoring and sampling events that comprised its Detection Monitoring Program pursuant to §257.94 (R315-319-94). All monitoring and sampling procedures were implemented in accordance with IPSC's November 2015 CCR Unit Monitoring Well Design and Installation Summary Report and corollary Ground Water Sampling and Analysis Plan report. All three predecessor reports are stand-alone documents that are incorporated by reference herein.

As reported in IPSC's January 2018 summary report, statistical analyses indicated potential statistically significant increases ("SSIs") over background concentrations of certain Appendix III constituents associated with each of the three CCR units. Therefore, as of the first quarter of 2018, IPSC initiated implementation of an Assessment Monitoring Program at each of the three CCR units in accordance with measures and timeframes prescribed by CCR Rule §257.95 (R315-319-95), as detailed in following report section 3.0. Table 2 herein provides a summary of all ground water sampling results associated with sampling to date, including the 2015-2017 Detection Monitoring Program and ongoing Assessment Monitoring Program.

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

3.0 CCR RULE ASSESSMENT MONITORING PROGRAM

3.1 ASSESSMENT MONITORING RESULTS

Activities conducted during 2018-2019 entailed implementation of an Assessment Monitoring Program prescribed by CCR Rule §257.95 (R315-319-95), including evaluation of ground water monitoring data, establishment of Ground Water Protection Standards ("GWPSs") for Appendix IV constituents, and §257.96 (R315-319-96) Assessment of Corrective Measures. Simultaneously and as reported to the UDEQ under separate cover, IPSC also continued its Ground Water Discharge Permit compliance program, which included ongoing monitoring and localized recovery of uppermost ground water containing elevated TDS concentrations down-gradient of the Bottom Ash Basin. All such qualitative and quantitative data associated with the commencement of IPSC's Assessment Monitoring Program are discussed in detail within IPSC's January 2019 Assessment of Corrective Actions and Amended Corrective Action Plan report, which is incorporated by reference herein. Copies of semi-annual groundwater flow and TDS concentration maps are presented within Appendix A herein.

During 2015 through 2017, IPSC implemented its Detection Monitoring Program in compliance with the CCR Rule. Subsequently, IPSC transitioned to an Assessment Monitoring Program which continues currently, due to the large acreage (4,614-acres) of the site and ongoing sequential installation of 84 monitoring wells in pursuit of appropriate delineation of the down-gradient leading edge of the TDS plume and monitoring for CCR constituents at the three CCR Rule-regulated units. Through such monitoring, IPSC is refining its Conceptual Site Model and understanding of CCR constituents in groundwater. Additionally, IPSC discovered the presence of TDS plumes located down-gradient of the Waste Water Basin (southwest of the southeastern corner of the basin and west of the northwestern corner of the basin). Groundwater quality down-gradient of the CB Landfill has been consistent with typical background concentrations for all CCR constituents since monitoring began.

Specific to CCR Rule compliance monitoring, IPSC monitors groundwater quality at a total of 84 monitoring wells, located at the boundaries and down-gradient of the CCR-regulated units. TDS, heavy metals, boron, pH, and other CCR constituents will continue to be monitored in compliance with both the DWQ Groundwater Discharge Permit and the CCR Rule.

Groundwater monitoring wells have been installed sequentially since CCR Rule Assessment Monitoring began to further delineate CCR constituents in groundwater and refine IPSC's Conceptual Site Model of subsurface hydrogeologic characteristics. Additional monitoring wells were installed sequentially to more accurately define the down-gradient leading edges of TDS plumes located down-gradient of both the Bottom Ash Basin and the Waste Water Basin.

Aside from some of the Groundwater Discharge Permit monitoring wells, the following wells and installation dates are associated with IPSC's CCR Rule compliance program affiliated with the Bottom Ash Basin:

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

- Up-gradient monitoring wells BA-U-1 and BA-U-2 were installed during July 2015;
- Wells BAC-1 through BAC-7 were installed during July and August 2015;
- Wells BAC-8, BAC-9, and BAC-10 were installed during April and May 2019;
- Wells BAC-11 through BAC-17 were installed during November and December 2019; and
- Wells BAC-18 through BAC-38 were installed during May 2020.

The following wells and installation dates comprise IPSC's CCR Rule compliance program associated with the Waste Water Basin:

- Wells WWC-1 through WWC-5 were installed during July 2015;
- Up-gradient monitoring wells SI-U-1, WW-U-1, and WW-U-2 were installed during August 2015;
- Wells WWC-6 and WWC-7 were installed during March 2018;
- Wells WWC-8, WWC-9, and WWC-10 were installed during April 2019; and
- Wells WWC-11, WWC-12, and WWC-13 were installed during November 2019; and
- Wells WWC-14 through WWC-17 were installed during April 2020.

The following wells and installation dates comprise IPSC's CCR Rule compliance program associated with the CB Landfill:

- Up-gradient monitoring wells CL-U-1 and CL-U-2 were installed during July 2015;
- Wells CL-W-1 through CL-W-8 were installed during July 2015;
- Well CL-W-9 was installed during March 2018; and
- Up-gradient monitoring well CL-U-3 was installed during March 2018.

Figure 3 identifies the locations of those CCR Rule compliance monitoring wells installed and sampled as of April 2020, the most recent sampling event for which IPSC has received analytical result reports. The figure includes a groundwater potentiometric map as well as TDS and Appendix IV metal analytical data, as discussed in more detail within following paragraphs.

Wells BAC-18 through BAC-38 and WWC-14 through WWC-17 were installed, developed, and pump-tested during the Spring and Summer of 2020. All 25 of these additional wells were installed such that each well can be used as a recovery well, if needed, in support of TDS plume control and containment, as is discussed in more detail within following report sections pertaining to corrective actions. Reference Figure 4 for the locations of all BAC and WWC monitoring wells, including the 25 new BAC and WWC wells.

The 25 wells were sampled, along with other wells during October 2020; however, IPSC has not received the analytical laboratory results as of this report. Upon receipt, the analytical results will be presented within IPSC's Annual Progress Report to be prepared in January 2021, which, as with other CCR Rule reports, will be posted on IPSC's public website. Upon receipt and analysis of the forthcoming water quality data associated with the 25 new wells, Stantec will prepare updated TDS iso-concentration maps for the apparent TDS plumes located down-gradient of the two impoundments. Likewise, similar maps will be developed, if any other CCR constituents exceed corollary Groundwater Protection Standards, including Appendix IV metals.

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

3.1.1 Ground Water Flow Characteristics

During each ground water monitoring and sampling event, field personnel implemented consistent water level measurement procedures, field techniques, and quality assurance/quality control (QA/QC) protocol in accordance with methodologies specified within IPSC's CCR Rules-specific and Ground Water Discharge Permit-specific, Ground Water Sampling and Analysis Plans. Water levels were measured prior to purging and sampling of each well with field data recorded in a dedicated, project notebook for archiving.

The depth to static water in each well was measured utilizing an electronic meter, capable of measuring to 0.01-foot (ft.). The meter was decontaminated prior to each use to minimize the potential for cross-well contamination, when using the meter between wells. During each sampling event, static ground water level measurements were made to the nearest 0.01-ft. from a consistent, reference point established on the northern top of each PVC monitoring well casing.

Copies of historical semi-annual groundwater flow and TDS concentration maps are presented within Appendix B herein. Figure 3 in this report presents the most recent groundwater flow and TDS result data, as observed during the April 2020 Assessment Monitoring event.

As may be noted by review of the potentiometric maps, the predominant regional ground water flow direction is generally from the east/northeast toward the west/southwest, with more southwesterly, localized components of flow near the Bottom Ash Basin and Waste Water Basin. Although there were slight, localized changes in hydraulic gradient across the site during each individual monitoring event, in general, the gradient patterns appear relatively consistent over time.

Stantec's review of natural topographic elevations presented on the 1971 USGS Rain Lake, Utah Quadrangle topographic map indicates that the natural topography grades generally from the east toward the west across the generalized vicinity of the CB Landfill (T15S, R7W, Section 11), while the natural grade becomes more southwesterly in the vicinity of the Bottom Ash Basin (T15S, R7W, Section 14) and the Waste Water Basin (T15S, R7W, Sections 14 and 23) and on-site land located south and southwest of the surface impoundments and north of the Brush Wellman Highway (i.e., State Route 174). In summary, and on a generalized scale, the potentiometric maps tend to mimic the expression of the topography of the land surface across the site.

3.1.2 CCR Unit-Specific, Ground Water Quality Results

Background and down-gradient, CCR unit-specific ground water monitoring wells were purged and sampled as part of the Assessment Monitoring Program on a semi-annual basis as prescribed by the CCR Rule. All purging, sampling, laboratory analysis, and Quality Assurance/Quality Control ("QA/QC") protocols were administered as specified by §257.95 (R315-319-95) Assessment Monitoring Program and as proposed within IPSC's November 2015 Ground Water Sampling and Analysis Plan. Tabulated analytical results and water level

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

measurement data associated with the CCR Rule Detection and Assessment Monitoring Program events are presented in Table 2 herein.

In accordance with §257.95(d), IPSC has been sampling wells on a semi-annual basis in compliance with CCR Rule Assessment Monitoring and every six months as prescribed by its Groundwater Discharge Permit. As additional groundwater quality data are generated at the site, water quality data and analyte-specific GWPSs will continue to be reported in annual reports and evaluated per statistical analyses performed in accordance with CCR Rule §257.95(d)(2) and §257.95(h) [R315-319-95(d)(2) and R315-319-95(h)] and the following general guidance sources, as has been used for reference to date:

- US EPA "Unified Guidance" document (Statistical Analysis of Ground Water Monitoring Data at RCRA Facilities, Unified Guidance, March 2009, EPA 530/R-09-007);
- the Interstate Technology and Regulatory Council's (ITRC) 2013, Groundwater Statistics for Monitoring and Compliance, Statistical Tools for the Project Lifecycle, Online Guidance; and
- Ofungwu, J. (2014) Statistical Applications for Environmental Analysis and Risk Assessment. Hoboken, New Jersey: John Wiley and Sons, Inc.

The Unified Guidance recommends the use of Upper Tolerance Limits ("UTLs") for Assessment Monitoring. Tolerance limits consist of two values expected to contain a pre-specified proportion of the underlying data population with a specified level of confidence. For example, a 95% tolerance interval with a 95% confidence level, there is 95% confidence that, on average, 95% of the data population is contained within the interval. The upper, one-sided UTL is used commonly in environmental monitoring and is constructed using background data (Ofungwu 2014).

In the context of the CCR Rule, data from all background wells is used to estimate a 95% UTL with 95% coverage for each Appendix IV constituent at each CCR-regulated unit. This represents a 95% upper confidence limit on the 95th percentile. In Assessment Monitoring, the UTL may be used to represent the GWPS if: 1) the constituent does not have an established MCL; or 2) the background UTL exceeds the established MCL.

Three Appendix IV constituents do not have a US EPA-promulgated MCL: Cobalt, Lithium, and Molybdenum. However, the US EPA amended the original CCR rule in July 2018 and established the following alternate, regulatory limits for these compounds: Cobalt (0.006 milligrams per liter, mg/L), Lithium (0.04 mg/L), and Molybdenum (0.1 mg/L).

As specified by CCR Rule §257.95(d)(2) and §257.95(h) (R315-319-95(d)(2) and R315-319-95(h)), each constituent-specific GWPS shall be either the MCL for that constituent (or above-referenced, CCR Rule-established, alternate, regulatory limits for Cobalt, Lithium, and Molybdenum) or the UTL in instances where the UTL exceeds the established MCL. Appendix C presents a tabulation of UTL and GWPS data for each CCR unit and each monitoring well.

During Assessment Monitoring, the site is assumed to be free of impacts, unless proven otherwise through statistical testing. The statistical null hypothesis (Ho) represents a mean downgradient

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

concentration less than or equal to the GWPS, while the alternate hypothesis (Ha) represents a mean downgradient concentration greater than the GWPS (ITRC, 2013). To test this hypothesis, the Lower Confidence Limits (LCL) around the mean downgradient Appendix IV concentrations are estimated using data collected during the Detection Monitoring and Assessment Monitoring programs. The LCL for each constituent/well pair are then compared to their respective GWPS. If the LCL exceeds the GWPS, then downgradient concentrations are at a statistically significant level (SSL) above the GWPS, which may trigger corrective action at the Site.

It should be noted that individual sample results of Appendix IV constituents above the GWPS during Assessment Monitoring are not necessarily a demonstration of statistically significant exceedances of the GWPS. The LCL must exceed the GWPS to conclude a statistically significant increase (SSI). However, if individual constituent concentrations exceed GWPSs, then Assessment Monitoring is to continue at that specific CCR unit. Appendix C presents a tabulation of UTL, GWPS, and Confidence Limit data for each CCR unit and each monitoring well.

In summary, and as presented on Figure 3, the quantitative analytical results associated with monitoring under the CCR Rules indicated the following Appendix IV constituent-specific, LCL exceedances above corollary GWPS concentrations at ground water monitoring wells located at each CCR-regulated unit (all concentrations in mg/L):

CCR Unit	<u>Well</u>	Appendix IV Constituent	LCL Concentration GW	VPS Concentration
CB Landfill		No Exceedances		
Bottom Ash Basin	BAC-2	Molybdenum	0.1506	0.1
	BAC-3	Lithium	0.812	0.7415
Waste Water Basin	WWC-1	Arsenic	0.01496	0.01275
	WWC-2	Arsenic	0.01415	0.01275
	WWC-3	Arsenic	0.02045	0.01275

Groundwater quality down-gradient of the CB Landfill is consistent with typical background concentrations for all CCR constituents. It must be noted that recently-installed, down-gradient monitoring wells, used to help delineate the down-gradient leading edges of CCR constituent plumes, will require additional sampling data for comparative analysis to corollary GWPSs; i.e., a few sampling data-sets are insufficient for appropriate statistical analysis.

Since 2001 when groundwater quality monitoring began at IGF with issuance of the Groundwater Discharge Permit, and as observed to date, TDS is the CCR constituent found to be the most wide-spread and has migrated further down-gradient from the surface impoundments than any other CCR constituent. In compliance with its Groundwater Discharge Permit, IPSC commenced recovery of TDS-impacted groundwater in 2010. TDS will continue to be used as the leading indicator parameter of impacted groundwater quality for fashioning a groundwater remediation approach to address both TDS and slower-migrating CCR constituents including heavy metals. This is appropriate because TDS is expected to continue to migrate at a much faster rate than dissolved metals in the clay-rich aquifer that underlies the property.

CCR RULE ASSESSMENT MONITORING PROGRAM November 30, 2020

3.1.2.1 Regional Ground Water Quality

The site is located within the Basin and Range Physiographic Province and the Sevier Desert on a more localized scale. It is well-documented throughout arid Utah that localized, historical Lake Bonneville basin-fill sediments (that underlie the site) and associated uppermost ground water located in close proximity to igneous/volcanic and metamorphic formations contain high concentrations of abundant, naturally-occurring Arsenic (typically attributable to chemical and physical weathering of arsenopyrite). Likewise, Basin and Range Physiographic Province sediments, surface water, and ground water can also exhibit elevated concentrations of natural Lithium – especially in areas that are characterized by hydrologically-closed basins and thermal ground water.

Arsenic and Lithium concentrations within uppermost ground water can vary considerably, over short, lateral distances, in many instances. Indeed, ground water quality data associated with the site exhibits considerable variation in Arsenic and Lithium concentrations across relatively-short, lateral distances, including up-gradient monitoring wells.

Stantec's familiarity with the regional geology surrounding the site, as well as review of United States Geological Survey (USGS) geologic maps associated with areas surrounding, and in a presumed up-gradient direction (northeast of) in relation to the site, indicate vast acreages encompassing square miles of volcanic and metamorphic mountainous areas with interspersed Lake Bonneville-related sediments, which could provide source material for soluble Arsenic and Lithium to impact localized, uppermost ground water quality. Baker Hot Springs and the mountainous Butte Fumarole formation are located a few miles northwest of the site, for instance. Reportedly, there are third-party companies investigating the possibility of Lithium mining/brine processing within nearby areas such as the Sevier Lake watershed and Tule Valley, areas located several miles southwest and west of the site.

November 30, 2020

4.0 ASSESSMENT OF CORRECTIVE MEASURES

The primary contaminant of potential concern at the site is TDS, as there are localized TDS plumes beneath the site, namely: one plume located southwest of the Bottom Ash Basin and smaller TDS plumes located southwest and west of the Waste Water Basin. TDS is being considered the leading indicator parameter of impacted ground water quality for fashioning a suitable ground water remediation approach. It is anticipated that recovery of TDS-impacted ground water at select recovery wells will also intercept any metal constituents that might be present, as TDS is expected to migrate at a faster rate than dissolved metals in ground water.

4.1 SUMMARY GROUND WATER MODELING RESULTS AND FINDINGS

IPSC's September 2016 Updated Corrective Action Plan report included a summary of Stantec's ground water modeling and preliminary analysis of subsurface, hydraulic characteristics which were used to formulate a proposed enhanced, ground water recovery program, designed to control the down-gradient leading edge of the TDS plume located down-grade/southwest of the Bottom Ash Basin. Stantec constructed and calibrated a three-dimensional, numerical model to simulate ground water flow and fate and transport of TDS in ground water beneath the IGF in an effort to better understand the hydraulic characteristics of the uppermost aquifer beneath the site and for better containment of expansion of the TDS plume. The model was developed generally in accordance with ASTM's Standard Guide for Application of Groundwater Model to a Site-Specific Problem and the current version of USGS Modular Three-Dimensional Finite Difference Groundwater Flow Model (MODFLOW-2005).

In summary, the model was based on site-specific, hydrogeologic and hydraulic characteristics identified during Stantec's past drilling and sampling of soil test borings and ground water monitoring wells located in relatively close proximity to the Bottom Ash Basin, as well as historical pump-testing of the three existing, ground water recovery wells WR-101, WR-102, and WR-103, identified on Figure 5-1 herein, a figure excerpted from IPSC's 2016 report. Stantec also reviewed historical soil boring and ground water monitoring well drilling logs associated with mid- to late-1980s well installations overseen by other consulting firms prior to the construction of the facility.

Stantec's analysis of all hydrogeologic data indicates that the depth to uppermost ground water varies across the site but approximates a range between 55 to 75 feet below grade. Subsurface lithologic conditions in the immediate vicinity of each of the three CCR units were generally as follows:

CCR Unit	Depth to Uppermost Sand Aquifer (feet below ground surface-bgs)	Thickness of Clay-Rich Soils Above the Aquifer (in feet-ft.)
CB Landfill	between 52 to 78	33 to 57 ft. thick
Bottom Ash Basin	between 55 to 60	17 to 33 ft. thick
Waste Water Basin	between 48 to 65	8 to 20 ft. thick

November 30, 2020

Static water level measurements indicate that the uppermost aquifer beneath the site is under semi-confined to confined, hydraulic conditions, whereby static water levels rose within the wells following well installation and development. In other words, during the drilling of each borehole, uppermost, saturated soils were encountered at a certain subsurface depth. Subsequently, and as evidenced by recent water level measurements, the potentiometric surface of the water table was under such hydraulic pressure that the static water level within each monitoring well rose to a height 20 to 40 feet higher than the original depth at which uppermost saturated soils were first encountered. Water levels have been measured consistently to date, utilizing an electronic water level indicator that measures depth to static water in each well from the northern top of each well casing.

Stantec extrapolated that the down-gradient leading edge of the TDS plume appears to be migrating naturally toward the southwest at an approximate rate of 150 to 180 feet per year. However, this is a generalized plume migration rate estimate, considering the relatively large, lateral distances between water quality monitoring well locations and the highly-varied, lithologic characteristics of the uppermost aquifer underlying the site.

Stantec used the groundwater model to help estimate the total number of vertical ground water recovery wells that might be needed to intercept the TDS plume's southwestern-most, down-gradient leading edge. Each proposed well would be constructed as a 6-inch diameter well, with 20- to 25-lineal feet of well screen at the bottom of each well. The model examined use of a line of equally-spaced, ground water recovery wells located perpendicular to the natural, southwesterly ground water flow direction. Since the three existing recovery wells WR-101, WR1-02, and WR-103 had sustainable yields between 8 to 15 gallons per minute (gpm), Stantec's model estimated that the following scenarios should provide satisfactory containment of the TDS plume southwest of the Bottom Ash Basin:

- 15 wells, located at approximate 188-ft. equidistant, lateral spacings; each well producing at 15 gpm to
- 19 wells, located at approximate 146-ft. equidistant, lateral spacings; each well producing at 10 gpm.

The model indicated that the lateral capture zone for a recovery well pumping ground water at a rate of 10 gpm should extend out approximately 146 feet to either, lateral side of the well (i.e., generally perpendicular to the southwesterly groundwater flow direction). The lateral capture zone for a well pumping ground water at a rate of 15 gpm was projected to extend out approximately 188 feet to either side of the well. Figures 5-2, 5-3, and 5-4 herein are figures excerpted from the 2016 and 2019 reports that depict groundwater modeling results and proposed supplemental groundwater recovery well locations, based on plume orientation estimated in 2016.

Subsequently, as noted on Figure 5-4, well RW-5 was determined to not contain TDS in excess of the Groundwater Discharge Permit action level of 1,100 ppm, including the most recent sampling event of April 2020. Ongoing monitoring also indicated that Groundwater Discharge

November 30, 2020

Permit monitoring well RW-9 contained elevated TDS concentrations, deemed attributable to the southwesterly migration of the down-gradient leading edge of the TDS plume. In summary, water quality data indicated that the down-gradient leading edge of the plume was positioned northwest of what had been estimated previously.

As part of subsequent investigation and pursuit of more accurate delineation of the down-gradient leading edge of the TDS plume, IPSC installed additional monitoring wells (constructed such that all may be used for recovery, if needed) west of wells RW-5 and RW-9, namely wells BAC-8, BAC-9, BAC-10 (April-May 2019) and wells BAC-11 through BAC-17 (November-December 2019). The TDS water quality data indicated that the down-gradient leading edge of the TDS plume had migrated farther west than monitoring well BAC-11 and appeared to be located somewhere between wells WDB-5 and WDB-7 to the north and wells BAC-10, BAC-14, and BAC-15 to the south (all TDS concentrations of latter five wells are well below 1,100 ppm), as presented on Figure 3.

Several of the BAC wells were pump-tested during May and June 2019, with results evaluated by Stantec's groundwater model. Each well yielded between 10 to 15 gpm. The model was used to investigate where additional down-gradient wells might be installed for more precise delineation and possible recovery of the down-gradient leading edge of the TDS plume. The model estimated that wells should be positioned at approximate 150-foot lateral distances between one another to provide appropriate capture zones, based on an approximate recovery rate of 10 gpm for each proposed well.

During April through June 2020, 21 additional wells (BAC-18 through BAC-38 on Figure 4) were installed, developed, and pump-tested to investigate areas farther west of the existing network of monitoring wells. The wells were arranged along generalized northwest-to-southeast orientations, anticipated to be perpendicular to the regional, southwesterly groundwater flow direction and deemed most suitable for possible use as groundwater recovery wells, if needed.

According to IPSC's most recent monitoring data, the three existing recovery wells' recovery rates have declined since initial pumping began in 2010 and approximate 3.5 to 9 gpm, currently. Thus, in a conservative mode and instead of well placements every 150 feet, in case the yields of the proposed wells were less than 10 gpm, the 21 new wells were installed at approximate 100- to 125-foot lateral spacings between one another, typically.

All 21 new wells were sampled along with other CCR Rule monitoring wells during the recent October 2020 sampling event as part of IPSC's ongoing assessment monitoring program. IPSC has not received the analytical result reports, as yet. The analytical results will be evaluated upon receipt of laboratory result reports. It is anticipated that the analytical results will be reported within IPSC's forthcoming January 2021 Annual Report. The analytical results will be used to help identify if additional monitoring and/or recovery wells are needed to provide appropriate monitoring and containment of the TDS plume.

November 30, 2020

4.2 EVALUATION OF ALTERNATIVE CORRECTIVE MEASURES

After Appendix IV constituents were detected above the GWPS during Assessment Monitoring, IPSC completed the requirements in §257.95(g). Notification identifying the constituents in Appendix IV that exceeded the GWPS was made by IPSC. Because there have been no releases from the impoundments that are discernible from the daily recorded impoundment levels, IPSC estimates that any material releases have been in small quantities over indeterminable periods of time into the uppermost aquifer. This confined to semi-confined aquifer is approximately 50 to 70 feet below grade. Because the concentrations of metals within coal burned at the IGF vary, it is anticipated that metal concentrations within CCR material will vary depending on when such material was deposited within a particular basin area. As such, it has been impractical to attempt to estimate concentrations of Appendix IV constituents within the large impoundments.

IPSC has worked with Stantec to install additional monitoring wells to further characterize and define the nature and extent of the TDS plumes. These wells include new monitoring wells at the facility boundary in the direction of contaminant migration. Analytical results associated with the most recent October 2020 and upcoming sampling events will be used by IPSC and Stantec to help further characterize the nature and extent of the release. To date, sampling results show that the plumes have not migrated off-site.

IPSC initiated an assessment of corrective measures within 90 days of detecting Appendix IV constituents above the GWPS. Notification stating that the assessment had been initiated was completed by IPSC, and the results of the assessment were discussed in a public meeting.

As part of ongoing remedy selection, IPSC is evaluating various remedial options, including: ongoing use and expansion of the existing groundwater recovery network used in compliance with its Groundwater Discharge Permit; possible use of horizontal interceptor trenches and Ranney-type, collector wells; possible use of Monitored Natural Attenuation (MNA); and possible use of evaporation ponds and possible construction of a water treatment facility for treatment of recovered groundwater. IPSC is waiting to review the pending October 2020 water quality analytical data before completing its final remedy selection. However, IPSC currently anticipates that the most effective (and conservative) remedial approach will be groundwater recovery and removal from the subsurface and subsequent evaporation of groundwater containing CCR constituents in consideration of the evaluation criteria prescribed by §257.96(c) and §257.97(c).

Historically and to date, TDS is the CCR constituent found to be the most wide-spread and located farthest down-gradient from both the two surface impoundments. Water quality beneath the IGF poses no risk to on- or off-site human health, currently and for the foreseeable future, such that there are no imminent health risks that might warrant immediate abatement of all CCR constituent-impacted groundwater beneath the site.

Since 2010, TDS has been recovered from the subsurface via an existing network of recovery wells and interconnected buried, water conveyance piping, pumphouses, and appurtenances as part of compliance with its Groundwater Discharge Permit. IPSC is removing TDS-impacted

November 30, 2020

groundwater from existing recovery wells WR-101, WR-102, and WR-103 located down-gradient of the Bottom Ash Basin. The three wells recover groundwater from close proximity to the basin and within the generalized middle of the plume and along the generalized TDS plume centerline.

IPSC is waiting to review the pending October 2020 water quality analytical data, which includes the only sampling event conducted to date at 25 newly-installed wells, before completing its final remedy selection. Currently, IPSC and Stantec are finalizing design of an enhanced ground water recovery network that will intercept TDS-impacted groundwater associated with both the Bottom Ash Basin and the Waste Water Basin TDS plumes at the down-gradient leading edges and within the middle of the TDS plumes. If other CCR constituents become detected in excess of corollary GWPSs, data to date indicate that any such constituents will migrate at considerably slower migration rates, and most probably along similar groundwater flow paths, as TDS. If this occurs, any such CCR constituent can be intercepted and removed from the subsurface by means of the expanded, groundwater recovery network that is being designed currently, if needed. As will be reported in future reports, IPSC will monitor the progress of the expanded groundwater recovery network and is prepared to install additional groundwater monitoring and/or recovery wells, if needed to address any unanticipated release and/or migration of CCR constituents in the future and provide appropriate protection to on- and off-site human health.

IPSC believes that recovery of groundwater from beneath the IGF using vertical groundwater recovery wells, in conjunction with evaporation of recovered groundwater, is the most conservative, practical, reliable, effective, flexible, and timely measure for remediating contaminated groundwater beneath the IGF while providing appropriate protection to on- and off-site human health. Existing and proposed water recovery infrastructure can be expanded readily and in a timely manner to accommodate any supplemental groundwater recovery wells that might be needed in the future.

Historical water quality data to date indicate that MNA is not a viable option, as the down-gradient leading edges of the TDS plumes continue to migrate down-gradient, generally toward the southwest; i.e., limiting attenuation or retardation of TDS in groundwater. Even if MNA were viable, the timeframe for completing the remedy would likely be excessive as compared to other options.

Likewise, Stantec's groundwater model investigated possible use of one or more Ranney-type, collector wells (each a 13-ft diameter, vertical concrete shaft driven to a depth of approximately 70-ft below grade with 300 feet long, horizontal collector screens radiating out from the bottom of the concrete shaft), instead of vertical recovery wells for containment of the TDS plume. The model indicated that use of vertical recovery wells, when compared to use of a Ranney collector well network, provides similar cumulative yield/volume of ground water recovery. However, use of vertical wells is deemed more practical, efficient, and beneficial for TDS Plume containment for numerous reasons, including:

Greater flexibility and precision for well locating and installation;

November 30, 2020

- More extensive lateral and vertical aquifer characterization (i.e., individual well pumptesting for investigation of localized hydraulics throughout different areas within the aquifer); and
- Recovery of ground water throughout the approximate 20- to 25-foot thick aquifer (i.e., deeper ground water recovery within the aquifer, when compared to a horizontal ground water recovery network that would be placed at the bottom of the aquifer).

IPSC also evaluated possible use of horizontal groundwater interceptor trenches located at various locations across the site. Discussions with a horizontal trench installation company indicated that installation of any such trenches would be problematic at the IGF. In consideration of the relatively-deep depth of the uppermost aquifer (approximately 50 to 70 feet below grade), as well as the clay-rich lithologic characteristics of the subsurface, installation, operation, and management of any such horizontal trench is deemed impractical and less efficient than use of vertical recovery wells, for numerous reasons including those listed above for comparison to horizontal Ranney-type wells.

Lastly, the anticipated timeframe of a few years to design, permit, and construct an appropriate water treatment facility to treat recovered groundwater was deemed impractical and unnecessary. Likewise, off-site transport of wastewater is deemed impractical due to the large volumes of water to be recovered and remote location of the site. Evaporation of recovered groundwater has been used successfully to date and will continue to be the most viable option in this regard for the foreseeable future. Treated water from a hypothetical treatment plant would need to be directed to on-site evaporation ponds anyway, in consideration of the remote location of the IGF and the extremely dry and arid climate of the area.

In summary, IPSC and Stantec evaluated the following potential remedial approaches in terms of each of the evaluation factors outlined in §257.96(c) and §257.97(c), as regards CCR constituents in groundwater that have been detected in excess of respective GWPSs:

- 1) Monitored Natural Attenuation (MNA);
- 2) Groundwater removal via vertical recovery wells and evaporation of recovered water;
- Groundwater removal via horizontal recovery trenches/wells and evaporation of recovered water;
- 4) Rather than evaporation for managing recovered water possible treatment within a tobe-constructed wastewater treatment facility; and
- 5) Rather than evaporation for managing recovered water possible off-site transport and disposal of recovered water.

Upon receipt of the forthcoming October 2020 analytical results, IPSC will evaluate these results with all historical analytical data and hydrogeologic data generated at the site historically in terms of CCR Rule evaluation criteria prescribed by §257.96(c) and §257.97(c). Evaluation of data to date indicate that use of vertical groundwater recovery wells and evaporation of recovered groundwater will likely provide the most appropriate, conservative, and effective remedial approach for ongoing protection of human health and the environment, as compared to other potential corrective measure options.

November 30, 2020

Below is a brief summary comparative tabulation of the different remedial options and evaluation factors for simple reference. The alternative remedies have been ranked in numerical order, with a "1" representative of the option that provides the highest degree of anticipated effectiveness in relation to the other options, and a "3" represents the lowest degree of anticipated effectiveness in comparison to other alternative remedies.

The evaluation criteria prescribed by §257.96(c) and §257.97(c) were organized into the following four categories:

Performance – This category includes the performance and potential impacts of appropriate potential remedies including: safety impacts; cross-media impacts; control of exposure to any residual contamination; the long- and short-term effectiveness and protectiveness of the potential remedy; the degree of certainty that the remedy will prove successful based on the magnitude of reduction of existing risks; the magnitude of residual risks in terms of likelihood of further releases due to CCR remaining following implementation of a remedy; the effectiveness of the remedy in controlling the source to reduce further releases based on consideration of the extent to which containment practices will reduce further releases and the extent to which treatment technologies may be used.

Time Required – This category includes the time required to begin and complete the remedy—the time until full protection is achieved.

Ease of Implementation - This category includes the ease or difficulty of implementing a potential remedy based on consideration of: the degree of difficulty associated with constructing the technology; the need to coordinate with and obtain necessary approvals and permits from other agencies such as state or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the remedy; the availability of necessary equipment and specialists; the available capacity and location of needed treatment, storage, and disposal services; the type and degree of long-term management required, including monitoring, operation, and maintenance; the expected operational reliability of the technologies; the long-term reliability of the engineering and institutional controls; and the potential need for replacement of the remedy.

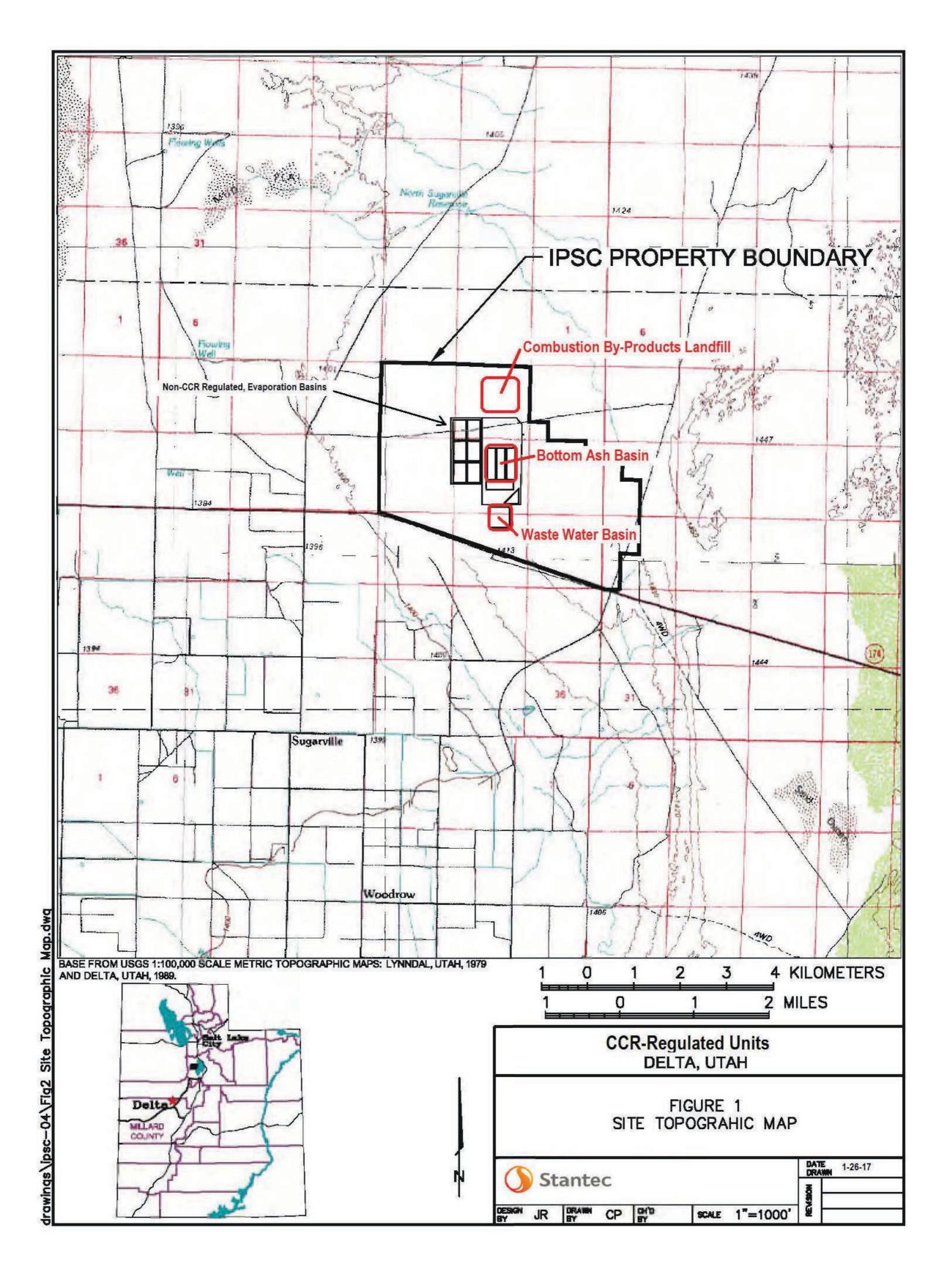
Community Concerns – This category includes: the degree to which community concerns are addressed by a potential remedy; the short-term risks that might be posed to the community or the environment during implementation of such a remedy, including potential threats to human health and the environment associated with excavation, transportation, and re-disposal of contaminant; and the potential for exposure of humans and environmental receptors to remaining wastes, considering the potential threat to human health and the environment associated with excavation, transportation, re-disposal, or containment.

As noted below, the most effective remedial strategy is represented as the lowest, cumulative ranked score and is anticipated to be recovery of groundwater containing CCR constituents in excess of respective GWPSs by means of vertical groundwater recovery wells and on-site evaporation of recovered water.

November 30, 2020

EVALUATION AND RANKING OF REMEDIAL ALTERNATIVES IN TERMS OF ANTICIPATED EFFECTIVENESS

Alternative Groundwater Monitoring and Recovery Options


Possible Remedy	Performance	Time Required	Ease of Implementation	Community Concerns	Total Score
MNA	3	3	1	1	8
Vertical Recovery Wells	1	1	2	2	6
Horizontal Recovery Wells	2	2	3	2	9

Alternative Recovered Groundwater Treatment and Disposal Options

On-Site Evaporation of Recovered Water	1	1	1	1	4
On-Site Design, Permitting, & Construction of Wastewater Treatment Facility	2	3	3	2	10
Off-Site Disposal of Recovered Water	3	2	2	3	10

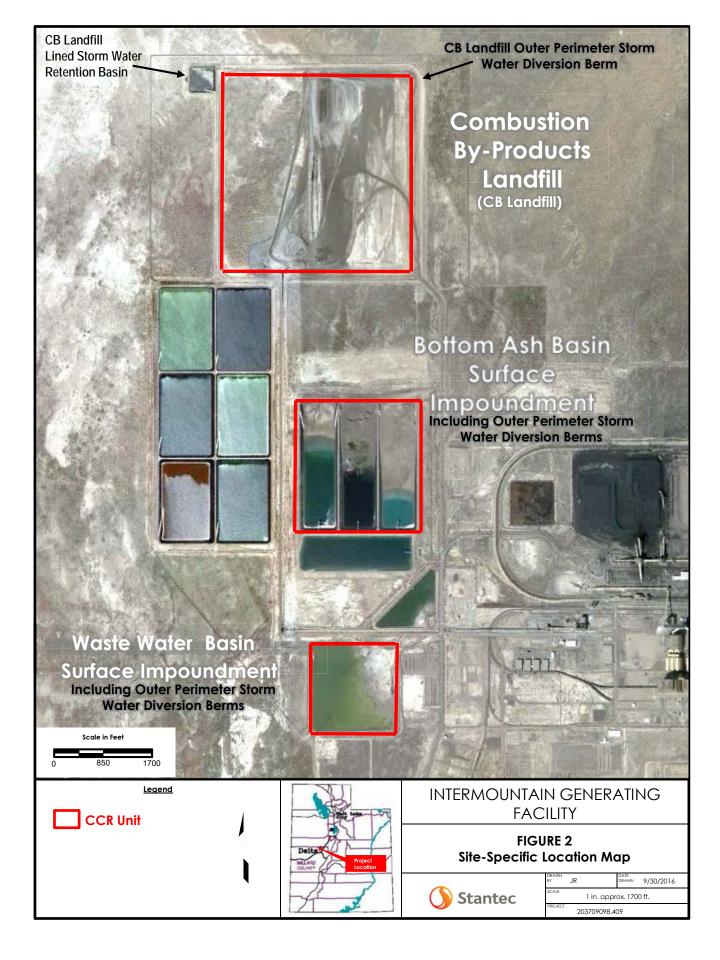

November 30, 2020

Figure 1 General Site Location Map

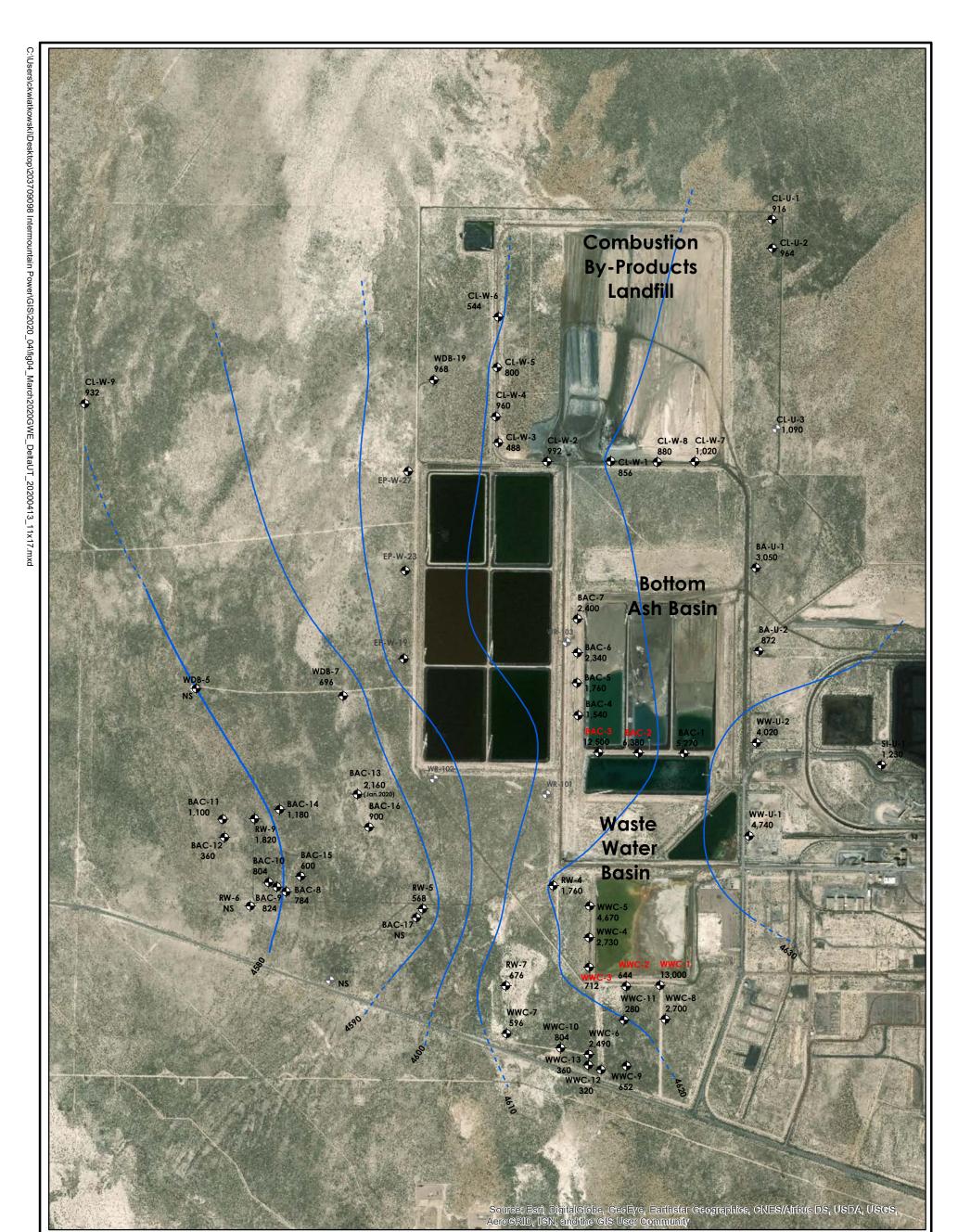

November 30, 2020

Figure 2. CCR Units Location Map

November 30, 2020

Figure 3. Potentiometric Map, TDS, and Appendix IV Exceedances, April 2020

LEGEND:

MONITORING WELL (GREYED WHEN NOT USED FOR CONTOURING) **•**

600 Total Dissolved Solids (TDS) Concentration in milligrams per liter; mg/L

GROUNDWATER CONTOUR, mean sea level elevations

NOT SAMPLED NS

NOTES: ALL ELEVATIONS ARE FEET ABOVE MEAN SEA LEVEL

Appendix IV Metal Constituent Exceedances:

			Lower Confidence Limit	Groundwater Protection Standard
CCR Unit	Well	CCR Constituent	(LCL) Concentration	(GWPS) Concentration
Bottom Ash Basin	BAC-2	Molybdenum	0.1506	0.1
	BAC-3	Lithium	0.812	0.7415
Waste Water Basin	WWC-1	Arsenic	0.01496	0.01275
	WWC-2	Arsenic	0.01415	0.01275
	WWC-3	Arsenic	0.02045	0.01275
Metal concentrations	s in mg/L			

INTERMOUNTAIN POWER SERVICE CORP. **Stantec** INTERMOUNTAIN GENERATION FACILITY DELTA, UTAH Feet JOB NUMBER: 203709098 CHECKED BY: DRAWN BY: 1 in = 1,300 ft CK

APRIL 2020 TDS CONCENTRATIONS and Appendix IV Metal GWPS Exceedances

SUPERIMPOSED ON MARCH 2020 POTENTIOMETRIC MAP

3

FIGURE:

APPROVED BY: JR ALL

05/04/20

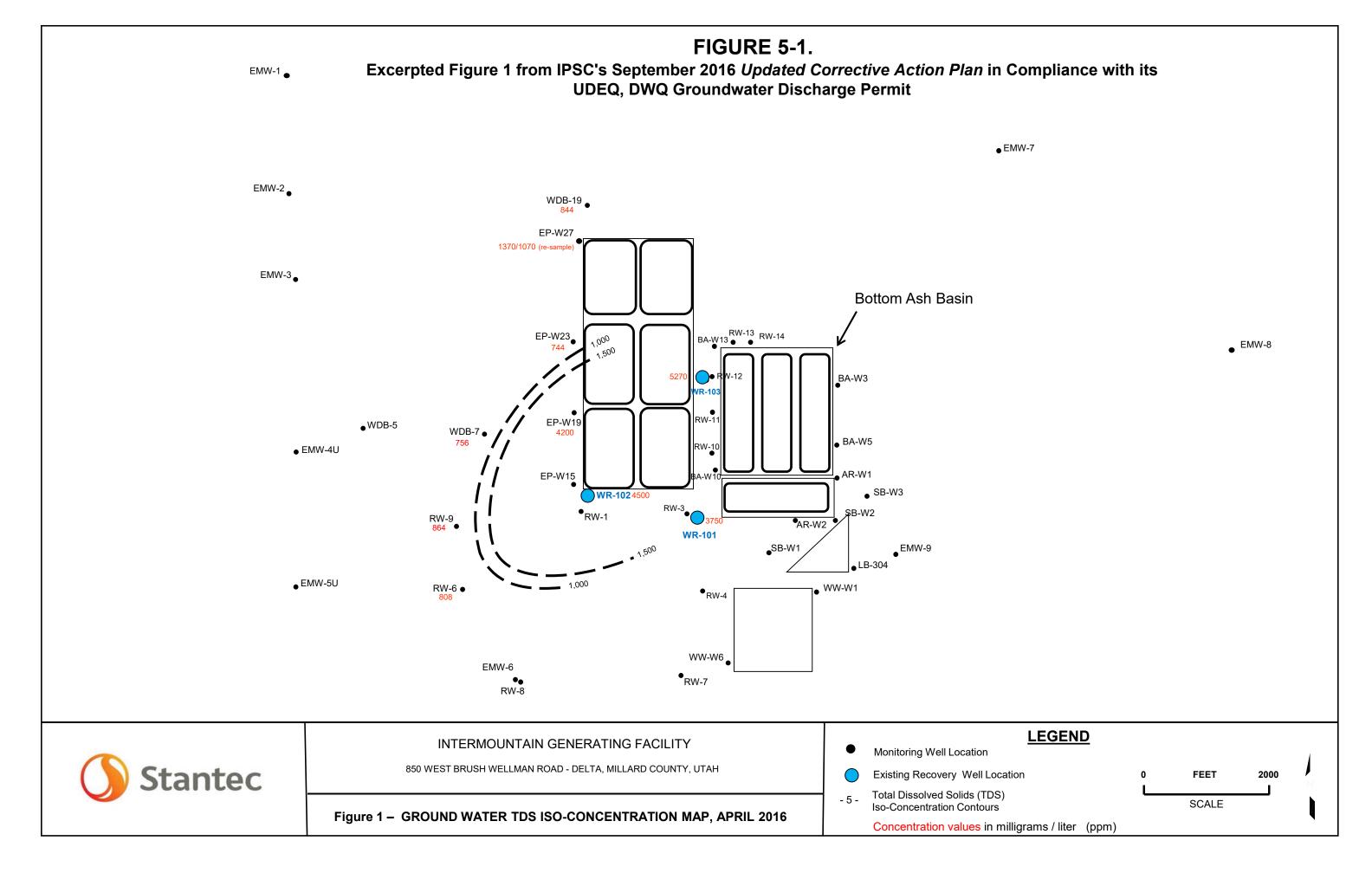
November 30, 2020

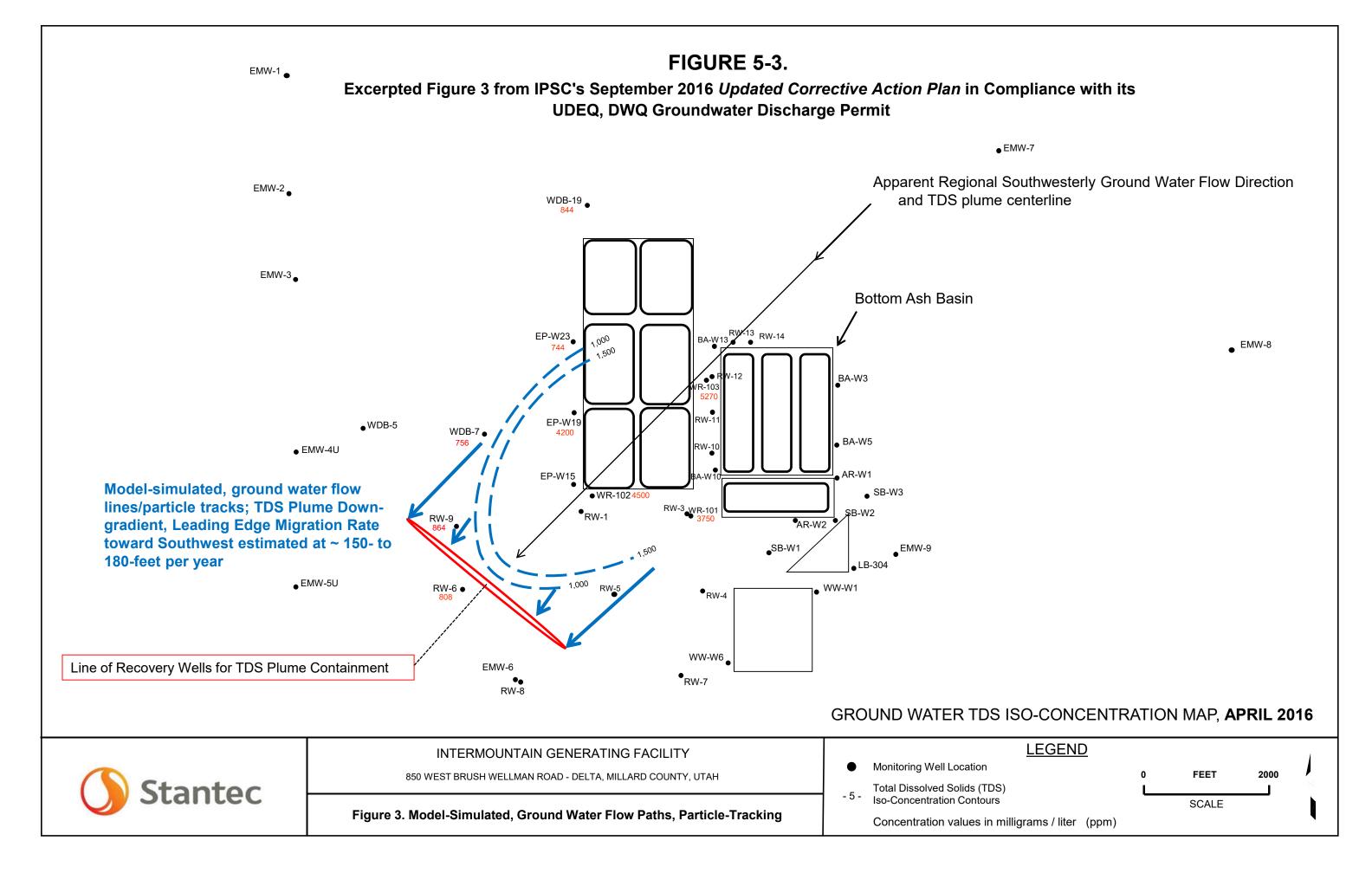
Figure 4. Locations of 25 Newly-Installed, Developed, and Pump-Tested Wells (Spring and Summer 2020)

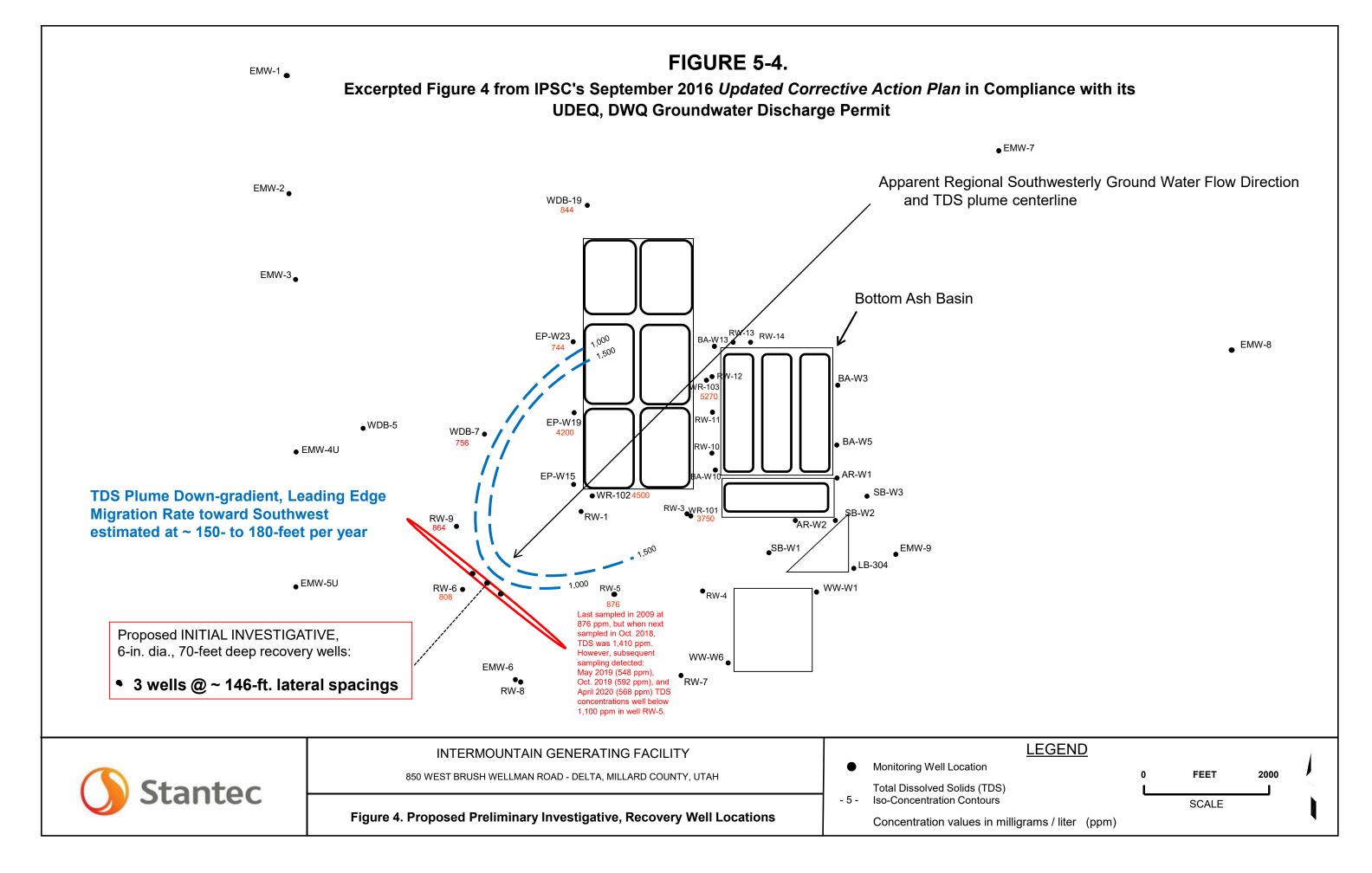
Legend _{1,100}

Monitoring Well

1,100 Total Dissolved Solids (TDS) Concentration in milligrams per liter; mg/L; RED if > greater than Groundwater Discharge Permit Action Level of 1,100 mg/L NS - Not Sampled in April 2020


NS - Not Sampled in April 2020 NI - Not Installed as of April 2020


N N		Feet	
0	175	350	1 in =
	V Millard C 3 UTM Zone		
DRAWN BY: JT		1ST REVIEW: JR	2ND REV


25 New Wells Installed,
Developed, and Surveyed
During Summer 2020 with
April 2020 TDS
Concentrations

AMENDED ASSESSMENT OF CORRECTIVE MEASURES REPORT November 30, 2020 Figure 5 Assemblage. Figures Excerpted from IPSC's 2016 Corrective Action Plan Report associated with Compliance with Its Groundwater Discharge Permit

FIGURE 5-2. EMW-1 Excerpted Figure 2 from IPSC's September 2016 Updated Corrective Action Plan in Compliance with its **UDEQ, DWQ Groundwater Discharge Permit** ● EMW-7 **Apparent Regional Southwesterly Ground Water Flow Direction** EMW-2 and TDS plume centerline WDB-19 EMW-3 **Bottom Ash Basin** BA-W13 RW-14 EP-W23_● ● EMW-8 BA-W3 WDB-5 **RW-1** EP-W19 WDB-7 BA-W5 EMW-4U AR-W1 EP-W15 SB-W3 • WR-1024500 RW-3 WR-101 ŞB-W2 •RW-1 RW-9 864 ● AR-W2 ●EMW-9 SB-W1 LB-304 EMW-5U 1,000 RW-6 ● WW-W1 RW-5 •RW-4 Model estimates the following hypothetical scenarios for intercepting TDS plume, using 6-in. dia., 70-feet deep recovery wells: • 15 wells @ ~ 188-ft. lateral spacings; each well WW-W6 EMW-6 producing @ 15 gpm •RW-7 RW-8 • 19 wells @ ~ 146-ft. lateral spacings @; each well producing @ 10 gpm **LEGEND** INTERMOUNTAIN GENERATING FACILITY Monitoring Well Location **FEET** 2000 850 WEST BRUSH WELLMAN ROAD - DELTA, MILLARD COUNTY, UTAH Stantec Total Dissolved Solids (TDS) **Iso-Concentration Contours** SCALE Figure 2. Model-Simulated, Recovery Well Placement for TDS Plume Containment Concentration values in milligrams / liter (ppm); April 2016

November 30, 2020

TABLE 1 GROUND WATER MONITORING WELL CONSTRUCTION DETAILS

Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

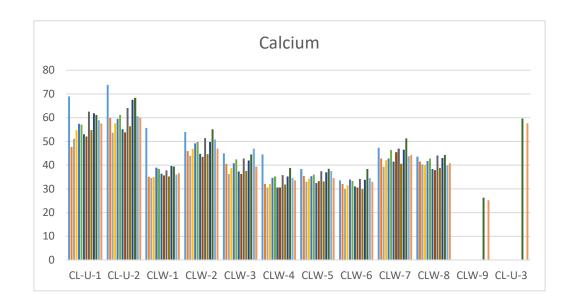
MONITOR WELL DATE COMPLETED WELL DIAMETER / DIAMETER / DIAMETER / DIAMETER / MATERIAL DEPTH GREENING SILEWATION (feet MSL)		1	·		ı		
CLW-1 5/12/2015 4-inch PVC 65 55-65 4653.46 CLW-2 5/14/2015 4-inch PVC 80 70-80 4648.17 CLW-3 5/13/2015 4-inch PVC 80 70-80 4644.03 CLW-4 5/26/2015 4-inch PVC 82 72-82 4642.88 CLW-5 7/27/2015 4-inch PVC 82 72-82 4640.99 CLW-6 7/26/2015 4-inch PVC 82 72-82 4640.99 CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4655.63 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 70-80 4663.48 CL-U-2 7/22/2015 4-inch PVC 77 67-77 4665.367 BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.72 BAC-2 7/29	WELL		DIAMETER /	DEPTH	SCREENING INTERVAL	CASING ELEVATION	
CLW-2 5/14/2015 4-inch PVC 80 70-80 4648.17 CLW-3 5/13/2015 4-inch PVC 80 70-80 4644.03 CLW-4 5/26/2015 4-inch PVC 82 72-82 4642.88 CLW-5 7/27/2015 4-inch PVC 82 72-82 4640.99 CLW-6 7/26/2015 4-inch PVC 88 78-88 4639.63 CLW-7 7/24/2015 4-inch PVC 72 62-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4659.34 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.72 BAC-3 7/29/2015 4-inch PVC 70 60-70 4668.72		Combustion By-Products Landfill Wells					
CLW-3 5/13/2015 4-inch PVC 80 70-80 4644.03 CLW-4 5/26/2015 4-inch PVC 82 72-82 4642.88 CLW-5 7/27/2015 4-inch PVC 82 72-82 4640.99 CLW-6 7/26/2015 4-inch PVC 88 78-88 4639.63 CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4659.34 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 75 55-75 4649.84 BAC-3 3/2	CLW-1	5/12/2015	4-inch PVC	65	55-65	4653.46	
CLW-4 5/26/2015 4-inch PVC 82 72-82 4642.88 CLW-5 7/27/2015 4-inch PVC 82 72-82 4640.99 CLW-6 7/26/2015 4-inch PVC 88 78-88 4639.63 CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4655.63 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 77 67-77 4665.48 CL-U-3 3/27/2018 4-inch PVC 70 60-70 4668.72 BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 70 60-70 4668.72 BAC-3 7/28/2015 4-inch PVC 75 55-75 4649.45 BAC-4 8/10/2015	CLW-2	5/14/2015	4-inch PVC	80	70-80	4648.17	
CLW-5 7/27/2015 4-inch PVC 82 72-82 4640.99 CLW-6 7/26/2015 4-inch PVC 88 78-88 4639.63 CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4655.63 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 BOttom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.72 BAC-2 7/29/2015 4-inch PVC 72 52-72 4668.84 BAC-3 7/28/2015 4-inch PVC 75 55-75 4648.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4648.96 <td>CLW-3</td> <td>5/13/2015</td> <td>4-inch PVC</td> <td>80</td> <td>70-80</td> <td>4644.03</td>	CLW-3	5/13/2015	4-inch PVC	80	70-80	4644.03	
CLW-6 7/26/2015 4-inch PVC 88 78-88 4639.63 CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4659.34 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.72 BAC-2 7/29/2015 4-inch PVC 70 60-70 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-3 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-6 8/8/2015 4-inch PVC 68 58-68 4649.67	CLW-4	5/26/2015	4-inch PVC	82	72-82	4642.88	
CLW-7 7/24/2015 4-inch PVC 72 52-72 4659.34 CLW-8 7/24/2015 4-inch PVC 72 62-72 4655.63 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 70 60-70 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 67 57-68 4650.09	CLW-5	7/27/2015	4-inch PVC	82	72-82	4640.99	
CLW-8 7/24/2015 4-inch PVC 72 62-72 4655.63 CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.70 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 67 57-68 4650.09 BAC-7 8/7/2015 4-inch PVC 77 52-77 4626.42	CLW-6	7/26/2015	4-inch PVC	88	78-88	4639.63	
CLW-9 3/25/2018 4-inch PVC 97 87-97 4615.615 CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.72 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42	CLW-7	7/24/2015	4-inch PVC	72	52-72	4659.34	
CL-U-1 7/23/2015 4-inch PVC 80 68-78 4657.48 CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 87 62-87 4626.27	CLW-8	7/24/2015	4-inch PVC	72	62-72	4655.63	
CL-U-2 7/22/2015 4-inch PVC 80 70-80 4663.48 CL-U-3 3/27/2018 4-inch PVC 77 67-77 4665.367 Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4626	CLW-9	3/25/2018	4-inch PVC	97	87-97	4615.615	
Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 70 60-70 4668.70 BAC-3 7/28/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 75 50-75 4624.96 BAC-11 12/7/2019 6-inch PVC 78 53-78 4625.055 <	CL-U-1	7/23/2015	4-inch PVC	80	68-78	4657.48	
Bottom Ash Basin Wells BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 75 50-75 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-13 11/18/2019 6-inch PVC 78 53-78 4625.055	CL-U-2	7/22/2015	4-inch PVC	80	70-80	4663.48	
BAC-1 7/31/2015 4-inch PVC 70 60-70 4668.70 BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 75 50-75 4624.96 BAC-11 12/7/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 78 53-78 4625.056 BAC-14 12/4/2019	CL-U-3	3/27/2018	4-inch PVC	77	67-77	4665.367	
BAC-2 7/29/2015 4-inch PVC 65 55-65 4668.72 BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 75 50-75 4624.96 BAC-11 12/7/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 78 53-78 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 78 53-78 4627.506			Bottom Ash	Basin Wells			
BAC-3 7/28/2015 4-inch PVC 72 52-72 4668.84 BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 78 53-78 4629.834 BAC-14 12/4/2019 6-inch PVC 75 50-75 4626.494	BAC-1	7/31/2015	4-inch PVC	70	60-70	4668.70	
BAC-4 8/10/2015 4-inch PVC 75 55-75 4649.45 BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-2	7/29/2015	4-inch PVC	65	55-65	4668.72	
BAC-5 8/9/2015 4-inch PVC 68 58-68 4649.67 BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-3	7/28/2015	4-inch PVC	72	52-72	4668.84	
BAC-6 8/8/2015 4-inch PVC 65 55-65 4648.15 BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-4	8/10/2015	4-inch PVC	75	55-75	4649.45	
BAC-7 8/7/2015 4-inch PVC 67 57-68 4650.09 BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-5	8/9/2015	4-inch PVC	68	58-68	4649.67	
BAC-8 4/29/2019 6-inch PVC 77 52-77 4626.42 BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-6	8/8/2015	4-inch PVC	65	55-65	4648.15	
BAC-9 5/1/2019 6-inch PVC 77 52-77 4626.27 BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-7	8/7/2015	4-inch PVC	67	57-68	4650.09	
BAC-10 5/3/2019 6-inch PVC 87 62-87 4626.27 BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-8	4/29/2019	6-inch PVC	77	52-77	4626.42	
BAC-11 12/7/2019 6-inch PVC 75 50-75 4624.96 BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-9	5/1/2019	6-inch PVC	77	52-77	4626.27	
BAC-12 12/6/2019 6-inch PVC 78 53-78 4625.055 BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-10	5/3/2019	6-inch PVC	87	62-87	4626.27	
BAC-13 11/18/2019 6-inch PVC 90 65-90 4629.834 BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-11	12/7/2019	6-inch PVC	75	50-75	4624.96	
BAC-14 12/4/2019 6-inch PVC 78 53-78 4627.506 BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-12	12/6/2019	6-inch PVC	78	53-78	4625.055	
BAC-15 12/9/2019 6-inch PVC 75 50-75 4626.494	BAC-13	11/18/2019	6-inch PVC	90	65-90	4629.834	
	BAC-14	12/4/2019	6-inch PVC	78	53-78	4627.506	
BAC-16 11/21/2019 6-inch PVC 89 64-89 4630.426	BAC-15	12/9/2019	6-inch PVC	75	50-75	4626.494	
	BAC-16	11/21/2019	6-inch PVC	89	64-89	4630.426	

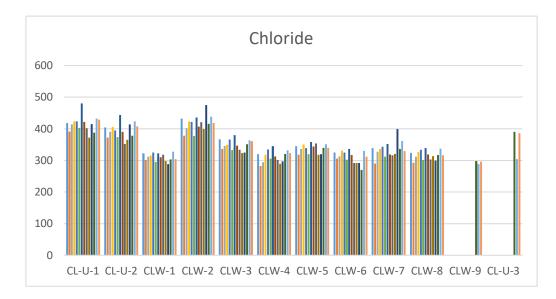
Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

MONITOR WELL I.D.	DATE COMPLETED	WELL DIAMETER / MATERIAL	TOTAL DEPTH (feet BGS)	WELL SCREENING INTERVAL (feet BGS)	TOP OF PVC CASING ELEVATION (feet MSL)
BAC-17	12/10/2019	6-inch PVC	81	56-81	4629.648
BAC-18	5/8/2020	6-inch PVC	78	53-78	4621.504
BAC-19	5/9/2020	6-inch PVC	78	58-78	4615.62
BAC-20	5/9/202	6-inch PVC	78	53-78	4617.848
BAC-21	5/10/2020	6-inch PVC	88	61-88	4619.625
BAC-22	5/10/2020	6-inch PVC	78	53-78	4619.905
BAC-23	5/11/2020	6-inch PVC	78	53-78	4619.582
BAC-24	5/12/2020	6-inch PVC	76	51-76	4619.207
BAC-25	5/12/2020	6-inch PVC	78	53-78	4619.327
BAC-26	5/13/2020	6-inch PVC	78	53-78	4627.704
BAC-27	5/13/2020	6-inch PVC	78	53-78	4627.355
BAC-28	5/14/2020	6-inch PVC	78	53-78	4625.411
BAC-29	5/15/2020	6-inch PVC	78	53-78	4625.29
BAC-30	5/142020	6-inch PVC	78	53-78	4624.88
BAC-31	5/15/2020	6-inch PVC	78	53-78	4625.024
BAC-32	5/192020	6-inch PVC	78	53-78	4626.583
BAC-33	5/18/2020	6-inch PVC	78	53-78	4626.629
BAC-34	5/21/2020	6-inch PVC	78	53-78	4624.702
BAC-35	5/282020	6-inch PVC	78	53-78	4624.805
BAC-36	5/30/2020	6-inch PVC	78	53-78	4619.231
BAC-37	5/29/2020	6-inch PVC	78	53-78	4618.397
BAC-38	5/31/2020	6-inch PVC	78	53-78	4619.593
BA-U-1	7/24/2015	4-inch PVC	55	45-55	4665.73
BA-U-2	7/25/2015	4-inch PVC	70	60-70	4661.33

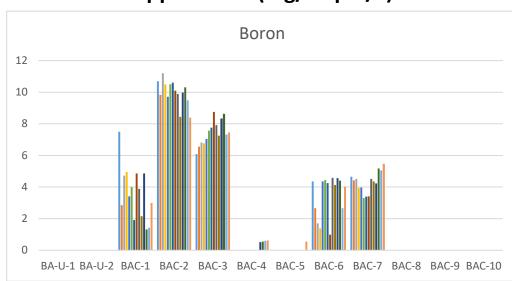
Table 1 Well Construction Summary Intermountain Generating Facility Delta, Utah

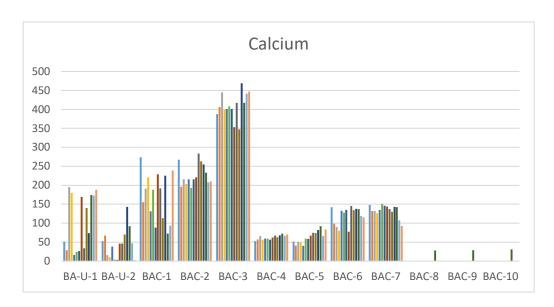
MONITOR WELL I.D.	DATE COMPLETED	WELL DIAMETER / MATERIAL	TOTAL DEPTH (feet BGS)	WELL SCREENING INTERVAL (feet BGS)	TOP OF PVC CASING ELEVATION (feet MSL)
Wastewater Basin Wells					
WWC-1	7/26/2015	4-inch PVC	60	48-58	4644.72
WWC-2	7/27/2015	4-inch PVC	70	60-70	4645.11
WWC-3	7/30/2015	4-inch PVC	65	55-65	4638.90
WWC-4	7/29/2015	4-inch PVC	75	65-75	4640.58
WWC-5	7/28/22015	4-inch PVC	74	64-74	4641.75
WWC-6	3/24/2018	4-inch PVC	87	67-77	4635.945
WWC-7	3/22/2018	4-inch PVC	87	77-87	4630.487
WWC-8	4/25/2019	6-inch PVC	96	71-96	4647.799
WWC-9	4/28/2019	6-inch PVC	87	62-87	4642.58
WWC-10	4/26/2019	6-inch PVC	87	62-87	4633.72
WWC-11	11/16/2019	6-inch PVC	90	65-90	4641.919
WWC-12	11/12/2019	6-inch PVC	90	65-90	4636.661
WWC-13	11/15/2019	6-inch PVC	90	65-90	4635.128
WWC-14	5/6/2020	6-inch PVC	85	60-85	4635.927
WWC-15	5/6/2020	6-inch PVC	88	63-88	4636.864
WWC-16	5/7/2020	6-inch PVC	88	63-88	4635.921
WWC-17	5/8/2020	6-inch PVC	88	63-88	4641.487
SI-U-1	8/12/2015	4-inch PVC	79	69-79	4664.59
WW-U-1	8/11/2015	4-inch PVC	70	60-70	4665.03
WW-U-2	8/11/2015	4-inch PVC	75	65-75	4665.46
	Groundwater Discharge Permit Groundwater Recovery Wells				
WR-101	2/11/2007	6-inch PVC	66	46-66	4646.28
WR-102	3/3/2009	6-inch PVC	57	37-57	4637.62
WR-103	3/31/2009	6-inch PVC	55	35-55	4649.82

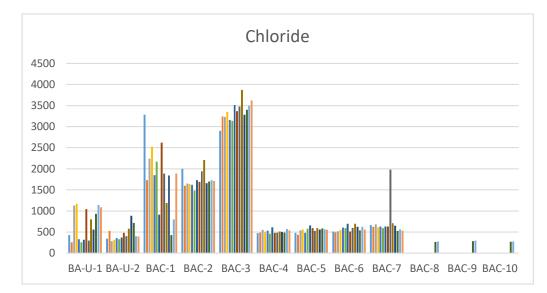

Below Ground Surface MSL = Mean Sea Level

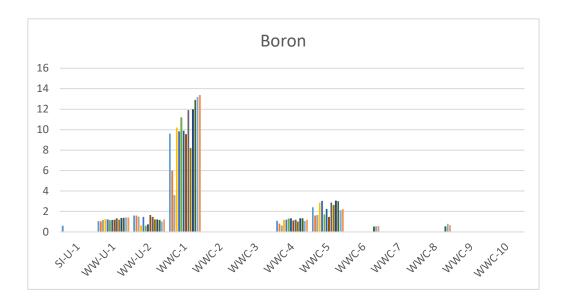

AMENDED ASSESSMENT OF CORRECTIVE MEASURES REPORT

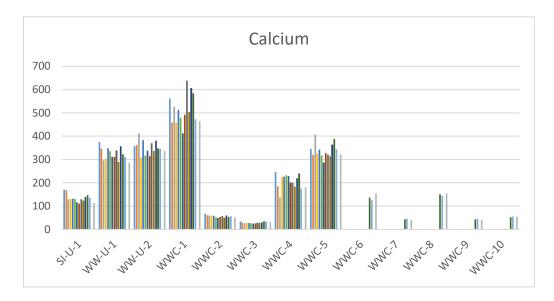
November 30, 2020

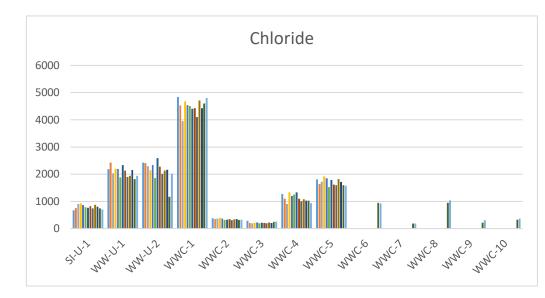

TABLE 2 GROUND WATER LEVEL MEASUREMENT AND WATER QUALITY ANALYTICAL RESULTS

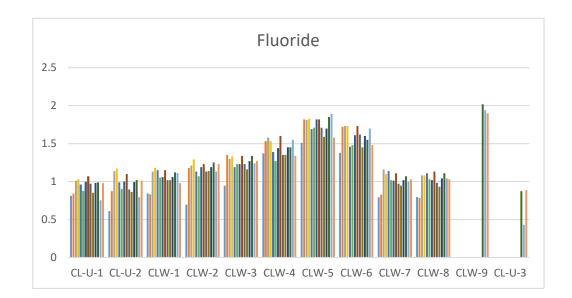

Boron 1.2 1 0.8 0.6 0.4 0.2 CL-U-1 CL-U-2 CLW-1 CLW-2 CLW-3 CLW-4 CLW-5 CLW-6 CLW-7 CLW-8 CLW-9 CL-U-3

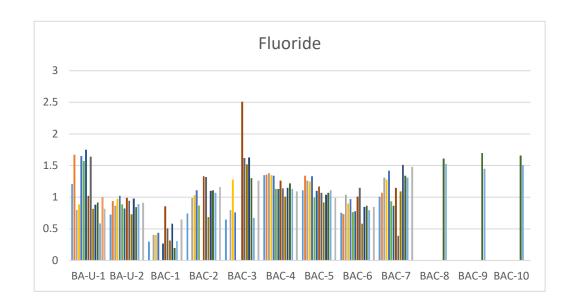


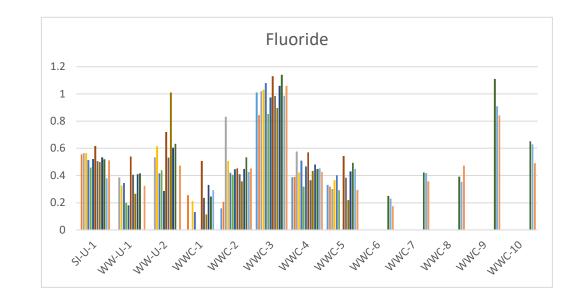


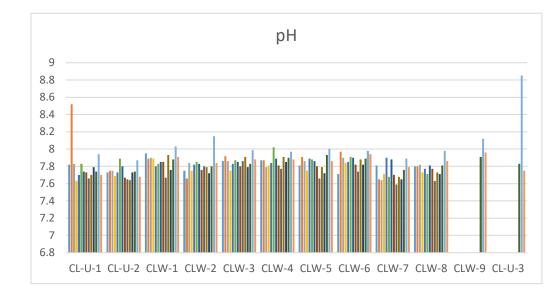

Appendix III (mg/L - pCi/L)

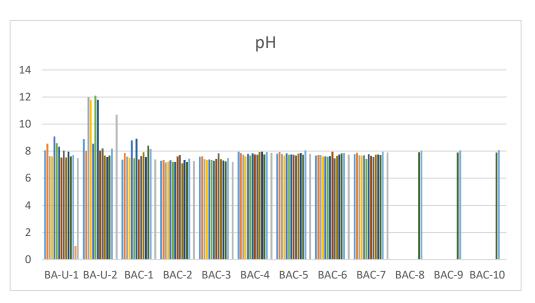


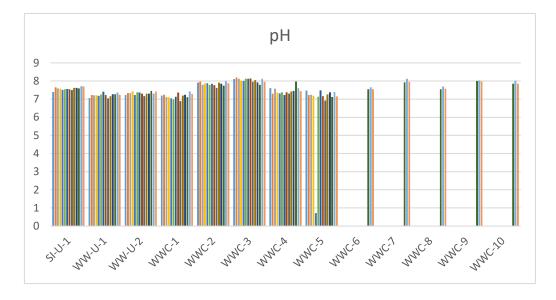


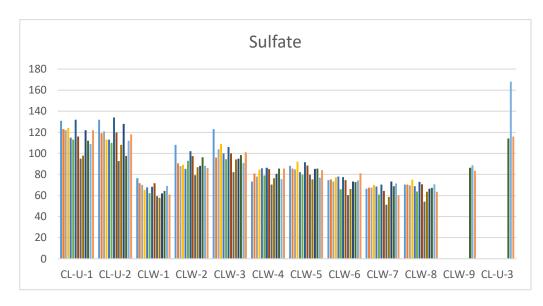


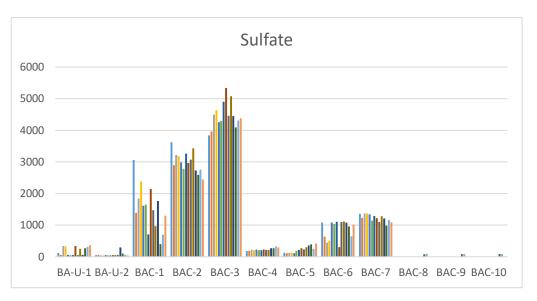


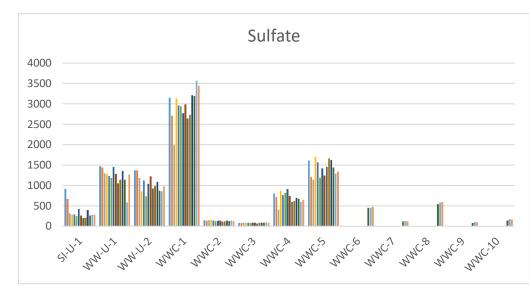


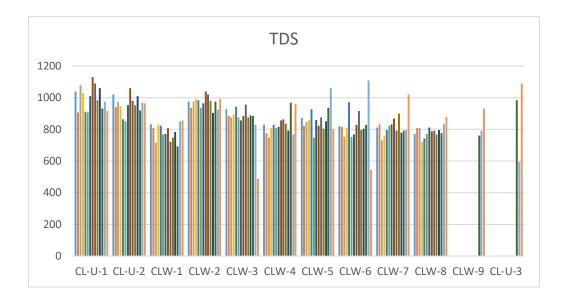


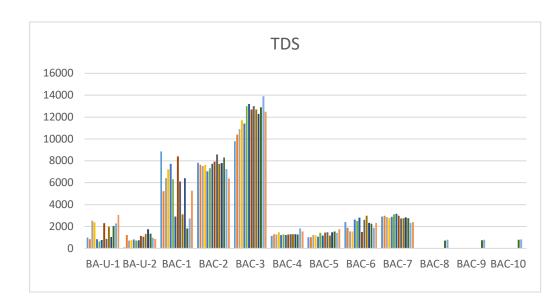


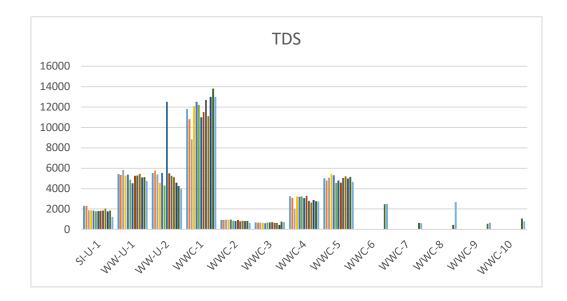


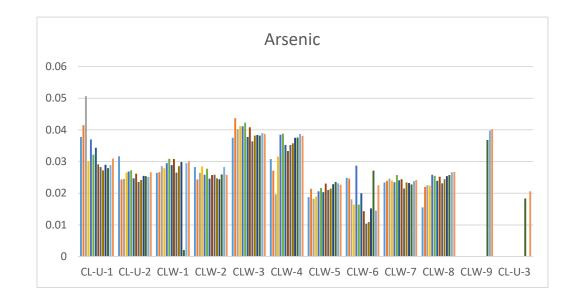


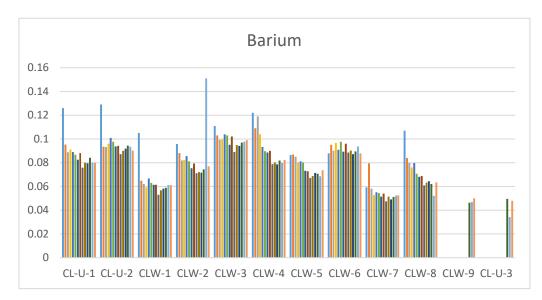


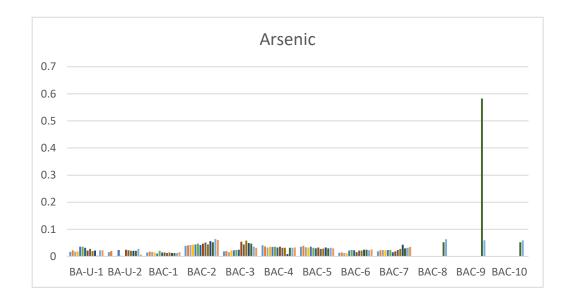


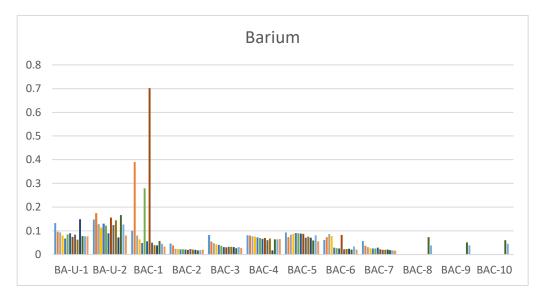


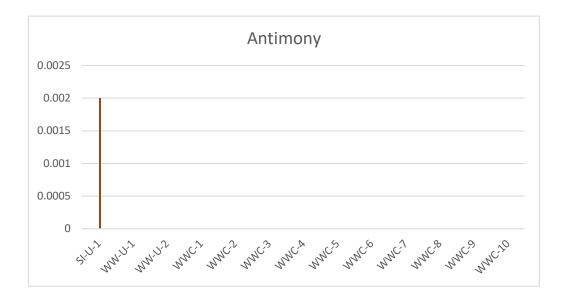


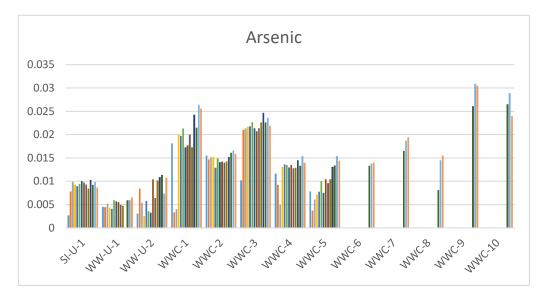


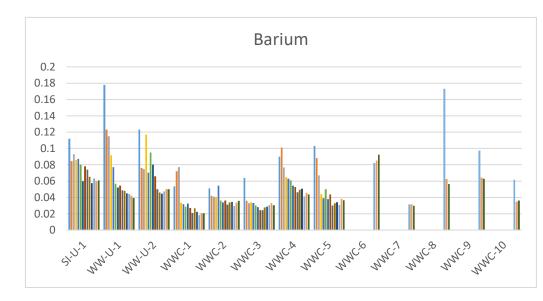


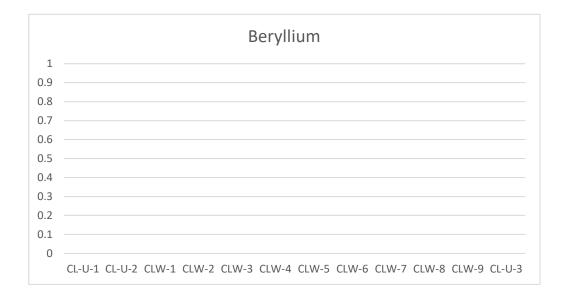


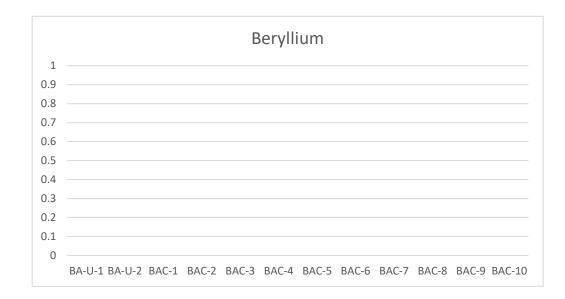


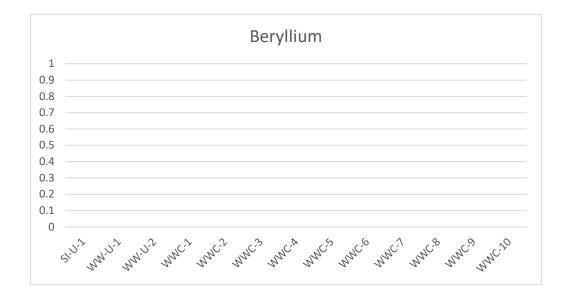


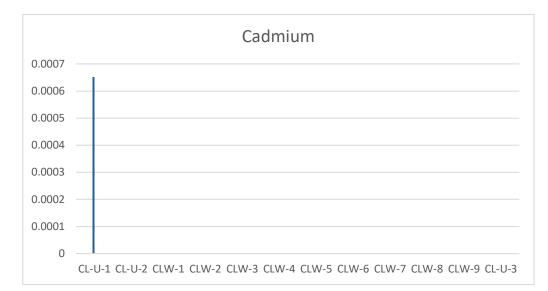

Appendix IV (mg/L - pCi/L)

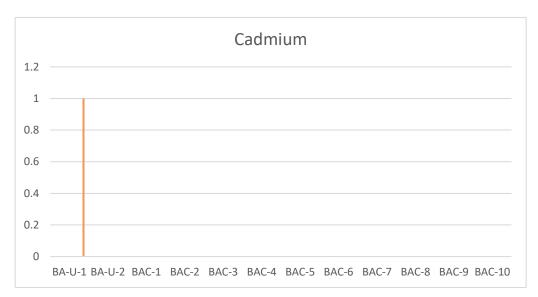


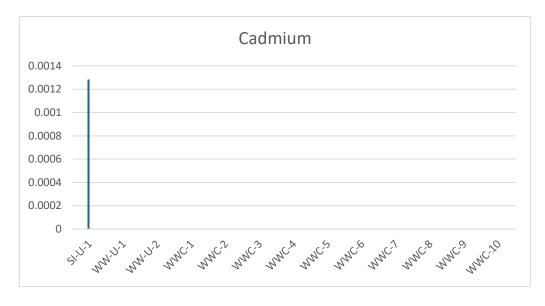


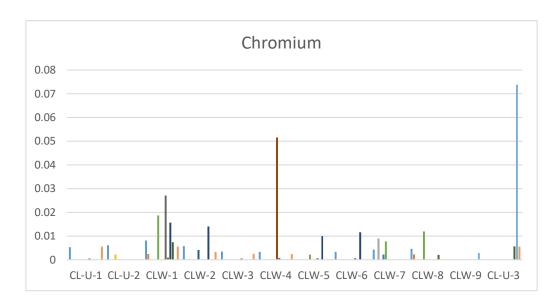


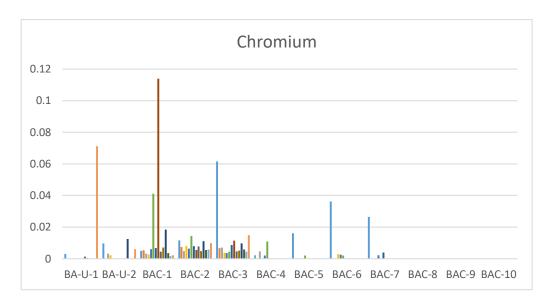


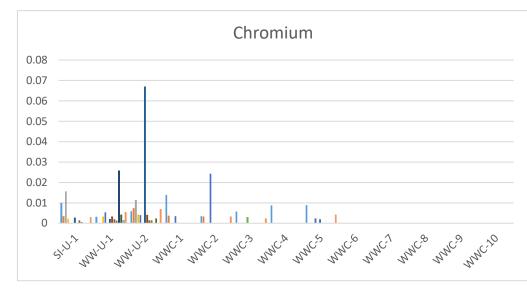


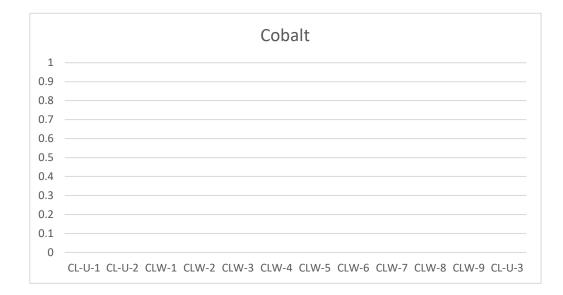


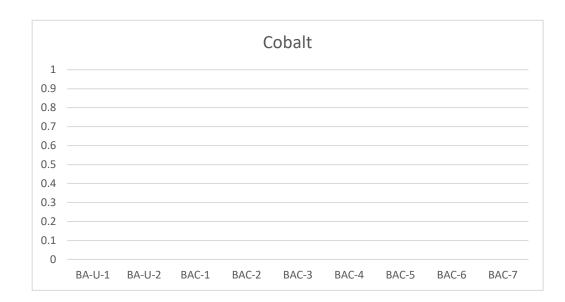


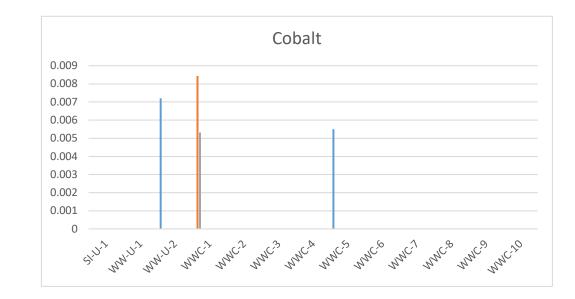


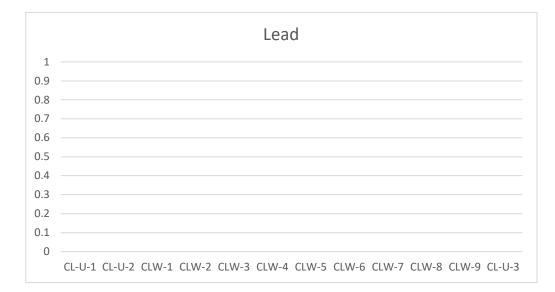


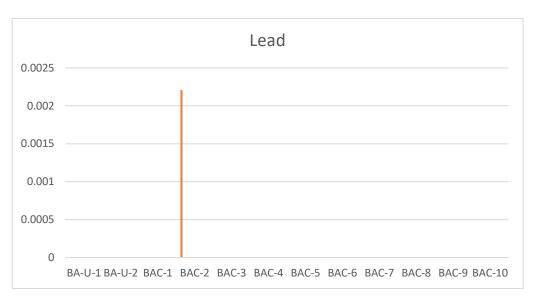


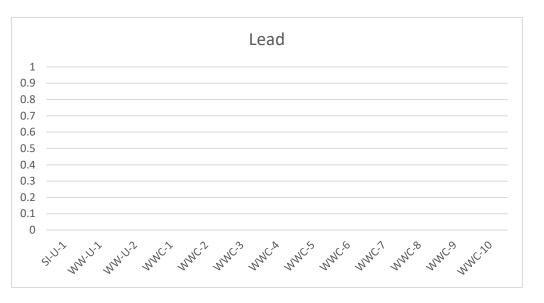


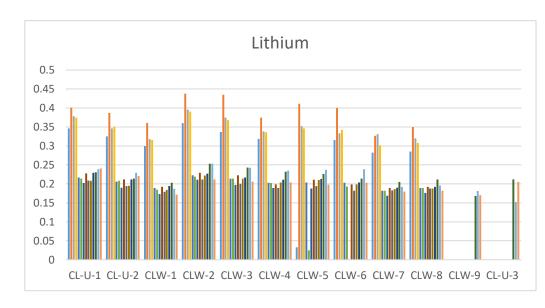


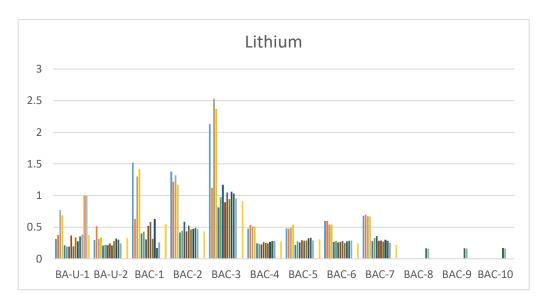


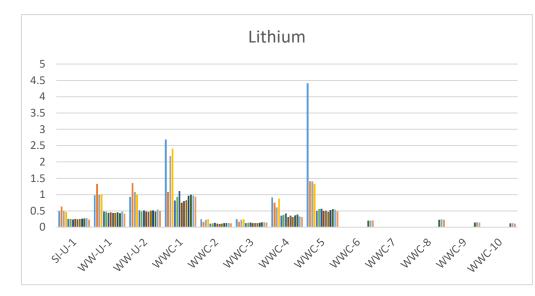


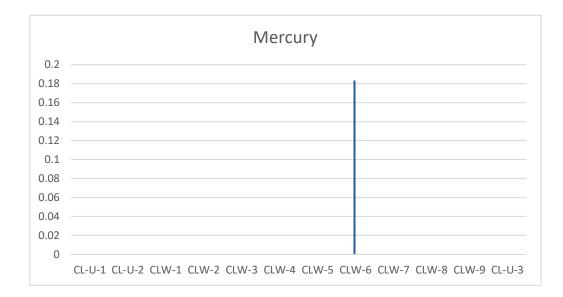


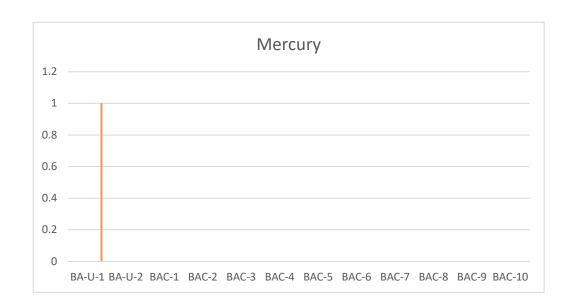


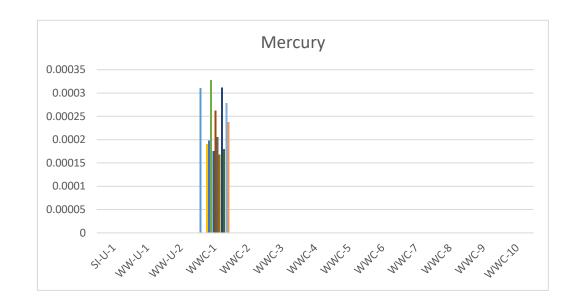


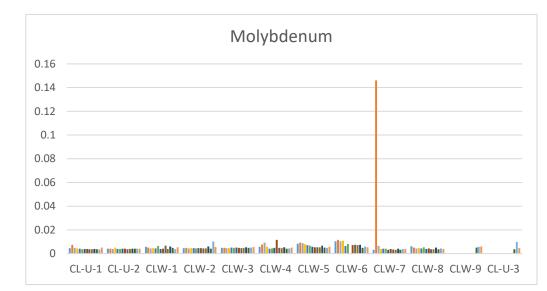


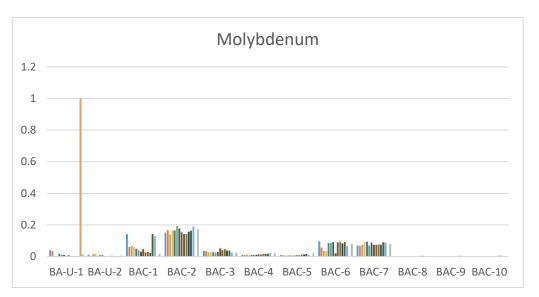


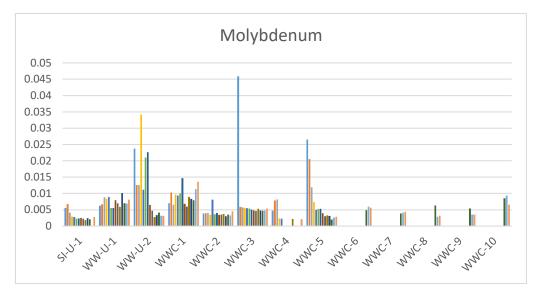


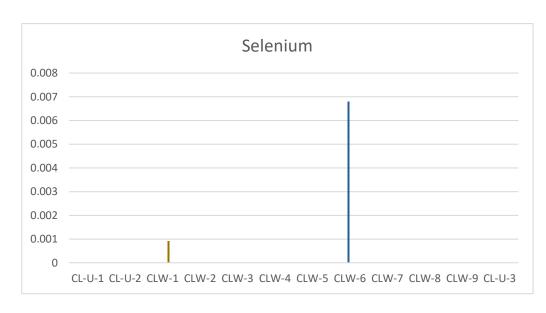


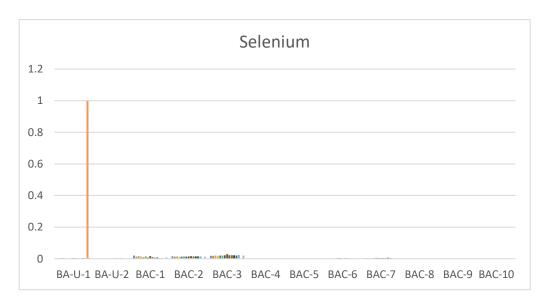


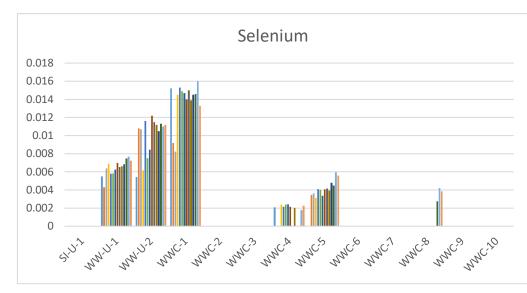


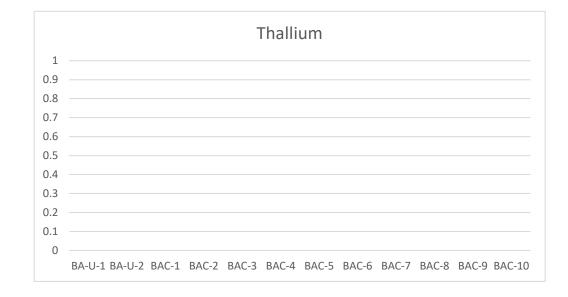




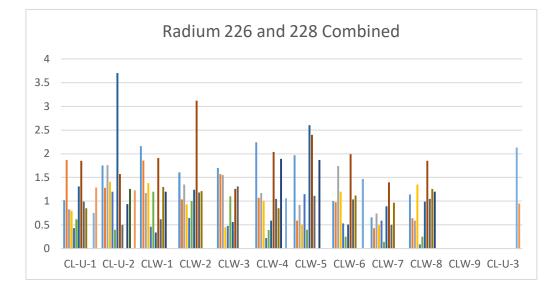


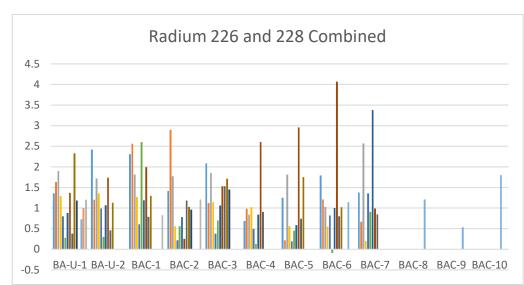


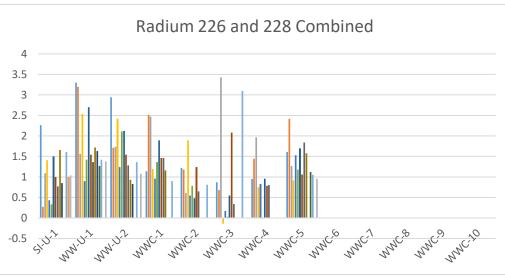












Thallium

Well	Depth	Date	Time
WW-U-1	33.23	12/7/2015	12:54
WW-U-2	23.42	12/7/2015	12:59
SI-U-1	32.47	12/7/2015	13:09
CL-U-1	32.02	12/7/2015	13:35
CL-U-2	37.55	12/7/2015	13:32
CL-W-1	31.05	12/7/2015	13:49
CL-W-2	33.14	12/7/2015	15:55
CL-W-3	31.54	12/7/2015	9:50
CL-W-4	30.56	12/7/2015	11:34
CL-W-5	29.76	12/7/2015	13:21
CL-W-6	28.71	12/7/2015	15:00
CL-W-7	35.23	12/7/2015	13:41
CL-W-8	32.37	12/7/2015	13:47
BA-U-1	39.21	12/7/2015	13:15
BA-U-2	33.26	12/7/2015	13:22
BAC-1	39.32	12/7/2015	16:58
BAC-2	51.38	12/7/2015	17:22
BAC-3	51.02	12/7/2015	17:34
BAC-4	35.35	12/7/2015	17:44
BAC-5	32.62	12/7/2015	17:47
BAC-6	29.76	12/7/2015	17:51
BAC-7	31.26	12/7/2015	17:54
WWC-1	21.16	12/7/2015	17:35
WWC-2	22.16	12/7/2015	17:40
WWC-3	16.42	12/7/2015	17:45
WWC-4	17.85	12/7/2015	17:50
WWC-5	18.78	12/7/2015	17:55

Well	Depth	Date	Time
WW-U-1	33.08	3/3/2016	10:23
WW-U-2	23.52	3/3/2016	9:21
SI-U-1	32.45	3/3/2016	10:27
CL-U-1	31.53	3/3/2016	9:33
CL-U-2	37.09	3/3/2016	9:31
CL-W-1	31.56	3/3/2016	10:36
CL-W-2	32.59	3/3/2016	10:34
CL-W-3	30.91	3/3/2016	13:05
CL-W-4	30.02	3/3/2016	13:02
CL-W-5	28.17	3/3/2016	13:00
CL-W-6	28.13	3/3/2016	12:57
CL-W-7	34.75	3/3/2016	10:40
CL-W-8	31.89	3/3/2016	10:38
BA-U-1	38.82	3/3/2016	9:27
BA-U-2	33.05	3/3/2016	9:24
BAC-1	39.85	3/3/2016	9:16
BAC-2	51.31	3/3/2016	9:11
BAC-3	51.29	3/3/2016	9:07
BAC-4	34.97	3/3/2016	8:59
BAC-5	32.07	3/3/2016	8:57
BAC-6	29.27	3/3/2016	8:55
BAC-7	29.78	3/3/2016	8:48
WWC-1	20.92	3/3/2016	10:21
WWC-2	21.79	3/3/2016	10:17
WWC-3	16.12	3/3/2016	10:12
WWC-4	17.56	3/3/2016	10:11
WWC-5	18.5	3/3/2016	10:09

Well	Depth	Date	Time
WW-U-1	34.2	6/24/2016	9:18
WW-U-2	24.21	6/24/2016	9:40
SI-U-1	32.93	6/24/2016	9:23
CL-U-1	31.88	6/24/2016	9:52
CL-U-2	37.41	6/24/2016	9:49
CL-W-1	30.67	6/24/2016	10:20
CL-W-2	32.49	6/24/2016	10:02
CL-W-3	30.78	6/24/2016	10:15
CL-W-4	29.86	6/24/2016	10:13
CL-W-5	27.97	6/24/2016	10:10
CL-W-6	27.9	6/24/2016	10:06
CL-W-7	34.98	6/24/2016	10:28
CL-W-8	32.07	6/24/2016	10:25
BA-U-1	39.13	6/24/2016	9:44
BA-U-2	33.49	6/24/2016	9:34
BAC-1	40.42	6/24/2016	11:40
BAC-2	51.38	6/24/2016	11:46
BAC-3	51.35	6/24/2016	11:52
BAC-4	34.85	6/24/2016	10:38
BAC-5	31.79	6/24/2016	10:41
BAC-6	28.86	6/24/2016	10:44
BAC-7	30.26	6/24/2016	10:47
WWC-1	21.47	6/24/2016	11:25
WWC-2	22.33	6/24/2016	11:22
WWC-3	16.63	6/24/2016	11:17
WWC-4	18.07	6/24/2016	11:14
WWC-5	19.03	6/24/2016	11:12

Well	Depth	Date	Time
WW-U-1	34.42	8/30/2016	9:22
WW-U-2	24.57	8/30/2016	9:27
SI-U-1	33.49	8/30/2016	9:41
CL-U-1	32.74	8/30/2016	16:16
CL-U-2	38.31	8/30/2016	16:17
CL-W-1	31.52	8/30/2016	16:28
CL-W-2	33.5	8/30/2016	16:31
CL-W-3	31.81	8/30/2016	16:34
CL-W-4	30.89	8/30/2016	16:38
CL-W-5	28.99	8/30/2016	16:39
CL-W-6	28.95	8/30/2016	16:43
CL-W-7	35.84	8/30/2016	16:23
CL-W-8	32.93	8/30/2016	16:25
BA-U-1	39.95	8/30/2016	10.:11
BA-U-2	34.24	8/30/2016	10:20
BAC-1	40.97	8/30/2016	11:42
BAC-2	52.1	8/30/2016	13:03
BAC-3	51.94	8/30/2016	14:40
BAC-4	35.68	8/30/2016	9:41
BAC-5	32.67	8/30/2016	9:36
BAC-6	29.64	8/30/2016	9:30
BAC-7	31.09	8/30/2016	8:33
WWC-1	22.4	8/30/2016	10:27
WWC-2	22.87	8/30/2016	10:31
WWC-3	17.17	8/30/2016	10:36
WWC-4	18.61	8/30/2016	10:39
WWC-5	19.6	8/30/2016	10:45

Well	Depth	Date	Time
WW-U-1	34.74	11/9/2016	13:36
WW-U-2	24.81	11/9/2016	13:39
SI-U-1	33.74	11/9/2016	13:42
CL-U-1	33.04	11/9/2016	13:56
CL-U-2	38.59	11/9/2016	13:54
CL-W-1	31.89	11/9/2016	14:07
CL-W-2	34.00	11/9/2016	14:10
CL-W-3	32.34	11/9/2016	14:15
CL-W-4	31.43	11/9/2016	14:18
CL-W-5	29.58	11/9/2016	14:19
CL-W-6	29.55	11/9/2016	14:20
CL-W-7	36.20	11/9/2016	14:03
CL-W-8	33.28	11/9/2016	14:06
BA-U-1	40.27	11/9/2016	13:49
BA-U-2	34.59	11/9/2016	13:47
BAC-1	41.51	11/9/2016	10:00
BAC-2	52.61	11/9/2016	10:02
BAC-3	52.10	11/9/2016	10:04
BAC-4	35.98	11/9/2016	14:36
BAC-5	32.90	11/9/2016	14:34
BAC-6	29.81	11/9/2016	14:31
BAC-7	30.92	11/9/2016	14:28
WWC-1	22.27	11/9/2016	13:28
WWC-2	23.22	11/9/2016	13:30
WWC-3	17.43	11/9/2016	13:23
WWC-4	18.88	11/9/2016	13:20
WWC-5	19.85	11/9/2016	13:18

Well	Depth	Date	Time
WW-U-1	33.88	3/30/2017	10:22
WW-U-2	22.19	3/30/2017	10:32
SI-U-1	32.89	3/30/2017	10:39
CL-U-1	31.99	3/30/2017	10:53
CL-U-2	37.56	3/30/2017	10:51
CL-W-1	32.84	3/30/2017	11:58
CL-W-2	32.72	3/30/2017	11:35
CL-W-3	31.08	3/30/2017	11:38
CL-W-4	30.25	3/30/2017	11:40
CL-W-5	28.41	3/30/2017	11:43
CL-W-6	28.40	3/30/2017	11:45
CL-W-7	35.15	3/30/2017	11:50
CL-W-8	32.04	3/30/2017	11:54
BA-U-1	39.29	3/30/2017	10:47
BA-U-2	33.67	3/30/2017	10:43
BAC-1	40.89	3/30/2017	12:23
BAC-2	51.32	3/30/2017	12:28
BAC-3	51.94	3/30/2017	12:33
BAC-4	34.73	3/30/2017	11:09
BAC-5	31.71	3/30/2017	11:07
BAC-6	28.74	3/30/2017	11:03
BAC-7	30.03	3/30/2017	11:01
WWC-1	18.91	3/30/2017	11:22
WWC-2	22.21	3/30/2017	11:27
WWC-3	16.53	3/30/2017	11:17
WWC-4	17.97	3/30/2017	11:20
WWC-5	17.94	3/30/2017	11:22

Well	Depth	Date	Time
WW-U-1	34.70	6/21/2017	8:10
WW-U-2	24.75	6/21/2017	8:19
SI-U-1	33.46	6/21/2017	8:24
CL-U-1	32.13	6/21/2017	8:42
CL-U-2	37.72	6/21/2017	8:38
CL-W-1	30.74	6/21/2017	9:24
CL-W-2	32.35	6/21/2017	9:27
CL-W-3	30.72	6/21/2017	9:29
CL-W-4	29.90	6/21/2017	9:32
CL-W-5	28.06	6/21/2017	9:34
CL-W-6	28.01	6/21/2017	9:36
CL-W-7	35.16	6/21/2017	9:20
CL-W-8	32.21	6/21/2017	9:22
BA-U-1	39.41	6/21/2017	8:32
BA-U-2	33.90	6/21/2017	8:29
BAC-1	41.29	6/21/2017	11:30
BAC-2	50.94	6/21/2017	11:36
BAC-3	51.14	6/21/2017	11:41
BAC-4	34.08	6/21/2017	9:50
BAC-5	30.98	6/21/2017	9:47
BAC-6	28.03	6/21/2017	9:46
BAC-7	29.30	6/21/2017	9:44
WWC-1	21.95	6/21/2017	13:16
WWC-2	22.74	6/21/2017	8:01
WWC-3	17.04	6/21/2017	11:51
WWC-4	18.48	6/21/2017	11:48
WWC-5	19.44	6/21/2017	11:46

Well	Depth	Date	Time
WW-U-1	35.43	10/4/2017	12:47
WW-U-2	25.49	10/5/2017	12:53
SI-U-1	34.28	10/6/2017	12:59
CL-U-1	33.25	10/7/2017	13:13
CL-U-2	38.81	10/8/2017	13:10
CL-W-1	31.80	10/9/2017	13:31
CL-W-2	33.60	10/10/2017	13:27
CL-W-3	31.93	10/11/2017	13:35
CL-W-4	31.09	10/12/2017	13:23
CL-W-5	29.26	10/13/2017	13:20
CL-W-6	29.26	10/14/2017	13:19
CL-W-7	36.23	10/15/2017	13:34
CL-W-8	33.28	10/16/2017	13:32
BA-U-1	40.42	10/17/2017	13:05
BA-U-2	34.85	10/18/2017	13:04
BAC-1	41.78	10/19/2017	13:16
BAC-2	52.03	10/20/2017	13:11
BAC-3	52.31	10/21/2017	13:07
BAC-4	35.29	10/22/2017	13:18
BAC-5	32.19	10/23/2017	13:22
BAC-6	29.24	10/24/2017	13:27
BAC-7	30.48	10/25/2017	13:33
WWC-1	22.69	10/26/2017	9:42
WWC-2	23.51	10/27/2017	13:43
WWC-3	17.80	10/28/2017	13:44
WWC-4	19.27	10/29/2017	13:42
WWC-5	20.26	10/30/2017	13:40

Well	Depth	Date
WW-U-1	36.14	3/26/2018
WW-U-2	25.79	3/26/2018
SI-U-1	34.04	3/26/2018
CL-U-1	32.64	3/26/2018
CL-U-2	38.22	3/26/2018
CL-W-1	31.73	3/26/2018
CL-W-2	33.49	3/26/2018
CL-W-3	31.73	3/26/2018
CL-W-4	30.94	3/26/2018
CL-W-5	29.00	3/26/2018
CL-W-6	28.96	3/26/2018
CL-W-7	35.99	3/26/2018
CL-W-8	33.11	3/26/2018
BA-U-1	40.28	3/26/2018
BA-U-2	34.74	3/26/2018
BAC-1	42.05	3/26/2018
BAC-2	34.62	3/26/2018
BAC-3	52.76	3/26/2018
BAC-4	35.82	3/26/2018
BAC-5	33.28	3/26/2018
BAC-6	30.53	3/26/2018
BAC-7	31.88	3/26/2018
WWC-1	22.56	3/26/2018
WWC-2	23.31	3/26/2018
WWC-3	17.55	3/26/2018
WWC-4	19.04	3/26/2018
WWC-5	20.08	3/26/2018

Mall	Donath	Data
Well	Depth	Date
WW-U-1	36.20	6/13/2018
WW-U-2	25.95	6/13/2018
SI-U-1	34.27	6/13/2018
CL-U-1	32.83	6/13/2018
CL-U-2	38.42	6/13/2018
CL-W-1	31.92	6/13/2018
CL-W-2	33.53	6/13/2018
CL-W-3	31.72	6/13/2018
CL-W-4	30.79	6/13/2018
CL-W-5	28.95	6/13/2018
CL-W-6	29.12	6/13/2018
CL-W-7	36.19	6/13/2018
CL-W-8	33.31	6/13/2018
BA-U-1	40.54	6/13/2018
BA-U-2	35.00	6/13/2018
BAC-1	42.29	6/13/2018
BAC-2	52.68	6/13/2018
BAC-3	53.92	6/13/2018
BAC-4	35.83	6/13/2018
BAC-5	33.32	6/13/2018
BAC-6	30.52	6/13/2018
BAC-7	31.83	6/13/2018
WWC-1	22.89	6/13/2018
WWC-2	23.64	6/13/2018
WWC-3	17.92	6/13/2018
WWC-4	19.34	6/13/2018
WWC-5	20.19	6/13/2018

Well	Depth	Date
WW-U-1	36.74	10/24/2018
WW-U-2	26.65	10/24/2018
SI-U-1	35.25	10/24/2018
CL-U-1	34.43	10/24/2018
CL-U-2	40.02	10/24/2018
CL-W-1	33.69	10/24/2018
CL-W-2	35.53	10/24/2018
CL-W-3	33.67	10/24/2018
CL-W-4	32.74	10/24/2018
CL-W-5	30.84	10/24/2018
CL-W-6	30.79	10/24/2018
CL-W-7	37.82	10/24/2018
CL-W-8	35.01	10/24/2018
BA-U-1	42.07	10/24/2018
BA-U-2	36.40	10/24/2018
BAC-1	43.46	10/24/2018
BAC-2	54.24	10/24/2018
BAC-3	54.22	10/24/2018
BAC-4	35.66	10/24/2018
BAC-5	35.70	10/24/2018
BAC-6	33.22	10/24/2018
BAC-7	34.85	10/24/2018
WWC-1	23.70	10/24/2018
WWC-2	24.48	10/24/2018
WWC-3	18.74	10/24/2018
WWC-4	20.22	10/24/2018
WWC-5	21.23	10/24/2018

Original CCR Wells

Appendix III and IV Constituents America West COC #1

CCR Wells	Level	Date
WW-U-1	35.34	5/20/19
WW-U-2	25.90	5/20/19
SI-U-1	34.60	5/20/19
CL-U-1	33.35	5/20/19
CL-U-2	38.93	5/20/19
CL-W-1	32.93	5/20/19
CL-W-2	34.76	5/20/19
CL-W-3	32.86	5/20/19
CL-W-4	31.89	5/20/19
CL-W-5	29.99	5/20/19
CL-W-6	29.91	5/20/19
CL-W-7	36.94	5/20/19
CL-W-8	34.18	5/20/19
BA-U-1	41.22	5/20/19
BA-U-2	35.55	5/20/19
BAC-1	43.02	5/20/19
BAC-2	54.19	5/20/19
BAC-3	54.69	5/20/19
BAC-4	37.62	5/20/19
BAC-5	35.66	5/20/19
BAC-6	33.08	5/20/19
BAC-7	34.69	5/20/19
WWC-1	22.95	5/20/19
WWC-2	24.70	5/20/19
WWC-3	18.01	5/20/19
WWC-4	19.47	5/20/19
WWC-5	20.47	5/20/19

CCR New Wells

Appendix III and IV Constituents
America West COC #2

nve	estigative W	Level	Date
	RW-4	19.85	5/20/19
	RW-5	45.41	5/20/19
	RW-7	13.80	5/20/19
	WDB-19	28.00	5/20/19

New CCR Wells

Appendix III and IV Constituents
America West COC #1

nvestigative W		Level	Date	
	CLW-9	18.37	5/20/19	
	WWC-6	35.74	5/20/19	
	WWC-7	17.47	5/20/19	
	WWC-8	27.06	5/20/19	
	WWC-9	23.80	5/20/19	
	WWC-10	17.80	5/20/19	
	BAC-8	45.65	5/20/19	
	BAC-9	46.70	5/20/19	
	BAC-10	47.21	5/20/19	
	CLU-3	41.49	5/20/19	

Appendix IV - Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226 and 228 combined

State Discharge Permit Wells

Chemtech COC #3

All Constituents* - I		Level	Date
	WR-101	54.61	5/20/19
	WR-102	44.76	5/20/19
	WR-103	47.30	5/20/19
	FP-W-19	32 61	5/20/19

Level	Date
44.17	5/20/19
42.91	5/20/19
41.72	5/20/19
30.71	5/20/19
28.92	5/20/19
28.00	5/20/19
	44.17 42.91 41.72 30.71 28.92

* TDS, Boron, Chloride, Sulfate, Alkalinity, Sodium, Magnesium, Potassium, Calcium

Corrective Action Plan Well

Chemtech COC #4

(TDS)	Level	Date
RW-5	45.41	5/20/19

Appendix III - Boron, Calcium, Chloride, Fluoride, pH, Sulfate, TDS

Original CCR Wells

Appendix III and IV Constituents America West COC #1

CCR Wells	Level	Date
WW-U-1	35.91	10/17/19
WW-U-2	26.64	10/17/19
SI-U-1	35.35	10/17/19
CL-U-1	34.52	10/17/19
CL-U-2	40.08	10/17/19
CL-W-1	33.81	10/17/19
CL-W-2	35.70	10/17/19
CL-W-3	33.85	10/17/19
CL-W-4	32.90	10/17/19
CL-W-5	31.02	10/17/19
CL-W-6	30.99	10/17/19
CL-W-7	37.98	10/17/19
CL-W-8	35.11	10/17/19
BA-U-1	42.09	10/17/19
BA-U-2	36.42	10/17/19
BAC-1	43.71	10/17/19
BAC-2	54.62	10/17/19
BAC-3	55.01	10/17/19
BAC-4	38.14	10/17/19
BAC-5	36.01	10/17/19
BAC-6	33.01	10/17/19
BAC-7	35.06	10/17/19
WWC-1	23.81	10/17/19
WWC-2	24.61	10/17/19
WWC-3	18.90	10/17/19
WWC-4	20.37	10/17/19
WWC-5	21.37	10/17/19

CCR New Wells

Appendix III and IV Constituents
America West COC #2

Inve	estigative W	Level	Date
	RW-4	20.69	10/17/19
	RW-5	46.31	10/17/19
	RW-7	14.74	10/17/19
	WDB-19	29.11	10/17/19

New CCR Wells

Appendix III and IV Constituents
America West COC #1

vestigative W		Level	Date
	CLW-9	36.97	10/17/19
	WWC-6	19.57	10/17/19
	WWC-7	19.20	10/17/19
	WWC-8	28.15	10/17/19
	WWC-9	24.86	10/17/19
	WWC-10	19.40	10/17/19
	BAC-8	46.07	10/17/19
	BAC-9	47.18	10/17/19
	BAC-10	47.80	10/17/19
	CLU-3	42.49	10/17/19
•			

Appendix IV - Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226 and 228 combined

State Discharge Permit Wells

Chemtech COC #3

(All Constituents* - I		Level	Date
	WR-101	54.60	10/17/19
	WR-102	43.14	10/17/19
	WR-103	45.40	10/17/19
	EP-W-19	33.52	10/17/19

(TBS/Boron	Level	Date
RW-6	44.69	10/17/19
RW-9	43.16	10/17/19
WDB-7	42.55	10/17/19
EP-W-23	31.66	10/17/19
EP-W-27	29.89	10/17/19
WDB-19	29.11	10/17/19

* TDS, Boron, Chloride, Sulfate, Alkalinity, Sodium, Magnesium, Potassium, Calcium

Corrective Action Plan Well

Chemtech COC #4

(TDS)	Level	Date
RW-5	46.31	10/17/19

Appendix III - Boron, Calcium, Chloride, Fluoride, pH, Sulfate, TDS

Original CCR Wells

Appendix III and IV Constituents
America West COC #1

	Level	Date
WW-U-1	30.42	3/23/2020
WW-U-2	22.31	3/23/2020
SI-U-1	33.78	3/23/2020
CL-U-1	33.46	3/23/2020
CL-U-2	38.92	3/23/2020
CL-W-1	32.75	3/23/2020
CL-W-2	34.71	3/23/2020
CL-W-3	32.87	3/23/2020
CL-W-4	31.99	3/23/2020
CL-W-5	30.09	3/23/2020
CL-W-6	30.08	3/23/2020
CL-W-7	36.70	3/23/2020
CL-W-8	33.95	3/23/2020
BA-U-1	40.76	3/23/2020
BA-U-2	34.81	3/23/2020
BAC-1	41.89	3/23/2020
BAC-2	53.88	3/23/2020
BAC-3	54.42	3/23/2020
BAC-4	37.21	3/23/2020
BAC-5	35.05	3/23/2020
BAC-6	32.35	3/23/2020
BAC-7	33.95	3/23/2020
WWC-1	22.85	3/23/2020
WWC-2	23.80	3/23/2020
WWC-3	18.02	3/23/2020
WWC-4	19.42	3/23/2020
WWC-5	20.39	3/23/2020

Appendix IV - Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226 and 228 combined

Investigative Wells

Appendix III and IV Constituents
America West COC #2

	Level	Date
RW-4	19.80	3/23/2020
RW-5	45.88	3/23/2020
RW-7	14.01	3/23/2020
WDB-19	28.19	3/23/2020
RW-1		3/23/2020
EPW-15	43.84	3/23/2020

New CCR Wells

Appendix III and IV Constituents
America West COC #1

	Level	Date
CLW-9	36.13	3/23/2020
WWC-6	18.48	3/23/2020
WWC-7	17.68	3/23/2020
WWC-8	27.11	3/23/2020
WWC-9	23.98	3/23/2020
WWC-10	17.92	3/23/2020
WWC-11	22.01	3/23/2020
WWC-12	19.59	3/23/2020
WWC-13	18.66	3/23/2020
BAC-8	46.08	3/23/2020
BAC-9	47.08	3/23/2020
BAC-10	47.60	3/23/2020
BAC-11	47.73	3/23/2020
BAC-12	48.07	3/23/2020
BAC-13	45.11	3/23/2020
BAC-14	46.62	3/23/2020
BAC-15	45.92	3/23/2020
BAC-16	47.19	3/23/2020
BAC-17	45.33	3/23/2020
CLU-3	41.32	3/23/2020

State Discharge Permit Wells

Chemtech COC #3

	Level	Date
WR-101	35.91	3/23/2020
WR-102	32.16	3/23/2020
WR-103	45.40	3/23/2020
EP-W-19	32.81	3/23/2020

TBS/Boron	Level	Date
RW-6	44.55	3/23/2020
RW-9	43.32	3/23/2020
WDB-7	42.13	3/23/2020
EP-W-23	30.75	3/23/2020
EP-W-27	28.79	3/23/2020
WDB-19	28.19	3/23/2020

* TDS, Boron, Chloride, Sulfate, Alkalinity, Sodium, Magnesium, Potassium, Calcium

Corrective Action Plan Well

Chemtech COC #4

(TDS)	Level	Date
RW-5	45.88	3/23/2020

Appendix III - Boron, Calcium, Chloride, Fluoride, pH, Sulfate, TDS Round 1 Detection Monitoring - December 2-10, 2015

Results

Landfill Wells

Results below reporting limit are recorded as 0.

Round 1

Landfill Wells

Field Results

																						Radium 226 and								
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	0	68.9	418	0.813	7.82	131	1040	0	0.0378	0.126	0 0	0.00537	0	0	0.346	0	0.00459	0	C	0.52	0.5	1.02	CL-U-1	13.46	7.74	-42	1720	443	2.12	-
CL-U-2	0	73.8	404	0.611	7.73	132	1020	0	0.0317	0.129	0 0	0.00613	0	0	0.325	0	0.00406	0	C	0.55	1.2	1.75	CL-U-2	14.72	6.92	-38	1750	604	2.6	-
CLW-1	0	55.7	322	0.844	7.95	76.5	832	0	0.0264	0.105	0 0	0.00814	0	0	0.3	0	0.00574	0	C	0.56	1.6	2.16	CLW-1	14.84	7.69	-45	1490	383	2.28	0.952
CLW-2	0	53.9	432	0.695	7.75	108	976	0	0.0283	0.0957	0 0	0.00576	0	0	0.36	0	0.00472	0	C	0.51	1.1	1.61	CLW-2	9.95	7.86	-144	1810	99.6	1.76	1.16
CLW-3	0	45	367	0.948	7.86	123	928	0	0.0375	0.111	. 0 0	0.00346	0	0	0.337	0	0.00492	0	C	0.4	1.3	1.7	CLW-3	11.24	7.95	-158	1740	128	1.9	1.11
CLW-4	0	44.5	320	1.37	7.87	73.3	828	0	0.0308	0.122	0 0	0.00336	0	0	0.319	0	0.00584	0	C	0.34	1.9	2.24	CLW-4	14.9	7.95	-165	1540	25.1	1.67	0.98
CLW-5	0	38.4	345	1.51	7.81	88.3	872	0	0.0188	0.0864	0	0	0	0	0.0325	0	0.00841	0	C	0.37	1.6	1.97	CLW-5	15.12	7.96	-134	1620	46.4	1.6	1.04
CLW-6	0	33.6	325	1.38	7.71	74.5	820	0	0.0249	0.0879	0 0	0.00335	0	0	0.316	0	0.0104	0	C	0.37	0.63	1	CLW-6	15.3	8	-193	1550	30.8	0.98	0.998
CLW-7	0	47.3	339	0.792	7.81	66.4	812	0	0.0234	0.0593	0 0	0.00421	0	0	0.282	0	0.00331	0	C	0.14	0.52	0.66	CLW-7	16.38	7.54	8	1430	90.9	7.01	0.917
CLW-8	0	43.6	324	0.797	7.8	70.5	772	0	0.0155	0.107	0 0	0.00463	0	0	0.285	0	0.00626	0	C	0.4	0.74	1.14	CLW-8	15.01	7.58	0	1530	11.3	2.09	0.976
CLW-9																							CLW-9							
CL-U-3																							CL-U-3							
												Results															Field Resu	ilts		
Bottom Ash																							Bottom Ash							
Bottom Asii																						Radium 226 and	BOLLOIII ASII							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0	51.4	430	1.21	8.06	121	984	0	0.0163	0.133	0 0	0.00305	0	0	0.313	0	0.0408	0	C	0.66	0.7	1.36	BA-U-1	14.56	7.93	-67	1590	106	2.51	-
BA-U-2	0	53	343	0.727	8.9	48.9	82.4	0	0.0154	0.148	0 0	0.00971	0	0	0.297	0	0.0121	0	C	0.32	2.1	2.42	BA-U-2	13.58	8.33	-85	1510	96.4	2.9	-
BAC-1	7.49	274	3280	0.299	7.37	3060	8860	0.00237	0.0146	0.1	. 0 0	0.00503	0.00605	0	1.52	0	0.143	0.0204	C	0.71	1.6	2.31	BAC-1	11.8	7.32	111	15100	54.8	1.84	9.35
BAC-2	10.7	267	2000	0.741	7.29	3620	7820	0	0.0386	0.0472	0 0	0.0116	0	0	1.38	0	0.151	0.0164	C	0.48	0.94	1.42	BAC-2	15.7	7.12	79	11800	100	1.82	7.33
BAC-3	6.09	387	2900	0.648	7.6	3840	9800	0	0.0191	0.0827	0 0	0.0615	0	0	2.13	0	0.0367	0.019	C	0.99	1.1	2.09	BAC-3	16.24	7.51	75	15000	34.2	1.36	9.28
BAC-4	0	53	473	1.35	7.96	181	1150	0	0.0407	0.0821	. 0 0	0.0022	0	0	0.476	0	0.0104	0	C	0.19	0.5	0.69	BAC-4	14.36	7.93	12	2230	12.5	2.07	1.43
BAC-5	0	51.1	483	1.11	7.83	129	1010	0	0.0357	0.0928	0 0	0.0161	0	0	0.479	0	0.00926	0	C	0.29	0.96	1.25	BAC-5	13.96	7.88	-18	2020	113	0.97	1.29
BAC-6	4.36	142	516	0.754	7.68	1080	2410	0	0.0134	0.0622	0 0	0.0363	0	0	0.599	0	0.0968	0	C	0.39	1.4	1.79	BAC-6	12.49	7.69	-157	3610	96.1	1.2	2.31
BAC-7	4.65	148	665	1.01	7.77	1360	2910	0	0.0191	0.0577	0 0	0.0264	0	0	0.681	0	0.0699	0.00276	C	0.46	0.92	1.38	BAC-7	14.17	7.76	-96	4430	789	1.12	2.84
												Results															Field Resu	ilts		
Waste Water																							Waste Water							
vvaste vvater																						Radium 226 and	waste water							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	0.594	171	667	0	7.4	918	2300	0	0.00266	0.112	0 0	0.0099	0	0	0.49	0	0.00554	0	C	0.56	1.7	2.26	SI-U-1	10.79	7.27	-14	3720	74	6.93	-
WW-U-1	1.05	374	2180	0	7.06	1470	5430	0	0.00453	0.178	0 0	0.0032	0	0	0.983	0	0.00619	0.00549	C	1	2.3	3.3	WW-U-1	13.11	7.01	2	7920	32.9	3.2	-
WW-U-2	1.6	358	2430	0	7.23	1370	5540	0	0.00309	0.123	0 0	0.00582	0.0072	0	0.934	0	0.0237	0.00543	C	0.84	2.1	2.94	WW-U-2	12.59	7.23	-11	7920	93.4	5.09	-
WWC-1	9.62	561	4840	0	7.19	3150	11800	0	0.0181	0.0536	0 0	0.0139	0	0	2.69	0.00031	0.00701	0.0152	C	0.31	0.83	1.14	WWC-1	14.94	7.06	15	1850	110	1.28	11.5
WWC-2	0	66.5	381	0.158	7.91	147	940	0	0.0155	0.0511	. 0 0	0.00348	0	0	0.241	0	0.00383	0	C	0.12	1.1	1.22	WWC-2	17.36	7.88	-44	1680	79.9	1.08	1.07
WWC-3	0	34.5	284	1.01	8.11	82.2	688	0	0.0102	0.0638	0 0	0.00577	0	0	0.243	0	0.0459	0	C	0.32	0.55	0.87	WWC-3	13.92	8.1	-249	1430	121	1.29	0.918
WWC-4	1.09	247	1270	0.387	7.61	800	3250	0	0.0116	0.09	0 0	0.00877	0	0	0.909	0	0.00467	0.00207	C	0.5	0.45	0.95	WWC-4	14.73	7.4	-20	5230	61.1	1.52	3.3
WWC-5	2.4	345	1810	0.331	7.47	1610	5020	0	0.00783	0.103	0 0	0.00892	0.0055	0	4.41	0	0.0265	0	C	0.51	1.1	1.61	WWC-5	15.35	7.3	-122	7740	348	0.97	4.88
WWC-6																							WWC-6							
WWC-7																							WWC-7							
Posulta halaur rar																				•				•						

										Round	2 Detection P	Monitoring -	February 23-	March 8, 20	016												1	Round 2			
													Results															Field Resu	ilts		
Landfill Wells																							Radium 226 and	Landfill Wells						,	
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 Rad	dium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	0	47.7	391	0.839	8.52	123	908	0	0.0415	0.0953	0	0	0	0	0	0.401	0	0.00733	0	0	0.27	1.6	1.87	CL-U-1	14.18	8.74	-209	1750	4.3	2.15	1.12
CL-U-2	0	59.9	372	0.873	7.75	119	940	0	0.0243	0.0934	0	0	0	0	0	0.387	0	0.00414	0	0	0.28	1	1.28	CL-U-2	14.41	7.75	-89	1820	4.6	1.85	1.17
CLW-1	0	35.1	301	0.834	7.89	71.6	808	0	0.0266	0.0648	0	0	0.00235	0	0	0.361	0	0.00506	0	0	0.36	1.5	1.86	CLW-1	15.84	7.95	-60	1560	3.8	1.4	0.996
CLW-2	0	45.9	378	1.18	7.66	90.5	936	0	0.0243	0.0882	0	0	0	0	0	0.438	0	0.00481	0	0	0.51	0.53	1.04	CLW-2	17.53	7.81	-137	1840	2	9.35	1.17
CLW-3	0	40.5	336	1.35	7.92	96	884	0	0.0437	0.103	0	0	0	0	0	0.435	0	0.0049	0	0	0.47	1.1	1.57	CLW-3	14.99	7.87	-203	1710	0	3.96	1.09
CLW-4	0	32.1	282	1.53	7.87	80.9	776	0	0.0271	0.109	0	0	0	0	0	0.375	0	0.00762	0	0	0.37	0.7	1.07	CLW-4	17.08	7.81	-211	1490	11.5	1.82	0.955
CLW-5	0	35.4	318	1.82	7.91	85.7	824	0	0.0214	0.0869	0	0	0	0	0	0.411	0	0.00922	0	0	0.27	0.32	0.59	CLW-5	17.06	7.82	-168	1650	10.9	8.45	1.06
CLW-6	0	32.1	306	1.72	7.97	75.4	816	0	0.0246	0.095	0	0	0	0	0	0.4	0	0.0117	0	0	0.02	0.96	0.98	CLW-6	15.83	7.91	-194	1600	6.2	0.95	1.02
CLW-7	0	42.8	290	0.825	7.65	67.6	832	0	0.0239	0.0794	0	0	0	0	0	0.327	0	0.146	0	0	0.14	0.29	0.43	CLW-7	16.53	7.75	9	1560	3.5	2.67	0.996
CLW-8	0	41.5	293	0.782	7.8	70.3	808	0	0.022	0.0839	0	0	0.00224	0	0	0.35	0	0.00499	0	0	0.32	0.32	0.64	CLW-8	15.86	7.81	-25	1560	8	1.92	0.996
CLW-9																								CLW-9							
CL-U-3																								CL-U-3							
	•		•			•	•	•	•			•				•				•							•				

		0 28.7 258 1.67 8.55 64.2 852 0 0.023 0.0969 0 0 0 0 0 0.376 0 0.0359 0 0 0.33 0 67.4 529 0.938 8.02 55.7 1230 0 0.0199 0.175 0 0 0 0 0 0 0 0 0.514 0 0.00298 0 0 0 0.2																				Field Res	ults								
Bottom Ash																							Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0	28.7	258	1.67	8.55	64.2	852	0	0.023	0.0969	0	0	0	0	0	0.376	0	0.0359	0	0	0.33	1.3	1.63	BA-U-1	13.53	8.63	5	1550	11.3	2.59	0.995
BA-U-2	0	67.4	529	0.938	8.02	55.7	1230	0	0.0199	0.175	0	0	0	0	0	0.514	0	0.00298	0	0	0.2	1	1.2	BA-U-2	15.78	7.94	-167	2240	19.7	1.06	1.44
BAC-1	2.85	155	1730	0	7.86	1390	5240	0	0.0174	0.39	0	0	0.00536	0	0	0.63	0	0.0607	0.0131	0	0.96	1.6	2.56	BAC-1	17.51	8.16	39	6.5	10.7	3	4.11
BAC-2	9.83	196	1600	0	7.35	2900	7640	0	0.0411	0.0385	0	0	0.00742	0	0.00221	1.22	0	0.167	0.0128	0	0.4	2.5	2.9	BAC-2	16.74	7.2	322	9.96	3.2	2.59	6.26
BAC-3	6.55	406	3240	0	7.62	3960	10400	0	0.0192	0.0553	0	0	0.00676	0	0	1.12	0	0.0337	0.0184	0	0.44	0.68	1.12	BAC-3	14.4	7.36	29	1590	3.8	3.35	9.84
BAC-4	0	57.4	488	1.36	7.87	191	1290	0	0.0371	0.0806	0	0	0	0	0	0.532	0	0.0106	0	0	0.48	0.5	0.98	BAC-4	15.9	7.81	-55	2370	3.9	2.08	1.51
BAC-5	0	41.3	433	1.34	7.95	111	1010	0	0.0392	0.0736	0	0	0	0	0	0.476	0	0.00758	0	0	0.25	-0.03	0.22	BAC-5	16.34	7.92	-23	1980	4	2.89	1.27
BAC-6	2.67	98.4	491	0.734	7.72	636	1880	0	0.0144	0.0736	0	0	0	0	0	0.597	0	0.0569	0	0	0.61	0.6	1.21	BAC-6	18.19	7.67	-8	2.94	0	1.73	1.88
BAC-7	4.43	132	623	1.07	7.89	1230	2980	0	0.0225	0.0372	0	0	0	0	0	0.699	0	0.0681	0.00274	0	0.16	0.51	0.67	BAC-7	14.22	7.9	-9	4560	3.9	2.46	2.92

	Boron Calcium Chloride Fluide pH Sulface No Antimory Assention Beyllium Cadmium Chomium Cobal Lead Lishium Mercury Molydocum Selenium Thallium Radium 226 0 1.68 752 0.557 7.65 665 2320 0 0.00746 0 0 0.0346 0 0 0.0641 0 0 0.00671 0 0 0 0 0 0 0.00671 0 0 0 0 0 0 0 0 0 0.00671 0																				Field Resu	ilts									
Waste Water																							Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	0	168	752	0.557	7.65	665	2320	0	0.00781	0.0846	0	0	0.00346	0	0	0.634	0	0.00671	0	0	0.43	-0.16	0.27	SI-U-1	12.99	7.49	11	3790	7.4	1.37	2.42
WW-U-1	1.03	346	2430	0	7.23	1440	5330	0	0.00446	0.123	0	0	0	0	0	1.33	0	0.00669	0.00432	0	1	2.2	3.2	WW-U-1	15.75	7.21	-117	8030	19.6	4.07	5.06
WW-U-2	1.59	362	2410	0	7.34	1370	5780	0	0.00846	0.0761	0	0	0.00735	0	0	1.35	0	0.0126	0.0108	0	0.51	1.2	1.71	WW-U-2	14.5	7.34	-22	9240	12.9	2.4	5.82
WWC-1	6.01	458	4530	0.256	7.24	2710	10800	0	0.00331	0.072	0	0	0.00369	0.00842	0	1.08	0	0.0103	0.00919	0	0.91	1.6	2.51	WWC-1	15.29	7.11	-108	1400	11.8	7.82	8.62
WWC-2	0	61.3	352	0.208	7.97	131	932	0	0.0147	0.0421	0	0	0.00335	0	0	0.162	0	0.00391	0	0	0.18	1	1.18	WWC-2	14.19	7.75	-86	1720	9.1	2.37	1.1
WWC-3	0	29.2	203	0.845	8.2	78.5	660	0	0.021	0.0357	0	0	0	0	0	0.172	0	0.00593	0	0	0.16	0.52	0.68	WWC-3	15.63	8.1	-183	1190	2	1.36	0.759
WWC-4	0.826	185	1100	0.39	7.31	716	3100	0	0.00923	0.101	0	0	0	0	0	0.75	0	0.00783	0	0	0.6	0.84	1.44	WWC-4	15.58	7.37	-8	5004	4.7	1.61	3.18
WWC-5	1.59	320	1640	0.319	7.22	1210	4790	0	0.00371	0.0882	0	0	0	0	0	1.41	0	0.0205	0.00345	0	0.52	1.9	2.42	WWC-5	15	7.22	19	7510	6.4	2	4.75
WWC-6																								WWC-6							
WWC-7																								WWC-7							
Beaulte below to	P Y																														

Round 3 Detection Monitoring - June 6-15, 2016

											touriu 3 Dete	ction wonitoring	ig - Julie 0-1	15, 2016													Kouna 3			
													Results														Field Res	ults		
Landfill Wells																						Radium 226 an	Landfill Wells							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium C	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 Radium 22	28 228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	0	51.2	414	1.01	7.83	122	1080	0	0.0507	0.0887	0	0	0	0	0	0.378	0	0.00491	0	0	0.11	0.72 0.83	CL-U-1	18.94	8.04	-204	1910	22.6	1.2	1.22
CL-U-2	0	53.7	390	1.14	7.75	121	976	0	0.0245	0.0933	0	0	0	0	0	0.346	0	0.00391	0	0	0.26	1.5	CL-U-2	18.47	7.7	-136	1900	1	2.72	1.22
CLW-1	0	34.6	312	1.13	7.9	70.1	716	0	0.0285	0.0621	0	0	0	0	0	0.318	0	0.00438	0	0	0.28	0.89 1.17	CLW-1	23.71	7.77	62	1550	0	1.34	0.99
CLW-2	0	43.9	402	1.21	7.84	87.9	976	0	0.0264	0.0819	0	0	0	0	0	0.396	0	0.00427	0	0	0.25	1.1 1.35	CLW-2	22.15	7.66	-169	1840	0	1.31	1.17
CLW-3	0	36.2	346	1.3	7.86	104	876	0	0.0402	0.0992	0	0	0	0	0	0.375	0	0.00463	0	0	0.35	1.2 1.55	CLW-3	20.8	7.71	-225	1720	0.8	1.8	1.1
CLW-4	0	30.6	294	1.58	7.79	77.9	748	0	0.0196	0.119	0	0	0	0	0	0.338	0	0.0092	0	0	0.45	0.72 1.17	CLW-4	19.51	7.8	-235	1480	0	4.39	0.95
CLW-5	0	33	336	1.81	7.86	84.9	848	0	0.0182	0.0851	0	0	0	0	0	0.352	0	0.00868	0	0	0.27	0.65 0.92	CLW-5	21.24	7.77	-209	1570	11.5	4.22	1.01
CLW-6	0	29.8	313	1.73	7.9	73.2	756	0	0.0181	0.0901	0	0	0	0	0	0.333	0	0.0105	0	0	0.34	1.4 1.74	CLW-6	18.81	7.87	-235	1600	0	1.7	1.02
CLW-7	0	39.3	328	1.16	7.64	67.4	732	0	0.0246	0.0581	0	0	0.00891	0	0	0.331	0	0.00638	0	0	0.19	0.74	CLW-7	16.73	7.62	66	1580	8.9	3.82	1.01
CLW-8	0	40.3	312	1.08	7.82	69.7	808	0	0.0225	0.0797	0	0	0	0	0	0.32	0	0.00435	0	0	0.27	0.32 0.59	CLW-8	20.93	7.66	55	1510	0	12.58	0.966
CLW-9																							CLW-9						1	
CL-U-3				1																			CL-U-3						1	
		- I					•	•				•				1	1	•	•					•			•			
													Doculto								<u> </u>						Field Pec	la.a		

													Results															Field Res	ults		
Bottom Ash	Boron	Calcium	Chloride	Fluoride	На	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226		Radium 226 and 228 combined	Bottom Ash	Temp	На	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0	195	1130	0.801	7.63	339	2520	0	0.0177	0.0935	0	0	0	0	0	0.773	0	0.00317	0.00426	0	0.3	1.6	1.9	BA-U-1	18.51	7.48	-114	4730	4.9	1.73	3.03
BA-U-2	0	15.9	284	0.865	12	40.6	720	0	0	0.128	0	0	0.0032	0	0	0.315	0	0.016	0	0	0.22	1.5	1.72	BA-U-2	20.17	11.9	-206	1980	5.1	4.04	1.26
BAC-1	4.73	191	2240	0.402	7.59	1840	6420	0	0.0164	0.081	0	0	0.0033	0	0	1.3	0	0.0669	0.0168	0	0.51	1.3	1.81	BAC-1	20.91	7.43	-5	10.3	33.2	3.43	6.41
BAC-2	11.2	216	1650	0.986	7.17	3220	7520	0	0.0416	0.0248	0	0	0.00488	0	0	1.32	0	0.14	0.0142	0	0.17	1.6	1.77	BAC-2	19.81	7.01	33	11.6	2	0.69	7.18
BAC-3	6.82	445	3230	0.794	7.42	4490	10900	0	0.0158	0.048	0	0	0.00707	0	0	2.53	0	0.0269	0.0198	0	0.25	1.6	1.85	BAC-3	18.81	7.19	16	16.6	2.6	1.26	10.3
BAC-4	0	66.1	551	1.38	7.73	223	1280	0	0.0334	0.0772	0	0	0.00461	0	0	0.509	0	0.0122	0	0	0.16	0.68	0.84	BAC-4	18.21	7.71	83	2490	2.6	3.05	1.59
BAC-5	0	50.4	541	1.26	7.79	122	1220	0	0.0337	0.0839	0	0	0	0	0	0.494	0	0.00738	0	0	0.11	1.7	1.81	BAC-5	18.58	7.75	51	2260	0	1320	1.45
BAC-6	1.7	89.5	521	1.04	7.72	448	1560	0	0.0122	0.0859	0	0	0	0	0	0.542	0	0.0359	0	0	0.27	0.76	1.03	BAC-6	20.42	7.7	50	2740	0.4	21.84	1.75
BAC-7	4.51	132	685	1.31	7.69	1370	2870	0	0.0234	0.0315	0	0	0	0	0	0.674	0	0.0749	0.00319	0	0.17	2.4	2.57	BAC-7	21.43	7.63	-7	4510	8	15.04	2.89

													Results										
Waste Water	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226 and 228 combined
SI-U-1	0	129	901	0.564	7.6	318	1880	0	0.00989	0.0929	0	0	0.0156	0	0	0.499	0	0.00411	0	0	0.45	0.64	1.09
WW-U-1	1.18	296	2030	0.386	7.21	1300	5820	0	0.0052	0.115	0	0	0	0	0	1	0	0.00888	0.00637	0	0.64	0.92	1.56
WW-U-2	1.49	412	2300	0.534	7.33	1180	5400	0	0.00538	0.0746	0	0	0.0114	0	0	1.08	0	0.0126	0.0107	0	0.64	1.1	1.74
WWC-1	3.59	526	3950	0	7.12	1990	8820	0	0.00401	0.077	0	0	0	0.00532	0	2.18	0	0.00653	0.00824	0	0.47	2	2.47
WWC-2	0	59.1	369	0.833	7.79	145	956	0	0.0151	0.0408	0	0	0	0	0	0.225	0	0.00402	0	0	0.22	0.39	0.61
WWC-3	0	26.4	197	1.02	8.12	85.6	664	0	0.0213	0.0328	0	0	0	0	0	0.23	0	0.00574	0	0	0.13	3.3	3.43
WWC-4	0.627	138	902	0.576	7.57	406	2010	0	0.00498	0.0768	0	0	0	0	0	0.606	0	0.0082	0	0	0.27	1.7	1.97
WWC-5	1.65	406	1730	0.3	7.24	1140	5060	0	0.00608	0.067	0	0	0	0	0	1.4	0	0.0119	0.00363	0	0.42	0.85	1.27
WWC-6																							
WWC-7																							

							Radium 226 and								
Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
0.499	0	0.00411	0	0	0.45	0.64	1.09	SI-U-1	18	7.54	-69	3350	0.3	8.11	2.14
1	0	0.00888	0.00637	0	0.64	0.92	1.56	WW-U-1	22.73	7.15	34	7560	0	4.74	4.76
1.08	0	0.0126	0.0107	0	0.64	1.1	1.74	WW-U-2	18.42	7.25	-66	8820	25.9	1.6	5.56
2.18	0	0.00653	0.00824	0	0.47	2	2.47	WWC-1	18.38	6.9	62	14.7	1.6	1.86	9.13
0.225	0	0.00402	0	0	0.22	0.39	0.61	WWC-2	18.22	7.74	-101	1.74	1.9	5.2	1.12
0.23	0	0.00574	0	0	0.13	3.3	3.43	WWC-3	16.62	7.99	-168	1.2	0	0.59	0.765
0.606	0	0.0082	0	0	0.27	1.7	1.97	WWC-4	16.85	7.43	-8	3.63	1.2	0.85	2.32
1.4	0	0.0119	0.00363	0	0.42	0.85	1.27	WWC-5	17.35	7.01	15	7.44	1	0.78	4.69
								WWC-6							
								WWC-7							

Field Results

Round 4 Detection Monitoring - August 22-September 1, 2016

													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	0	54.8	424	1.03	7.63	124	1030	0	0.0301	0.0911	0	0	0	0	0	0.375	0	0.00428	0	0	0.36	0.44	0.8
CL-U-2	0	57.7	406	1.17	7.69	113	948	0	0.0265	0.0961	0	0	0.00227	0	0	0.351	0	0.00508	0	0	0.31	1.1	1.41
CLW-1	0	35	315	1.18	7.89	65.4	832	0	0.0279	0.0594	0	0	0	0	0	0.316	0	0.00454	0	0	0.52	0.86	1.38
CLW-2	0	46.8	424	1.29	7.75	89.2	992	0	0.0284	0.0823	0	0	0	0	0	0.391	0	0.00462	0	0	0.31	0.62	0.93
CLW-3	0	38.7	349	1.33	7.75	109	896	0	0.0412	0.0995	0	0	0	0	0	0.368	0	0.00472	0	0	0.3	0.15	0.45
CLW-4	0	32.1	318	1.53	7.81	84.5	808	0	0.0316	0.104	0	0	0	0	0	0.336	0	0.00577	0	0	0.39	0.62	1.01
CLW-5	0	34.3	350	1.83	7.75	92.1	860	0	0.0189	0.0803	0	0	0	0	0	0.346	0	0.00798	0	0	0.24	0.27	0.51
CLW-6	0	31.5	331	1.73	7.84	77.1	812	0	0.0164	0.0966	0	0	0	0	0	0.342	0	0.011	0	0	0.2	1	1.2
CLW-7	0	42.1	336	1.1	7.71	70	760	0	0.024	0.0529	0	0	0	0	0	0.302	0	0.00396	0	0	0.17	0.33	0.5
CLW-8	0	40.1	327	1.08	7.73	75	720	0	0.0224	0.0761	0	0	0	0	0	0.308	0	0.00459	0	0	0.35	1	1.35
CLW-9					·				·														
CL-U-3																							

				1	Round 4			
					Field Resu	ults		
d	Landfill Wells							
k		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	CL-U-1	17.53	7.66	-180	1.84	4.1	1.72	1.18
	CL-U-2	19.27	7.65	-151	1.81	0	9.25	1.16
	CLW-1	18.96	7.85	34	1.55	0	5.66	0.992
	CLW-2	19.41	7.7	-177	1.81	0	10.68	1.16
	CLW-3	19.1	7.74	-225	1.66	0	10.74	1.07
	CLW-4	21.52	7.8	-244	1.54	0	5.07	0.985
	CLW-5	20.36	7.74	-195	1.67	45.2	9.17	1.07
	CLW-6	18.53	7.79	-235	1.61	0	4.22	1.03
	CLW-7	19.86	7.62	-71	1.57	0.01	12.06	1.01
	CLW-8	20.81	7.7	-78	1.53	0	5.02	0.976
	CLW-9							
	CL-U-3							
	CL-U-3							

													Results										
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	0	180	1170	0.888	7.62	327	2390	0	0.0191	0.0802	0	0	0	0	0	0.684	0	0.00386	0.00384	0	0.45	0.84	1.29
BA-U-2	0	10.4	317	0.975	11.8	39.9	748	0	0.00225	0.114	0	0	0.00216	0	0	0.337	0	0.0147	0	0	0.26	1.1	1.36
BAC-1	4.95	221	2520	0.401	7.52	2380	7210	0	0.0146	0.0643	0	0	0.0028	0	0	1.42	0	0.0603	0.0148	0	0.63	0.64	1.27
BAC-2	10.5	203	1640	1.03	7.22	3180	7620	0	0.0431	0.0237	0	0	0.0081	0	0	1.17	0	0.166	0.0136	0	0.33	0.23	0.56
BAC-3	6.77	399	3350	1.28	7.36	4630	11700	0	0.0213	0.0436	0	0	0.00386	0	0	2.37	0	0.0294	0.019	0	0.38	0.76	1.14
BAC-4	0	56.1	498	1.35	7.62	210	1460	0	0.0358	0.0757	0	0	0	0	0	0.508	0	0.0103	0	0	0.19	0.83	1.02
BAC-5	0	49.4	561	1.25	7.68	127	1200	0	0.0331	0.0879	0	0	0	0	0	0.538	0	0.0077	0	0	0.1	0.46	0.56
BAC-6	1.38	80.2	546	0.901	7.61	502	1540	0	0.0115	0.0781	0	0.000677	0.00283	0	0	0.54	0	0.034	0	0	0.31	0.24	0.55
BAC-7	3.96	126	612	1.28	7.68	1370	2770	0	0.0232	0.0274	0	0	0	0	0	0.669	0	0.0942	0.00257	0	0.37	-0.17	0.2

				Field Resu	ults		
Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	20.11	7.46	-160	4.24	0	3.38	2.72
BA-U-2	17.77	11.83	-224	2.11	9.1	8.94	1.35
BAC-1	22.39	7.33	10	11.8	8.7	2.54	7.3
BAC-2	21.36	7.04	0	10200	0	2.17	6.33
BAC-3	22.52	7.22	34	15.4	0	2.18	9.58
BAC-4	19.45	7.62	-94	2350	0	11.45	1.51
BAC-5	19.21	7.62	-96	2340	0	10.71	1.5
BAC-6	19.95	7.59	9	2650	0	24.99	1.7
BAC-7	19.38	7.56	-77	4270	0	2.75	2.73

													Results										
Waste Water																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
SI-U-1	0	131	922	0.564	7.57	281	1880	0	0.00926	0.0858	0	0	0.00217	0	0	0.467	0	0.00295	0	0	0.45	0.96	1.41
WW-U-1	1.25	304	2200	0.327	7.21	1280	5270	0	0.00439	0.0916	0	0	0.00337	0	0	1.01	0	0.00835	0.00689	0	0.54	2	2.54
WW-U-2	0.641	308	2140	0.614	7.42	854	4550	0	0.00258	0.117	0	0	0.00424	0	0	0.994	0	0.0342	0.00617	0	0.82	1.6	2.42
WWC-1	10.2	457	4680	0.213	7.11	3130	12100	0	0.02	0.0335	0	0	0	0	0	2.41	0.00019	0.00966	0.0145	0	0.33	0.86	1.19
WWC-2	0	57.9	389	0.508	7.86	151	960	0	0.0152	0.0406	0	0	0	0	0	0.243	0	0.0034	0	0	0.69	1.2	1.89
WWC-3	0	27.3	220	1.03	8.02	78	628	0	0.0217	0.0342	0	0	0	0	0	0.241	0	0.00559	0	0	0.2	-0.34	-0.14
WWC-4	1.17	225	1330	0.422	7.37	868	3230	0	0.0131	0.065	0	0	0	0	0	0.879	0	0.00237	0.00238	0	0.27	0.48	0.75
WWC-5	2.87	326	1920	0.366	7.18	1700	5440	0	0.00717	0.0439	0	0	0	0	0	1.33	0	0.00742	0.00312	0	0.41	0.51	0.92
WWC-6																							
WWC-7																							
Posults holow ro			l 1 0	•	•	•		•	•			•	•		•	•				•			

				Field Resu	ults		
Waste Water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	21.31	7.57	-21	3.25	1.6	14.7	2.08
WW-U-1	20.96	7.12	34	8.06	10.9	3.52	5.08
WW-U-2	19.51	7.41	-63	7.34	4.7	8.24	4.62
WWC-1	20.69	6.94	-34	18400	0	0.54	11.4
WWC-2	17.91	7.64	-153	1720	2.6	3.57	1.1
WWC-3	17.39	7.97	-176	1200	0	0.54	0.766
WWC-4	17.14	7.22	-68	5320	0	2.25	3.35
WWC-5	17.85	7.01	-89	7790	0.9	0.59	4.91
WWC-6						·	
WWC-7							

Round 5 Detection Monitoring - October 17-26, 2016

													Results										
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	0	57.4	424	0.959	7.7	115	912	0	0.037	0.089	0	0	0	0	0	0.217	0	0.00404	0	0	0.25	0.18	0.43
CL-U-2	0	59.5	395	0.99	7.73	113	864	0	0.0269	0.101	0	0	0	0	0	0.206	0	0.00401	0	0	0.36	0.84	1.2
CLW-1	0	38.9	325	1.15	7.8	67.8	824	0	0.0295	0.0668	0	0	0	0	0	0.189	0	0.0043	0	0	0.27	0.19	0.46
CLW-2	0	49.2	422	1.13	7.82	85.3	984	0	0.0258	0.0855	0	0	0	0	0	0.223	0	0.00456	0	0	0.31	0.34	0.65
CLW-3	0	40.8	366	1.19	7.83	100	944	0	0.0412	0.104	0	0	0	0	0	0.214	0	0.00508	0	0	0.35	0.13	0.48
CLW-4	0	34.6	335	1.39	7.84	85.9	828	0	0.0385	0.0932	0	0	0	0	0	0.203	0	0.00414	0	0	0.59	-0.37	0.22
CLW-5	0	35.3	339	1.69	7.89	82.1	928	0	0.0206	0.0812	0	0	0	0	0	0.204	0	0.00723	0	0	0.31	0.84	1.15
CLW-6	0	33.9	325	1.46	7.85	77.9	972	0	0.0287	0.0908	0	0	0	0	0	0.203	0	0.00638	0	0	0.35	0.18	0.53
CLW-7	0	42.8	343	1.14	7.9	68.6	796	0	0.0235	0.0551	0	0	0.00234	0	0	0.182	0	0.00413	0	0	0.27	0.32	0.59
CLW-8	0	41.7	334	1.11	7.77	68.9	744	0	0.0258	0.0797	0	0	0	0	0	0.189	0	0.00428	0	0	0.37	-0.28	0.09
CLW-9													_										
CL-U-3																							

				1	Round 5			
					Field Resu	ılts		
and	Landfill Wells	•		DEDOV		T AND CAPTURA		TDS
ed		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	CL-U-1	16.15	7.72	-195	1900	0.7	2.79	1.22
	CL-U-2	16.89	7.67	-102	1820	0.4	0.82	1.17
	CLW-1	16.85	7.77	-50	1520	2	1.57	0.974
	CLW-2	17.05	7.76	-202	1900	0.4	3.82	1.21
	CLW-3	15.28	7.75	-231	1720	1.8	1.29	1.1
	CLW-4	14.67	7.78	-235	1620	7	1.4	1.04
	CLW-5	17.4	7.71	-209	1690	8.1	1.41	1.08
	CLW-6	15.85	7.83	-249	1620	1.1	1.72	1.04
	CLW-7	17.42	7.7	-73	564	0	13.65	0.361
	CLW-8	17.18	7.7	-100	1530	2.2	1.03	0.978
	CLW-9							
	CL-U-3		·					

													Results										
Bottom Ash	Boron	Calcium	Chloride	Fluoride	Нq	Sulfate	TDS	Antimony	Arsenic	Barium	Baryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Salanium	Thallium	Radium 226	Radium 228	Radium 226 and 228 combined
BA-U-1	0	16.7	327	1.65	9.08	60.2	832	0	0.0362	0.0679	0	0	0	0	0	0.215	0	0.0163	0	0	0.67	0.13	
BA-U-2	0	38.1	357	1.02	8.56	51.9	824	0	0.0234	0.131	0	0	0	0	0	0.21	0	0.00449	0	0	0.57	0.42	
BAC-1	3.42	131	1850	0.437	8.8	1610	7720	0	0.0103	0.049	0	0	0.00612	0	0	0.402	0	0.0498	0.00852	0	0.34	0.27	0.61
BAC-2	9.71	216	1620	1.11	7.34	2980	7040	0	0.0444	0.0228	0	0	0.00644	0	0	0.414	0	0.165	0.0131	0	0.25	-0.03	0.22
BAC-3	7.04	401	3160	0.76	7.39	4260	11400	0	0.0226	0.0404	0	0	0.00362	0	0	0.812	0	0.0275	0.0195	0	0.24	0.14	0.38
BAC-4	0	59.2	534	1.34	7.8	222	1230	0	0.0352	0.0723	0	0	0.00212	0	0	0.243	0	0.00992	0	0	0.09	0.4	0.49
BAC-5	0	40.5	479	1.33	7.85	110	1070	0	0.0359	0.0909	0	0	0	0	0	0.219	0	0.00715	0	0	0.2	-0.01	0.19
BAC-6	4.35	133	606	0.97	7.61	1080	2620	0	0.022	0.0287	0	0	0.00257	0	0	0.266	0	0.0858	0.00369	0	0.13	0.69	0.82
BAC-7	3.97	135	628	1.42	7.69	1340	2880	0	0.0241	0.026	0	0	0.00217	0	0	0.279	0	0.0944	0.00279	0	0.26	1.1	1.36

				Field Resi	ults		
Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	16.41	9.07	6	1660	3.2	1.88	1.06
BA-U-2	16.67	8.77	-318	1600	1.7	1.76	1.03
BAC-1	18.66	7.57	-144	8800	7.7	0.55	6.19
BAC-2	19.51	7.01	-2	10200	0.6	0.46	6.34
BAC-3	18.63	7.15	2	16700	20	4.99	10.4
BAC-4	16.35	7.72	-120	0.859	3	4.2	0.55
BAC-5	16.43	7.85	-64	726	1.4	12.41	0.464
BAC-6	16.07	7.62	-86	1370	11.4	1.77	0.879
BAC-7	16.64	7.59	-67	1560	4.6	12.42	0.998

													Results										
Waste Water	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	Radium 226 and 228 combined
SI-U-1	0	132	863	0.514	7.52	286	1850	0	0.00895	0.0871	0	0	0	0	0	0.254	0	0.00276	0	0	0.32	0.11	0.43
WW-U-1	1.23	348	2190	0.346	7.18	1230	5370	0	0.0041	0.0771	0	0	0.00538	0	0	0.479	0	0.00891	0.00579	0	0.73	0.17	0.9
WW-U-2	1.47	383	2340	0.416	7.22	1120	5540	0	0.00573	0.0704	0	0	0.00396	0	0	0.512	0	0.0111	0.0116	0	0.78	0.46	1.24
WWC-1	9.83	513	4540	0.133	7.04	2960	12500	0	0.0197	0.0317	0	0	0.00348	0	0	0.819	0.000198	0.00936	0.0153	0	0.23	0.73	0.96
WWC-2	0	58.5	369	0.42	7.88	140	960	0	0.0129	0.0543	0	0	0.0243	0	0	0.112	0	0.00809	0	0	0.1	0.45	0.55
WWC-3	0	27.7	224	1.08	8.01	86.1	612	0	0.0218	0.0332	0	0	0	0	0	0.123	0	0.00543	0	0	0.07	0.1	0.17
WWC-4	1.19	227	1200	0.509	7.32	763	3200	0	0.0136	0.0629	0	0	0	0	0	0.351	0	0.00222	0.00216	0	0.08	0.75	0.83
WWC-5	3.02	343	1850	0.401	0.71	1570	5300	0	0.00778	0.0389	0	0	0.00238	0	0	0.497	0	0.00498	0.0041	0	0.43	1.1	1.53
WWC-6																							
WWC-7																							

				Field Resu	ults		
Waste Water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	16.62	7.47	-22	3370	1	9	2.16
WW-U-1	17.72	6.99	7	8330	3	1.89	5.25
WW-U-2	17.84	7.19	-10	8400	2.6	1.89	5.29
WWC-1	15.78	6.93	-22	18600	0	0.51	11.6
WWC-2	15.91	7.75	-210	1680	6	1.08	1.07
WWC-3	16.26	7.94	-166	1210	0	0.24	0.772
WWC-4	16.51	7.22	-41	5140	0.2	1.09	3.24
WWC-5	15.83	7.02	-87	7930	0.2	0.37	4.99
WWC-6							
WWC-7							

Round 6 Detection Monitoring - March 20-30, 2017

													Results												
Landfill Wells													Resures										Radium 226 and	Landfill Wells	
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Т
CL-U-1	0	57.1	403	0.876	7.83	113	908	0	0.0322	0.0867	0	0	0	0	0	0.214	0	0.00365	0	0	0.62	0.22	0.62	CL-U-1	1
CL-U-2	0	61.2	374	0.903	7.89	110	852	0	0.0272	0.0976	0	0	0	0	0	0.208	0	0.00386	0	0	0.4	0.39	0.4	CL-U-2	1
CLW-1	0	38.4	295	1.05	7.83	62.4	768	0	0.0309	0.0631	0	0	0.0187	0	0	0.185	0	0.00654	0	0	0.41	0.78	1.2	CLW-1	1
CLW-2	0	49.7	377	1.07	7.85	92.9	936	0	0.0277	0.0811	0	0	0	0	0	0.219	0	0.00437	0	0	0.31	0.72	1	CLW-2	1
CLW-3	0	42.4	333	1.23	7.87	94.4	876	0	0.0423	0.103	0	0	0	0	0	0.214	0	0.00473	0	0	0.35	0.7	1.1	CLW-3	1
CLW-4	0	35.2	306	1.27	8.02	79.1	808	0	0.0388	0.0898	0	0	0	0	0	0.202	0	0.00439	0	0	0.39	0.12	0.39	CLW-4	1
CLW-5	0	36	320	1.71	7.88	79.9	748	0	0.0216	0.0801	0	0	0.00214	0	0	0.025	0	0.00666	0	0	0.4	0.38	0.4	CLW-5	1
CLW-6	0	33.4	302	1.48	7.91	66	752	0	0.0164	0.0976	0	0	0	0	0	0.193	0	0.00805	0	0	0.25	-0.35	0.25	CLW-6	1
CLW-7	0	46.4	312	1.02	7.68	61	824	0	0.0257	0.0545	0	0	0.00772	0	0	0.182	0	0.00425	0	0	0.14	0.18	0.14	CLW-7	1
CLW-8	0	42.8	301	1.03	7.71	63.8	772	0	0.0255	0.0707	0	0	0.012	0	0	0.189	0	0.00526	0	0	0.25	0.29	0.25	CLW-8	1
CLW-9																								CLW-9	
CL-U-3																								CL-U-3	

					Round 6			
					Field Resu	ults		
nd	Landfill Wells							
d		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	CL-U-1	17.27	7.52	-194	957	4.2	2.53	0.613
	CL-U-2	15.81	7.48	-139	929	0	10.45	0.598
	CLW-1	14.45	7.6	-173	1540	0	5.98	0.984
	CLW-2	16.63	7.58	-221	950	0	9.29	0.609
	CLW-3	16.58	7.66	-235	840	0	10.64	0.539
	CLW-4	16.67	7.68	-253	785	0	2.14	0.502
	CLW-5	16.63	7.6	-222	834	0	2.29	0.534
	CLW-6	15.51	7.65	-245	790	0	8.85	0.505
	CLW-7	15.48	7.52	-150	1600	0	1.94	1.02
	CLW-8	15.08	7.57	-159	1550	0	1.55	0.991
	CLW-9							
	CL-U-3							
-				•				

													Results										
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	0	24.5	259	1.57	8.59	48.8	648	0	0.0359	0.0856	0	0	0	0	0	0.193	0	0.0124	0	0	0.28	0.15	0.28
BA-U-2	0	3.76	328	0.886	12.1	39.2	728	0	0.00254	0.122	0	0	0	0	0	0.221	0	0.00986	0	0	0.3	0.47	0.3
BAC-1	4.01	188	2170	0	7.47	1650	6320	0	0.0202	0.279	0	0	0.0412	0	0	0.429	0	0.0391	0.0152	0	1.1	1.5	2.6
BAC-2	10.5	193	1480	0.871	7.2	2780	7320	0	0.0469	0.022	0	0	0.0145	0	0	0.44	0	0.194	0.0144	0	0.34	0.22	0.56
BAC-3	7.57	408	3140	0	7.36	4290	13000	0	0.0239	0.0376	0	0	0.00447	0	0	0.974	0	0.026	0.0211	0	0.2	0.5	0.7
BAC-4	0	59	461	1.13	7.68	206	1260	0	0.0362	0.0705	0	0	0.011	0	0	0.237	0	0.012	0	0	0.13	0.18	0.13
BAC-5	0	59.5	576	0.994	7.73	190	1430	0	0.032	0.0893	0	0	0.00204	0	0	0.277	0	0.00666	0	0	0.21	0.24	0.45
BAC-6	4.44	128	594	0.763	7.6	1040	2500	0	0.0237	0.0269	0	0	0.00205	0	0	0.28	0	0.0873	0.0045	0	0.12	-0.21	-0.09
BAC-7	3.31	151	591	0.936	7.43	1140	3120	0	0.0237	0.0253	0	0	0	0	0	0.327	0	0.0702	0.007	0	0.21	0.7	0.91

					Field Resu	ults		
d d	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	BA-U-1	16.08	8.22	55	783	1.8	6.02	0.501
	BA-U-2	17.77	11.71	-250	2120	1.9	7.87	1.36
	BAC-1	16.44	7.24	-131	9640	11.2	2.14	6.07
	BAC-2	15.89	6.86	-53	10400	0.1	0.6	6.44
	BAC-3	15.61	7.1	-44	18000	3.4	0.5	11.2
	BAC-4	14.42	7.58	-165	2400	0	2.76	1.53
	BAC-5	15.18	7.53	-155	2550	0.1	0.57	1.63
	BAC-6	16.07	7.42	-115	4030	0	0.32	2.58
	BAC-7	16.54	7.34	-124	4780	1.5	0.38	3.06

													Results										
Waste Water																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
SI-U-1	0	131	785	0.458	7.54	247	1760	0	0.00941	0.08	0	0	0	0	0	0.25	0	0.00227	0	0	0.33	0.24	0.33
WW-U-1	1.15	336	1880	0.2	7.26	1180	4890	0	0.00593	0.0568	0	0	0	0	0	0.477	0	0.00558	0.00583	0	0.53	0.89	1.42
WW-U-2	0.6	317	1860	0.438	7.38	734	4300	0	0.00355	0.095	0	0	0	0	0	0.479	0	0.021	0.00749	0	0.51	1.6	2.11
WWC-1	11.2	479	4510	0	6.98	2940	12200	0	0.0213	0.0288	0	0	0	0	0	0.932	0.000328	0.00995	0.0149	0	0.26	1.1	1.36
WWC-2	0	52	318	0.405	7.79	125	856	0	0.0149	0.0361	0	0	0	0	0	0.122	0	0.00357	0	0	0.17	0.61	0.78
WWC-3	0	25.7	195	0.852	8.13	76	680	0	0.0227	0.0302	0	0	0.00309	0	0	0.137	0	0.00537	0	0	0.24	-0.21	0.03
WWC-4	1.3	233	1250	0.319	7.38	819	3230	0	0.0135	0.061	0	0	0	0	0	0.382	0	0	0.00239	0	0.18	-0.2	-0.02
WWC-5	1.72	318	1520	0.292	7.13	1190	4560	0	0.01	0.0501	0	0	0	0	0	0.555	0	0.00523	0.00399	0	0.23	0.95	1.18
WWC-6																							
WWC-7																							

				Field Resi	ults		
Waste Water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	17.03	7.37	-45	3340	1.1	8.42	2.14
WW-U-1	18.15	6.96	-57	7980	11.5	1.02	5.02
WW-U-2	17.03	7.29	-15	7470	2.3	1.36	4.71
WWC-1	15.08	6.74	-32	19700	0.3	1.8	12.2
WWC-2	15.4	7.75	-134	1650	1	0.44	1.06
WWC-3	15.31	8.09	207	1230	1.2	0.22	0.784
WWC-4	15.85	7.18	-70	5390	0.5	3.15	3.39
WWC-5	16.2	6.84	-61	7180	0	0.62	4.52
WWC-6							
WWC-7							·

Round 7 Detection Monitoring - June 5-21, 2017

													Results	,									
Landfill Wells																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
CL-U-1	0	53	480	0.996	7.74	132	1010	0	0.0344	0.0826	0	0.00065	0	0	0	0.202	0	0.00402	0	0	0.36	0.95	1.31
CL-U-2	0	55.1	444	1	7.8	134	952	0	0.0247	0.0938	0	0	0	0	0	0.19	0	0.00408	0	0	2.7	1	3.7
CLW-1	0	36.4	322	1.06	7.85	68.2	772	0	0.0289	0.0615	0	0	0	0	0	0.173	0	0.00389	0	0	0.2	0.14	0.34
CLW-2	0	44.7	436	1.19	7.83	102	964	0	0.0246	0.0754	0	0	0.00411	0	0	0.211	0	0.00461	0	0	0.24	1	1.24
CLW-3	0	37.3	380	1.23	7.85	106	856	0	0.0378	0.0951	0	0	0	0	0	0.197	0	0.00498	0	0	0.27	0.29	0.56
CLW-4	0	30.6	345	1.44	7.89	86.3	816	0	0.0352	0.0885	0	0	0	0	0	0.189	0	0.00481	0	0	0.29	0.3	0.59
CLW-5	0	32.4	358	1.82	7.86	91.6	860	0	0.0203	0.0732	0	0	0	0	0	0.188	0	0.00572	0	0	1.4	1.2	2.6
CLW-6	0	31	336	1.61	7.9	77.5	768	0	0.02	0.0893	0	0	0	0	0	0	0.183	0	0.0068	0	0.01	0.5	0.51
CLW-7	0	41.5	352	1.01	7.88	70.4	832	0	0.0241	0.0514	0	0	0	0	0	0.169	0	0.0033	0	0	0.14	0.75	0.89
CLW-8	0	38.4	339	1.02	7.81	73.1	812	0	0.0239	0.0681	0	0	0	0	0	0.176	0	0.00391	0	0	0.18	0.81	0.99
CLW-9																							
CL-U-3																							
CL-U-3																							

					Round 7			
					Field Resu	ults		
d	Landfill Wells							
		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	CL-U-1	16.35	7.59	-206	1920	0	1.51	1.23
	CL-U-2	15.98	7.5	-177	1860	0	1.62	1.19
	CLW-1	18.47	7.79	-160	768	0	0.9	0.491
	CLW-2	16.77	7.73	-210	945	0	1.52	0.605
	CLW-3	17.35	7.78	-246	879	0	213	0.562
	CLW-4	17.86	7.75	-252	1580	0	4.35	1.01
	CLW-5	18.97	7.66	-232	1680	0	2.65	1.08
	CLW-6	16.95	7.75	-258	1590	0	5.1	1.02
	CLW-7	18.07	7.7	-131	805	0	2.21	0.516
	CLW-8	17.59	7.74	-130	776	0	1.58	0.497
	CLW-9							
	CL-U-3							

													Results										
Bottom Ash																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
BA-U-1	0	26.3	317	1.75	8.32	52.9	776	0	0.0323	0.0901	0	0	0	0	0	0.191	0	0.0109	0	0	0.15	0.73	0.88
BA-U-2	0	3.58	366	0.821	11.8	39.6	748	0	0	0.0899	0	0	0	0	0	0.215	0	0.0086	0	0	0.09	0.98	1.07
BAC-1	1.91	88.7	914	0.266	8.92	702	2920	0	0.0145	0.0563	0	0	0.00666	0	0	0.305	0	0.0317	0.00643	0	0.2	0.99	1.19
BAC-2	10.6	216	1730	0	7.21	3260	7720	0	0.042	0.0211	0	0	0.00799	0	0	0.586	0	0.177	0.0138	0	0.14	0.64	0.78
BAC-3	7.76	401	3510	0	7.29	4900	13200	0	0.0251	0.0316	0	0	0.00858	0	0	1.17	0	0.0292	0.0212	0	0.3	0.76	1.06
BAC-4	0	56.1	612	1.13	7.84	212	1220	0	0.0329	0.0666	0	0	0	0	0	0.228	0	0.0113	0	0	0.37	0.47	0.84
BAC-5	0	58.3	654	1.1	7.76	217	1180	0	0.0297	0.0881	0	0	0	0	0	0.259	0	0.00728	0	0	0.31	0.28	0.59
BAC-6	4.25	135	697	0.779	7.63	1110	2810	0	0.0229	0.0256	0	0	0	0	0	0.257	0	0.0921	0.00414	0	0.24	0.76	1
BAC-7	3.4	146	632	0.864	7.78	1290	3170	0	0.0154	0.0288	0	0	0.00398	0	0	0.36	0	0.0888	0.00457	0	2.5	0.88	3.38

					Field Resu	ults		
	Bottom Ash	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
	BA-U-1	18.46	8.13	-138	1500	0	2.32	0.963
	BA-U-2	19.9	11.43	-301	1870	0	0.58	1.2
	BAC-1	22.57	9.92	-118	5180	15.6	2.32	3.27
	BAC-2	19.02	7.09	-80	10900	2.2	0.84	6.76
	BAC-3	18.87	7.1	-69	17800	3.2	1.02	11
	BAC-4	17.01	7.62	-158	2380	0	1.61	1.52
	BAC-5	17.31	7.69	-131	2560	0	2.62	1.64
	BAC-6	19.46	7.59	-128	3900	35.2	0.85	2.5
1	BAC-7	17.97	7.5	-147	4610	2.9	1.16	2.95

													Results										
Waste Water																							Radium 226 and
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined
SI-U-1	0	116	763	0.522	7.56	427	1800	0	0.0101	0.0599	0	0.00128	0.00274	0	0	0.235	0	0.00233	0	0	0.2	1.3	1.5
WW-U-1	1.18	312	2340	0.181	7.41	1450	4540	0	0.00568	0.0521	0	0	0.00212	0	0	0.441	0	0.00556	0.00625	0	1.2	1.5	2.7
WW-U-2	0.741	338	2590	0.287	7.36	1040	12500	0	0.00325	0.0803	0	0	0.067	0	0	0.512	0	0.0226	0.00846	0	0.52	1.6	2.12
WWC-1	9.88	413	4410	0	7.14	2770	11000	0	0.0173	0.0326	0	0	0	0	0	1.11	0.000175	0.0147	0.0147	0	0.39	1.5	1.89
WWC-2	0	49.5	326	0.447	7.85	134	832	0	0.0141	0.0339	0	0	0	0	0	0.138	0	0.00405	0	0	0.24	0.24	0.48
WWC-3	0	25.9	220	0.974	8.12	84.3	696	0	0.0214	0.0281	0	0	0	0	0	0.146	0	0.00504	0	0	0.1	0.45	0.55
WWC-4	1.33	229	1330	0.466	7.22	912	3060	0	0.013	0.0545	0	0	0	0	0	0.421	0	0	0.00241	0	0.22	0.74	0.96
WWC-5	2.25	287	1790	0	7.49	1420	4810	0	0.00753	0.0379	0	0	0.00202	0	0	0.567	0	0.00531	0.00336	0	0.2	1.5	1.7
WWC-6																							
WWC-7																							

				Field Resi	ults		
Waste Water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	17.96	7.27	-138	3170	0	0.57	2.03
WW-U-1	18.63	6.87	-32	8050	0	1	5.07
WW-U-2	18.21	7.22	-161	7610	0	0.91	4.79
WWC-1	16.96	6.95	-34	15200	0.1	0.67	9.48
WWC-2	16.11	7.72	-169	1500	1.3	0.94	0.96
WWC-3	16.94	7.99	-194	1210	0.7	0.63	0.773
WWC-4	16.15	7.16	-73	5.48	0.5	0.6	3.46
WWC-5	16.54	7.01	-42	7225	0.9	0.76	4.57
WWC-6							
WWC-7							

laissee Chil												October 4,													•	Round 8			
											Results															Field Resu	ılts		
-: Clai																					Radium 226 and	Landfill Wells							
lcium Chl	oride Flu	oride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226 Ra	adium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
52.1 4	22 1	L.07	7.73	116	1130	0	0.0291	0.088	0	0	0	0	0	0.228	0	0.00398	0	0	0.25	1.6	1.85	CL-U-1	16.07	7.45	-199	1930	0.4	0.56	1.24
3.8	90 :	1.1	7.67	120	1060	0	0.0262	0.0941	0	0	0	0	0	0.212	0	0.00415	0	0	0.17	1.4	1.57	CL-U-2	15.67	7.43	-176	1880	0.8	0.58	1.2
35.7 3	10 1	1.15	7.85	71.7	808	0	0.0308	0.0614	0	0	0	0	0	0.192	0	0.00407	0	0	0.21	1.7	1.91	CLW-1	20.49	7.68	-172	1.48	0	0.41	0.949
3.5 4	07 1	23	7.76	97.3	1040	0	0.0257	0.0793	0	0	0	0	0	0.229	0	0.00467	0	0	0.12	3	3.12	CLW-2	16.63	7.63	-199	1880	0.7	0.64	1.2
36.2 3	47 1	L.34	7.8	100	884	0	0.0408	0.102	0	0	0	0	0	0.223	0	0.00474	0	0	0.16	1.1	1.26	CLW-3	16.82	7.59	-251	1750	1.5	2.9	1.12
30.5	13	1.6	7.81	85.1	856	0	0.0333	0.09	0	0	0.0516	0	0	0.199	0	0.0115	0	0	0.24	1.8	2.04	CLW-4	17.63	7.56	-269	1620	1.6	1.56	1.03
33.2 3	44 1	.82	7.8	88.5	824	0	0.023	0.0727	0	0	0	0	0	0.211	0	0.0052	0	0	0.2	2.2	2.4	CLW-5	17.21	7.71	-244	1690	3.7	1.12	1.09
30.5	17 1	L.73	7.82	74.5	828	0	0.0143	0.0961	0	0	0	0	0	0.199	0	0.00721	0	0	0.29	1.7	1.99	CLW-6	15.97	7.75	-259	1.6	2.3	3.3	1.02
5.5 3	19 1	.11	7.7	64.5	868	0	0.0244	0.0539	0	0	0	0	0	0.189	0	0.00389	0	0	0.45	0.95	1.4	CLW-7	16.72	7.59	-147	1640	0	0.86	1.05
37.9 3	19 1	13	7.77	70.6	788	0	0.0252	0.0689	0	0	0	0	0	0.192	0	0.00431	0	0	0.25	1.6	1.85	CLW-8	18.26	7.65	-145	1.53	1.1	1.89	0.975
																						CLW-9						1	
																						CL-U-3							
35 35 36 36 36	3.8 3 5.7 3 3.5 4 5.2 3 0.5 3 3.2 3 0.5 3 5.5 3	3.8 390 5.7 310 1 3.5 407 1 5.2 347 1 0.5 313 3.2 344 1 0.5 317 1 5.5 319 1	3.8 390 1.1 5.7 310 1.15 3.5 407 1.23 5.2 347 1.34 0.5 313 1.6 3.2 344 1.82 0.5 317 1.73 5.5 319 1.11	3.8 390 1.1 7.67 5.7 310 1.15 7.85 3.5 407 1.23 7.76 5.2 347 1.34 7.8 0.5 313 1.6 7.81 3.2 344 1.82 7.8 0.5 317 1.73 7.82 5.5 319 1.11 7.7	3.8 390 1.1 7.67 120 5.7 310 1.15 7.85 71.7 3.5 407 1.23 7.76 97.3 5.2 347 1.34 7.8 100 0.5 313 1.6 7.81 85.1 3.2 344 1.82 7.8 88.5 0.5 317 1.73 7.82 74.5 5.5 319 1.11 7.7 64.5	3.8 390 1.1 7.67 120 1060 5.7 310 1.15 7.85 71.7 808 3.5 407 1.23 7.76 97.3 1040 5.2 347 1.34 7.8 100 884 0.5 313 1.6 7.81 85.1 856 3.2 344 1.82 7.8 88.5 824 0.5 317 1.73 7.82 74.5 828 5.5 319 1.11 7.7 64.5 868	3.8 390 1.1 7.67 120 1060 0 5.7 310 1.15 7.85 71.7 808 0 3.5 407 1.23 7.76 97.3 1040 0 5.2 347 1.34 7.8 100 884 0 0.5 313 1.6 7.81 85.1 856 0 3.2 344 1.82 7.8 88.5 824 0 0.5 317 1.73 7.82 74.5 828 0 5.5 319 1.11 7.7 64.5 868 0	3.8 390 1.1 7.67 120 1060 0 0.0262 5.7 310 1.15 7.85 71.7 808 0 0.0308 3.5 407 1.23 7.76 97.3 1040 0 0.0257 5.2 347 1.34 7.8 100 884 0 0.0408 0.5 313 1.6 7.81 85.1 856 0 0.0333 3.2 344 1.82 7.8 88.5 824 0 0.023 0.5 317 1.73 7.82 74.5 828 0 0.0143 5.5 319 1.11 7.7 64.5 868 0 0.0244	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0.5 317 1.73 7.82 74.5 828 0 0.0143 0.0961 5.5 319 1.11 7.7 64.5 868 0 0.0244 0.0539	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0.5 317 1.73 7.82 74.5 828 0 0.0143 0.0961 0 5.5 319 1.11 7.7 64.5 868 0 0.0244 0.0539 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0 0.5 317 1.73 7.82 74.5 828 0 0.0143 0.0961 0 0 5.5 319 1.11 7.7 64.5 868 0 0.0244 0.0539 0 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0 0 0.5 317 1.73 7.82 74.5 828 0 0.0143 0.0961 0 0 0 5.5 319 1.11 7.7 64.5 868	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0.212 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.199 0 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0 0 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 0.00407 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 0.00467 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.115 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 3.2 344 1.82 7.8 88.5 824 0 0.023</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.229 0 0.00467 0 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 5.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 0 3.2 344 1.82 7.8 88.5<td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0.16 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0.199 0 0.0115 0 0 <td< td=""><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 3 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0 0.11 1.1 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0<</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 0 0 0.17 1.4 1.57 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.0229 0 0.00467 0 0 0.12 3 3.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.223 0 0.00474 0 0 0 1.1 1.26 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 1.57 CL-U-2 6.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 CLW-1 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0.229 0 0.00467 0 0 0.12 3 3.12 CLW-2 6.2 347 1.34 7.8 100 884 0 0.0488 0.02 0 0 0 0.223 0 0.00474 0 0 0.16 1.1 1.26 CLW-3 0.5 313 1.6 7.81 85.1 856 0 0.</td><td>18.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0.017 1.4 1.57 CL-U-2 15.67 1.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0 0 0 0.0192 0 0.00407 0 0 0 0.17 1.4 1.57 CLW-1 20.49 1.55 1.7 1.7 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>1.1</td><td>1.</td><td>1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0.017 1.4 1.57</td><td>1.1</td><td>1.1</td></td<></td></td></td>	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0.212 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.199 0 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0 0 0 0</td> <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 0.00407 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 0.00467 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.115 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0</td> <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 3.2 344 1.82 7.8 88.5 824 0 0.023</td> <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.229 0 0.00467 0 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 5.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 0 3.2 344 1.82 7.8 88.5<td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0.16 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0.199 0 0.0115 0 0 <td< td=""><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 3 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0 0.11 1.1 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0<</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 0 0 0.17 1.4 1.57 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.0229 0 0.00467 0 0 0.12 3 3.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.223 0 0.00474 0 0 0 1.1 1.26 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 1.57 CL-U-2 6.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 CLW-1 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0.229 0 0.00467 0 0 0.12 3 3.12 CLW-2 6.2 347 1.34 7.8 100 884 0 0.0488 0.02 0 0 0 0.223 0 0.00474 0 0 0.16 1.1 1.26 CLW-3 0.5 313 1.6 7.81 85.1 856 0 0.</td><td>18.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0.017 1.4 1.57 CL-U-2 15.67 1.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0 0 0 0.0192 0 0.00407 0 0 0 0.17 1.4 1.57 CLW-1 20.49 1.55 1.7 1.7 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>1.1</td><td>1.</td><td>1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0.017 1.4 1.57</td><td>1.1</td><td>1.1</td></td<></td></td>	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0.212 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.199 0 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0 0 0 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0.192 0 0.00407 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0 0.229 0 0.00467 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.115 3.2 344 1.82 7.8 88.5 824 0 0.023 0.0727 0 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 3.2 344 1.82 7.8 88.5 824 0 0.023	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.229 0 0.00467 0 0 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 5.5 313 1.6 7.81 85.1 856 0 0.0333 0.09 0 0 0.0516 0 0 0.0115 0 0 3.2 344 1.82 7.8 88.5 <td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0.16 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0.199 0 0.0115 0 0 <td< td=""><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 3 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0 0.11 1.1 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0<</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 0 0 0.17 1.4 1.57 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.0229 0 0.00467 0 0 0.12 3 3.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.223 0 0.00474 0 0 0 1.1 1.26 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 1.57 CL-U-2 6.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 CLW-1 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0.229 0 0.00467 0 0 0.12 3 3.12 CLW-2 6.2 347 1.34 7.8 100 884 0 0.0488 0.02 0 0 0 0.223 0 0.00474 0 0 0.16 1.1 1.26 CLW-3 0.5 313 1.6 7.81 85.1 856 0 0.</td><td>18.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0.017 1.4 1.57 CL-U-2 15.67 1.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0 0 0 0.0192 0 0.00407 0 0 0 0.17 1.4 1.57 CLW-1 20.49 1.55 1.7 1.7 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>1.1</td><td>1.</td><td>1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0.017 1.4 1.57</td><td>1.1</td><td>1.1</td></td<></td>	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0.16 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0.199 0 0.0115 0 0 <td< td=""><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 3 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0 0.11 1.1 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0<</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 0 0 0.17 1.4 1.57 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.0229 0 0.00467 0 0 0.12 3 3.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.223 0 0.00474 0 0 0 1.1 1.26 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0</td><td>3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 1.57 CL-U-2 6.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 CLW-1 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0.229 0 0.00467 0 0 0.12 3 3.12 CLW-2 6.2 347 1.34 7.8 100 884 0 0.0488 0.02 0 0 0 0.223 0 0.00474 0 0 0.16 1.1 1.26 CLW-3 0.5 313 1.6 7.81 85.1 856 0 0.</td><td>18.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0.017 1.4 1.57 CL-U-2 15.67 1.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0 0 0 0.0192 0 0.00407 0 0 0 0.17 1.4 1.57 CLW-1 20.49 1.55 1.7 1.7 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td><td>1.1</td><td>1.</td><td>1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0.017 1.4 1.57</td><td>1.1</td><td>1.1</td></td<>	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 3.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0 0.229 0 0.00467 0 0 0.12 3 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0 0.223 0 0.00474 0 0 0 0.11 1.1 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0 0 0<	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.0212 0 0.00415 0 0 0.17 1.4 1.57 5.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 3.5 407 1.23 7.76 97.3 1040 0 0.0793 0 0 0 0 0.0229 0 0.00467 0 0 0.12 3 3.12 5.2 347 1.34 7.8 100 884 0 0.0408 0.102 0 0 0 0.223 0 0.00474 0 0 0 1.1 1.26 0.5 313 1.6 7.81 85.1 856 0 0.023 0.0727 0 0	3.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0.212 0 0.00415 0 0 0.17 1.4 1.57 CL-U-2 6.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0.192 0 0.00407 0 0 0.21 1.7 1.91 CLW-1 8.5 407 1.23 7.76 97.3 1040 0 0.0257 0.0793 0 0 0 0.229 0 0.00467 0 0 0.12 3 3.12 CLW-2 6.2 347 1.34 7.8 100 884 0 0.0488 0.02 0 0 0 0.223 0 0.00474 0 0 0.16 1.1 1.26 CLW-3 0.5 313 1.6 7.81 85.1 856 0 0.	18.8 390 1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0.017 1.4 1.57 CL-U-2 15.67 1.7 310 1.15 7.85 71.7 808 0 0.0308 0.0614 0 0 0 0 0 0 0 0 0.0192 0 0.00407 0 0 0 0.17 1.4 1.57 CLW-1 20.49 1.55 1.7 1.7 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.1	1.	1.1 7.67 120 1060 0 0.0262 0.0941 0 0 0 0 0 0 0 0 0 0 0 0.017 1.4 1.57	1.1	1.1

													Results															Field Res	ults		
Bottom Ash																							Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0	169	1040	1.02	7.53	343	2310	0	0.0215	0.0745	0	0	0	0	0	0.368	0	0.00296	0.00375	0	0.07	1.3	1.37	BA-U-1	16.04	7.21	-166	4300	1.7	0.78	2.75
BA-U-2	0	46.3	479	0.993	8.04	53.7	1140	0	0.0249	0.156	0	0	0	0	0	0.241	0	0.00294	0	0	0.24	1.5	1.74	BA-U-2	16.58	8.07	-272	2030	0	1.63	1.3
BAC-1	4.86	229	2620	0.854	7.4	2150	8400	0	0.0148	0.702	0	0	0.114	0.00461	0	0.52	0	0.0467	0.0174	0	0.39	1.6	1.99	BAC-1	15.36	6.93	-28	7170	1	0.54	4.52
BAC-2	10.1	221	1690	1.33	7.62	2970	7940	0	0.0469	0.0202	0	0	0.00547	0	0	0.431	0	0.154	0.0149	0	0.11	0.14	0.25	BAC-2	16.95	6.92	-20	11500	2	0.9	7.11
BAC-3	8.76	353	3370	2.51	7.43	5340	12700	0	0.054	0.0306	0	0	0.0114	0	0	0.897	0	0.0525	0.0287	0	0.23	1.3	1.53	BAC-3	16.87	7.07	-102	18.7	43.3	0.94	11.6
BAC-4	0	62.4	482	1.26	7.76	231	1280	0	0.0359	0.0703	0	0	0	0	0	0.262	0	0.0139	0	0	0.1	2.5	2.6	BAC-4	16.67	7.68	-148	2470	1.1	0.62	1.58
BAC-5	0	67.5	593	1.17	7.74	269	1450	0	0.0325	0.0877	0	0	0	0	0	0.294	0	0.00838	0	0	0.26	2.7	2.96	BAC-5	16.66	7.71	-140	2740	0.8	1.12	1.75
BAC-6	0.978	77.2	516	1.01	7.97	301	1510	0	0.0156	0.0833	0	0	0	0	0	0.265	0	0.0213	0	0	0.27	3.8	4.07	BAC-6	17.02	7.83	-47	2610	0.9	2.54	1.67
BAC-7	3.41	144	633	1.15	7.65	1220	2990	0	0.0191	0.0223	0	0	0	0	0	0.285	0	0.074	0.00446	0	0.15	0.84	0.99	BAC-7	15.97	7.45	-121	4500	3.3	2.56	2.88

													Results											
Waste Water																							Radium 226 and	Waste Water
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined	
SI-U-1	0	110	820	0.618	7.55	263	1810	0.002	0.00969	0.0783	0	0	0	0	0	0.257	0	0.00251	0	0	0.44	0.56	1	SI-U-1
WW-U-1	1.2	311	2130	0.539	7.23	1280	5260	0	0.0055	0.0545	0	0	0.003309	0	0	0.459	0	0.00792	0.00697	0	0.34	1.2	1.54	WW-U-1
WW-U-2	1.66	314	2280	0.721	7.31	1220	5510	0	0.0104	0.0659	0	0	0.00415	0	0	0.485	0	0.00647	0.0122	0	0.24	1.3	1.54	WW-U-2
WWC-1	9.55	492	4430	0.507	7.37	2990	11500	0	0.0177	0.0272	0	0	0	0	0	0.755	0.000262	0.0068	0.014	0	0.26	1.2	1.46	WWC-1
WWC-2	0	53.6	347	0.452	7.78	137	936	0	0.0142	0.0361	0	0	0	0	0	0.112	0	0.00341	0	0	0.04	1.2	1.24	WWC-2
WWC-3	0	25.3	207	1.13	8.14	84	704	0	0.0207	0.0242	0	0	0	0	0	0.127	0	0.00477	0	0	0.08	2	2.08	WWC-3
WWC-4	1.11	201	1100	0.57	7.38	744	3280	0	0.0135	0.0529	0	0	0	0	0	0.313	0	0	0.00214	0	0.38	0.4	0.78	WWC-4
WWC-5	1.48	327	1620	0.544	7.16	1240	4590	0	0.0104	0.0438	0	0	0	0	0	0.496	0	0.00395	0.00407	0	0.41	0.65	1.06	WWC-5
WWC-6																								WWC-6
WWC-7																								WWC-7

·1	0	110	820	0.618	7.55	263	1810	0.002	0.00969	0.0783	0	0	0	0	0	0.257	0	0.00251	0	0	0.44	0.56	1	SI-U-1	17.02	7.36	-123	3490	0	1.25	2.24
-U-1	1.2	311	2130	0.539	7.23	1280	5260	0	0.0055	0.0545	0	0	0.003309	0	0	0.459	0	0.00792	0.00697	0	0.34	1.2	1.54	WW-U-1	16.41	6.96	-135	8820	0.7	1.56	5.56
-U-2	1.66	314	2280	0.721	7.31	1220	5510	0	0.0104	0.0659	0	0	0.00415	0	0	0.485	0	0.00647	0.0122	0	0.24	1.3	1.54	WW-U-2	16.68	7.09	-34	9.23	0.6	3.75	5.82
C-1	9.55	492	4430	0.507	7.37	2990	11500	0	0.0177	0.0272	0	0	0	0	0	0.755	0.000262	0.0068	0.014	0	0.26	1.2	1.46	WWC-1	16.21	6.78	48	18900	0.8	1.92	11.7
C-2	0	53.6	347	0.452	7.78	137	936	0	0.0142	0.0361	0	0	0	0	0	0.112	0	0.00341	0	0	0.04	1.2	1.24	WWC-2	16.38	7.64	-110	1740	1	2.87	1.12
C-3	0	25.3	207	1.13	8.14	84	704	0	0.0207	0.0242	0	0	0	0	0	0.127	0	0.00477	0	0	0.08	2	2.08	WWC-3	15.49	8.16	-207	1220	1.3	0.45	0.781
C-4	1.11	201	1100	0.57	7.38	744	3280	0	0.0135	0.0529	0	0	0	0	0	0.313	0	0	0.00214	0	0.38	0.4	0.78	WWC-4	16.11	7.17	-77	4980	1.2	0.46	3.19
C-5	1.48	327	1620	0.544	7.16	1240	4590	0	0.0104	0.0438	0	0	0	0	0	0.496	0	0.00395	0.00407	0	0.41	0.65	1.06	WWC-5	15.42	6.94	-31	7180	1.3	0.53	4.52
C-6																								WWC-6							,
C-7																								WWC-7							,
Its below re	porting limit	are record	led as 0.						-		•											•			•						

Field Results

REDOX Conductance Turbidity (NTUs)

TDS

										Ro	und 9 Assessn	nent Monit	oring - March	26-30, 2018														Round 9			
													Results													ı		Field Res	ults		
Landfill Wells																							Radium 226 and	Landfill Wells							
	Boron	1		Fluoride	рН	Sulfate	TDS	Antimony	_	Barium	Beryllium	Cadmium		Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	0	62.6	402	0.971	7.66	94.9	1090	0	0.0283	0.0758	0	0	0.000529	0	0	0.209	0	0.00359	0	0	0.18	0.81	0.99	CL-U-1	14.91	7.28	-193	1940	0.6	0.54	1.24
CL-U-2	0	64.1	352	0.895	7.65	92.7	980	0	0.0236	0.0873	0	0	0	0	0	0.194	0	0.00376	0	0	0.34	0.16	0.5	CL-U-2	14.84	7.24	-174	1890	0.2	0.67	1.21
CLW-1	0	37.8	318	1.02	7.67	59.5	720	0	0.0265	0.053	0	0	0.0271	0	0	0.179	0	0.0068	0	0	0.09	0.53	0.62	CLW-1	16.76	7.7	-186	1530	0.2	0.7	0.98
CLW-2	0	51.4	421	1.13	7.8	79.4	1020	0	0.0258	0.0711	0	0	0	0	0	0.212	0	0.00439	0	0	0.24	0.94	1.18	CLW-2	15.47	7.6	-204	1880	0.4	0.96	1.22
CLW-3	0	42.8	334	1.23	7.86	82.3	956	0	0.0364	0.089	0	0	0.000505	0	0	0.2	0	0.00464	0	0	0.37	0.94	1.31	CLW-3	16.64	7.49	-236	1720	0	1.61	1.1
CLW-4	0	35.8	301	1.35	7.77	70.4	864	0	0.0352	0.0788	0	0	0.000762	0	0	0.189	0	0.00477	0	0	0.46	0.59	1.05	CLW-4	16.15	7.51	-259	1610	0	2.2	1.03
CLW-5	0	37.4	354	1.71	7.66	79.9	876	0	0.021	0.0671	0	0	0.000712	0	0	0.194	0	0.0054	0	0	0.15	0.96	1.11	CLW-5	16.46	7.43	-239	1720	3	1	1.1
CLW-6	0	34.2	292	1.62	7.74	60.4	916	0	0.0104	0.0885	0	0	0.000612	0	0	0.182	0	0.00729	0	0	0.56	0.48	1.04	CLW-6	15.56	7.47	-250	1600	0.1	3.61	1.03
CLW-7	0	47	316	0.972	7.59	51.3	792	0	0.0215	0.0475	0		0	0	0	0.183	0	0.00341	0	0	0.28	0.22	0.5	CLW-7	18.88	7.52	-123	1570	0	1.89	1
CLW-8	0	44.1	303	0.981	7.63	54.2	792	0	0.0231	0.0609	0	0	0	0	0	0.188	0	0.00376	0	0	0.25	0.8	1.05	CLW-8	18.47	7.58	-129	1520	0	0.45	0.973
CLW-9																								CLW-9							
CL-U-3																								CL-U-3							
													Results															Field Res	ults		
Bottom Ash																							Radium 226 and	Bottom Ash							
	Boron	Calcium		Fluoride	рН	Sulfate	TDS	Antimony		Barium	Beryllium	Cadmium		Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1	0	33.5	296	1.64	8.05	50.7	872	0	0.0276	0.0837	0	0	0.00126	0	0	0.199	0	0.00914	0.0022	0	0.07	0.31	0.38	BA-U-1	15.13	7.78	-33	1600	0.6	3.82	1.02
BA-U-2	0	46.2	399	0.943	8.2	46.9	1080	0	0.0227	0.125	0	0	0	0	0	0.209	0	0.00311	0.000691	0	0.12	0.34	0.46	BA-U-2	16.14	8.65	-281	1750	0.2	0.25	1.12
BAC-1	3.88	192	1890	0.507	7.63	1470	6120	0.00138	0.0127	0.0501	0	0	0.00451	0	0	0.581	0	0.028	0.00924	0	0.31	0.48	0.79	BAC-1	16.99	7.23	-189	9190	8.1	0.52	5.79
BAC-2	9.89	283	1940	1.32	7.72	3070	8590	0	0.0508	0.0238	0	0	0.00777	0	0	0.524	0	0.142	0.0173	0	0.29	0.89	1.18	BAC-2	15.94	6.82	-77	12000	1.2	0.51	7.44
BAC-3	7.91	417	3480	1.62	7.84	4460	13000	0	0.0441	0.0331	0	0	0.00468	0	0	1.05	0	0.0396	0.0228	0	0.28	1.25	1.53	BAC-3	15.37	7.03	-82	18900	5	3.65	11.7
BAC-4	0	67.4	489	1.14	7.74	221	1300	0	0.0316	0.0605	0	0	0	0	0	0.249	0	0.0143	0	0	0.1	0.81	0.91	BAC-4	15.79	7.47	-150	2500	0.5	0.7	1.6
BAC-5	0	74.8	524	1.07	7.68	234	1480	0	0.0275	0.0706	0	0	0	0	0	0.284	0	0.00915	0	0	0.24	0.5	0.74	BAC-5	18.41	7.47	-149	2570	0.5	3.97	1.63
BAC-6	4.58	145	595	1.15	7.48	1100	2600	0	0.0214	0.0227	0	0	0	0	0	0.28	0	0.0898	0.00249	0	0.08	0.72	0.8	BAC-6	19.15	7.32	-92	3810	0.5	0.55	2440
BAC-7	4.51	137	1980	0.388	7.57	1100	2730	0	0.0235	0.0195	0	0	0	0	0	0.288	0	0.0752	0.0048	0	0.14	0.71	0.85	BAC-7	19.26	7.4	-101	4190	3	3.14	2.68
													Results													ı		Field Res	ults		
Waste Water																								Waste Water							
	Boron		Chloride		рН	Sulfate	TDS	Antimony			Beryllium	Cadmium	Chromium	Cobalt	Lead		Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	рН	REDOX		Turbidity (NTUs)	DO	TDS
SI-U-1	0	129	739	0.506	7.5	201	1840	0	0.00929		0	0	0.00137	0	0	0.241	0	0.00227	0	0	0.04	0.73	0.77	SI-U-1	16.11	7.56	-31	3240	0	0.71	2.07
WW-U-1	1.34	339	1900	0.406	7.05	1050	5280	0	0.005	0.0486	0	0	0.00193	0	0	0.436	0	0.00702	0.00653	0	0.45	0.91	1.36	WW-U-1	16.35	7.11	-75	8010	0.7	0.4	5.03
WW-U-2	1.47	370	2010	0.532	7.16	925	5260	0	0.00642	0.0499	0	0	0.00144	0	0	0.475	0	0.00467	0.0115	0	0.34	0.94	1.28	WW-U-2	16.11	7.27	-10	8450	0.2	0.47	5.32
WWC-1	11.9	638	4100	0.236	6.89	2640	12700	0	0.02	0.0209	0	0	0	0	0	0.805	0.000205	0.00596	0.015	0	0.25	1.21	1.46	WWC-1	16.03	6.65	-17	19900	0	2.51	12.4
WWC-2	0	57.2	308	0.41	7.62	111	784	0	0.014	0.031	0	0	0	0	0	0.104	0	0.00356	0	0	0.1	0.55	0.65	WWC-2	15.75	7.52	-124	1650	0.4	0.55	1.05
WWC-3	0	28.9	200	0.985	7.96	67.8	628	0	0.0214	0.0245	0	0	0	0	0	0.131	0	0.00464	0	0	0.07	0.27	0.34	WWC-3	14.89	7.81	-190	1250	1.1	0.79	0.8
WWC-4	1.19	200	1010	0.365	7.3	593	2790	0	0.0128	0.0463	0	0	0	0	0	0.355	0	0	0	0	0.22	0.58	0.8	WWC-4	16.17	7.26	-64	4600	2.3	0.37	2.92
WWC-5	2.86	321	1600	0.384	6.92	1450	5030	0	0.0096	0.0302	0	0	0	0	0	0.511	0	0.00301	0.00415	0	0.2	1.64	1.84	WWC-5	17.27	7.02	-36	7300	0	0.34	4.6
																								140440 6							(
WWC-6																								WWC-6							'

Round 10 Assessment Monitoring - June 4-13, 2018 Round 10 Field Results Landfill Wells Radium 226 and Landfill Wells Boron Calcium Chloride Fluoride pH Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 Radium 228 REDOX Turbidity (NTUs) DO TDS pН 228 combined Temp Conductance 0 54.7 372 0.853 7.7 98 994 0 0.0272 0.0799 0 0 0 0 0 0 0.028 0 0.00361 0 0.56.4 365 0.862 7.64 108 952 0 0.0242 0.09 0 0 0 0 0 0 0.195 0 0.0038 0 17.54 7.56 -196 CL-U-1 1888 0.39 1.2 0.18 0.67 0 0.85 CL-U-2 CLW-1 CLW-2 0 -0.02 0.67 CL-U-2 17.81 7.55 -171 1830 2.53 1.17 35.2 298 1.02 7.93 57.8 748 0 0.00102 0 0 0.184 19.97 7.67 -159 0.0285 0.0568 0.00388 0.000928 0.29 1.01 CLW-1 1480 4.08 9.45 44.6 399 1.14 7.79 86.8 980 0.0247 0.072 0.222 0.00433 0.25 CLW-2 17.54 7.63 -220 1830 0.63 1.18 CLW-3 37.5 323 1.16 7.91 94.2 876 31.8 289 1.35 7.91 76.4 836 0.0382 0.0948 0 0 0.214 0.00483 0 0.18 0.55 CLW-3 17.95 7.73 -260 1680 5.5 1.57 1.07 0.204 0.13 0.85 0.85 CLW-4 17.85 7.73 -278 1570 1.64 1.29 1.07 CLW-5 CLW-6 33.1 318 1.59 7.79 75.3 804 0.0215 0.0689 0 0 0 0 0.21 0.00519 0 0 0.76 CLW-5 17.16 7.72 -276 1660 8.2 29.9 292 1.45 7.88 66.3 796 0.85 17.86 7.83 -280 0.0109 0.0902 0 0 0 0 0 0.199 0 0.00711 0 0 0.27 CLW-6 1570 2.56 1.01 CLW-7 40.6 321 0.945 7.68 58.6 900 0.0234 0.0514 0.186 0.00329 0.97 CLW-7 17.32 7.6 -150 1610 15.7 3.84 1.03 0 CLW-8 CLW-9 0 38.8 314 0.933 7.73 63.5 768 0 0.0244 0.0632 0 0 0 0 0 0.188 0 0.00359 0 0 0.18 1.26 1.26 CLW-8 17.1 7.61 -194 1550 0.73 0.985 CLW-9 CL-U-3 CL-U-3 Field Results Bottom Ash Radium 226 and Bottom Ash
 Born
 Galcium
 Holride
 Funda
 pl
 Sulfage
 TDS
 Autimory
 Berlin
 Calcium
 Chonium
 Chonium
 Chonium
 Close
 Lead
 Lithium
 Mercury
 Molybdenum
 Selenium
 Tallium
 Radium 228
 Agdium 228

 0
 140
 799
 0.818
 7.54
 254
 1970
 0
 0.0399
 0.002
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Conductance 228 combined pH REDOX Turbidity (NTUs) DO TDS BA-U-1 BA-U-2 BAC-1 BAC-2 BAC-3 2.33 BA-U-1 19.26 7.41 -163 3640 0.46 2.33 BA-U-2 18.16 7.63 -187 2370 1.31 1.51 1.13
 2.16
 113
 1190
 0.315
 7.92
 971
 3120
 0.00158
 0.0141
 0.0393

 8.44
 263
 2210
 0.684
 7.1
 3430
 7720
 0
 0.0445
 0.021
 0 0 0.00714 0 0 0.314 0 0.0288 0.00694 n 0.24 1.06 1.3 RAC-1 17.87 8.86 -418 6480 53.2 2.95 4.04 BAC-2 0.00483 0 0 0.463 0 0.143 0.0154 0.12 1.03 1.03 16.94 6.98 -63 12400 4.29 7.68 2.3 7.26 347 3870 1.52 7.42 5080 12700 0.0588 0.0327 0 0.00511 0 0.944 0.0467 0.0229 0.27 1.44 1.71 BAC-3 17.19 7.16 -356 18300 15.2 0.87 11.4 BAC-4 BAC-5 BAC-6 BAC-7 0 62.8 510 1.01 7.95 221 1290 0 0.0322 0.0672 0 73.5 591 0.916 7.82 302 1180 0 0.0292 0.0763 4.12 134 694 0.592 7.65 1120 2980 0 0.0217 0.0255 0 0 0 0 0 0.247 0 0.0165 0 0 0 0 0.288 0 0.0128 0 0.06 0.92 BAC-4 17.11 7.64 -149 17.63 7.61 -126 2500 0.75 1.6 0.65 1.83 0.19 1.56 BAC-5 0 2850 0 1.2 0 0 0 0.25 0 0.0938 0.00229 0 0.14 1.02 1.02 BAC-6 17.58 7.51 -112 4210 0.51 2.63 4.36 130 709 1.09 7.74 1280 2760 0 0.0275 0.0204 BAC-7 0 0 0 0.269 0 0.0757 0.00541 0 0.06 0.87 17.32 7.6 -127 4440 0.56 2.84

													Results															Field Resu	lts		
Waste Water																							Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	0	123	873	0.499	7.62	209	2040	0	0.00839	0.0653	0	0	0.000602	0	0	0.254	0	0.00182	0	0	0.32	1.34	1.66	SI-U-1	18.38	7.39	-108	3510	1.7	0.79	2.25
WW-U-1	1.19	289	1940	0.265	7.17	1140	5450	0	0.00477	0.0479	0	0	0.00124	0	0	0.443	0	0.00591	0.00663	0	0.23	1.49	1.72	WW-U-1	21.81	6.92	-77	8180	0.1	0.51	5.14
WW-U-2	1.23	337	2130	1.01	7.3	985	5120	0	0.0102	0.0459	0	0	0.00137	0	0	0.508	0	0.00277	0.0112	0	0.05	0.93	0.93	WW-U-2	18.76	7.09	-16	8130	7.6	1.06	5.12
WWC-1	8.22	504	4710	0.114	7.2	2730	11100	0	0.0173	0.0268	0	0	0	0	0	0.831	0.000168	0.00896	0.0139	0	0.25	1.16	1.16	WWC-1	16.92	6.94	-84	15600	1.5	4.48	9.65
WWC-2	0	50	340	0.358	7.91	119	852	0	0.0143	0.0338	0	0	0	0	0	0.11	0	0.00372	0	0	0.08	0.27	0	WWC-2	17.4	7.75	-163	1570	1.2	0.4	1
WWC-3	0	27.3	230	0.897	8.05	88.4	644	0	0.0226	0.0278	0	0	0	0	0	0.125	0	0.00527	0	0	-0.03	0.15	0	WWC-3	17.01	7.89	-191	1220	2.6	0.42	0.782
WWC-4	0.998	184	1080	0.435	7.43	620	2640	0	0.0129	0.0495	0	0	0	0	0	0.309	0	0.00215	0.00201	0	0.28	0.35	0	WWC-4	18.39	7.27	-106	4320	2.4	1.17	2.77
WWC-5	2.64	314	1820	0.219	7.26	1660	5200	0	0.0104	0.0327	0	0	0	0	0	0.472	0	0.00324	0.00395	0	0.1	1.58	1.58	WWC-5	15.81	6.98	-84	7740	0.8	0.58	4.88
WWC-6																								WWC-6						,	
WDB-7																								WWC-7						,	
Daniel Inches																															

Results below r	eporting limit are recorded as 0.														
Date	6/7/2018							0.006	0.015	0.04	1	0.1			
Results below la	boratory Reporting Limit (RL) are recorded as 0. RLs as follows:	0.001	0.002	0.002	0.002	0.005	0.002	0.004	0.002	0.1	0.00015	0.002	0.002	0.002	

									R	ound 11 (all	results ppm	Assessmen	t Monitoring	October 8	3-18, 2018													Round 11			
													Results														1	Field Resu	lts		
andfill Wells						6.16.1.	****				B III								6.1	w	n . 4' nnc	n. d 220	Radium 226 and	Landfill Wells			DEDOV		was to the farmers		
U-1	Boron 0	Calcium 61.9	Chloride 415	Fluoride 0.981	pH 7.79	Sulfate 122	TDS 1060	Antimony	Arsenic 0.029	0.0796	Beryllium 0	Cadmium	Chromium	Cobalt	Lead 0	0.229	Mercury	Molybdenum 0.00383	Selenium 0	Thallium	0.09	0.32	228 combined	CL-U-1	Temp 17.4	pH 7.85	REDOX -132	Conductance 1800	Turbidity (NTUs) 40.9	DO 0.61	
J-1 J-2	0	67.5	414	0.981	7.73	128	1010	0	0.029	0.0798	0	0	0	0	0	0.212	0	0.00383	0	0	0.12	0.94	0.94	CL-U-2	18.15	7.83	-132	1770	40.9	3.95	
-1	0	39.6	288	1.06	7.76	61.9	784	0	0.0298	0.0513	0	0	0.0157	0	0	0.194	0	0.00589	0	0	0.12	1.2	1.2	CLW-1	17.83	7.93	-114	1490	0	1.48	+
-2	0	49.7	475	1.19	7.72	88.1	904	0	0.0244	0.0716	0	0	0.014	0	0	0.227	0	0.00593	0	0	0.17	0.39	0	CLW-2	16.04	7.84	-184	1850	0.6	2.72	
-3	0	42	325	1.27	7.79	95	888	0	0.0384	0.0941	0	0	0	0	0	0.217	0	0.0052	0	0	0.33	0.68	0	CLW-3	17.52	7.98	-178	1660	3.6	3.1	+
-4	0	35.2	297	1.45	7.85	80.7	792	0	0.0375	0.0786	0	0	0	0	0	0.211	0	0.00525	0	0	1.89	0.65	1.89	CLW-4	18.53	8.02	-192	1530	7.2	1.63	
5	0	36.9	320	1.7	7.72	85.3	852	0	0.0229	0.0714	0	0	0.00999	0	0	0.213	0	0.00679	0	0	1.87	0.17	1.87	CLW-5	21	7.94	-175	1640	0	1.29	$^{+}$
6	0	33.8	292	1.6	7.82	73.3	804	0	0.0152	0.0873	0	0	0.0116	0	0	0.204	0	0.00746	0	0	0.18	0.41	0	CLW-6	16.49	8.02	-210	1560	0	2.23	+
7	0	46.5	399	1.02	7.65	73.2	780	0	0.0232	0.0491	0	0	0	0	0	0.19	0	0.00416	0	0	0.05	0.07	0	CLW-7	17.12	7.83	-81	1560	2.4	2.97	Ť
-8	0	43	300	1.04	7.71	66.5	796	0	0.0254	0.0643	0	0	0	0	0	0.192	0	0.00503	0	0	0.19	1.2	1.2	CLW-8	17.05	7.91	-130	1510	0	1.37	T
9																								CLW-9							T
-3																								CL-U-3							Т
																															_
													Results															Field Resu	ilts		
ttom Ash																							Radium 226 and	Bottom Ash							41
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	
1	0	73.9	561	0.881	7.97	62.2	1050	0	0.0216	0.149	0	0	0	0	0	0.276	0	0.00237	0	0	0.44	0.74	1.18	BA-U-1	16.4	7.71	-41	3010	0	0.7	
2	0	143	885	0.977	7.58	298	1750	0	0.0209	0.0728	0	0	0.0125	0	0	0.321	0	0.00574	0	0	0.22	0.62	0	BA-U-2	18.72	8.31	-138	2010	0	0.56	
	4.87	225	1840	0.582	7.57	1760	6420	0	0.0129	0.0391	0	0	0.0184	0	0	0.629	0	0.0232	0.00818	0	0.45	0.88	0	BAC-1	16.12	7.43	-228	9840	77.8	0.85	
!	9.98	255	1660	1.1	7.35	2730	7800	0	0.0565	0.0204	0	0	0.0111	0	0	0.472	0	0.156	0.0157	0	0.08	0.96	0.96	BAC-2	16.79	7.15	-22	11200	2.5	1.3	
	8.33	469	3280	1.63	7.31	4450	12300	0	0.0496	0.0317	0	0	0.00968	0	0	1.06	0	0.038	0.022	0	0.39	1.06	1.45	BAC-3	16.79	7.31	42	18300	7	5.15	_
ı	0.523	68.1	501	1.15	7.96	273	1300	0	0.00882	0.0171	0	0	0	0	0	0.267	0	0.017	0	0	-0.16	0.48	0	BAC-4	15.08	7.77	-69	2500	0.2	0.61	_
;	0	82.2	557	1.04	7.86	353	1460	0	0.0325	0.0714	0	0	0	0	0	0.323	0	0.0134	0	0	0.26	0.81	0	BAC-5	16.95	7.88	-43	2860	0	0.52	4
6	4.57	138	624	0.847	7.75	1080	2340	0	0.0248	0.0245	0	0	0	0	0	0.276	0	0.0842	0	0	0.17	1.02	0	BAC-6	17.13	7.74	-35	3970	0	0.49	4
7	4.24	143	649	1.51	7.75	1210	2830	0	0.0434	0.0214	0	0	0	0	0	0.303	0	0.075	0.00579	0	0.19	0.71	U	BAC-7	17	7.76	-71	4420	1.9	0.48	ᆚ
													Results		l							l						Field Resu	h -		_
e Water													Results										Radium 226 and	Waste Water			1	rieiu kesi	iiis		┪
vater	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Bervllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Solonium	Thallium	Radium 226	Radium 228	228 combined	waste water	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	
	0	139	805	0.533	7.63	394	1760	0	0.0103	0.0575	0	0	0	0	0	0.265	0	0.00241	0	0	0.07	0.85	0.85	SI-U-1	17.1	7.65	-6	3290	0	0.58	┪
J-1	1.36	357	2150	0.41	7.28	1360	5090	0	0.0103	0.0449	0	0	0.0258	0	0	0.456	0	0.0101	0.00682	0	0.43	1.2	1.63	WW-U-1	16.29	7.25	-7	8350	0.6	0.87	+
J-2	1.23	380	2160	0.604	7.31	1090	4570	0	0.0109	0.0446	0	0	0	0	0	0.519	0	0.00338	0.0105	0	0.14	0.83	0.83	WW-U-2	16.41	7.44	55	7730	0	1.5	-
C-1	12	607	4430	0.331	7.25	3210	13000	0	0.0243	0.0223	0	0	0	0	0	0.964	0.000312	0.00835	0.0145	0	0.15	1.2	0	WWC-1	16.6	7.11	40	19600	0	4.49	+
:-2	0	59.5	344	0.448	7.85	139	832	0	0.0152	0.0344	0	0	0	0	0	0.124	0	0.00304	0	0	0.17	0.03	0	WWC-2	17.73	7.91	-84	1600	2.1	0.62	-
-3	0	29.7	209	1.06	7.92	84.2	436	0	0.0247	0.0289	0	0	0	0	0	0.139	0	0.00482	0	0	0	0.76	0	WWC-3	16.97	8.12	-179	1190	0.2	0.56	Η
4	1.34	219	1030	0.481	7.46	692	2880	0	0.0145	0.0507	0	0	0	0	0	0.36	0	0	0	0	0.03	0.8	0	WWC-4	16.27	7.4	-32	4780	0.7	0.54	-
5	3.07	364	1720	0.431	7.38	1620	5000	0	0.0131	0.034	0	0	0	0	0	0.523	0	0.0031	0.00478	0	0.2	-0.56	0	WWC-5	15.76	7.16	-11	7580	1	3.51	-
6																								WWC-6	15.05	7.63	-148	3550	1.8	0.7	T
7																								WWC-7	15.18	8.07	-195	1510	8.4	0.65	T
s below rep	orting limi	t are record	led as 0.																												_
	Oct. 2018																							Date							
								0.001	0.002	0.002	0.002		0.002	0.004	0.002	0.1	0.00015	0.002	0.002	0.002											

Landfill Wells																							Radium 226 and	Landfill Wells						, ,	
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
CL-U-1	0	61.1	388	0.989	7.74	112	932	0	0.0279	0.0841	0	0	0	0	0	0.231	0	0.0036	0	0	0.13	0.4	0	CL-U-1	15.92	7.84	-138	1880	1.6	0.42	1.2
CL-U-2	0	68.4	378	1.02	7.74	97.6	920	0	0.0254	0.0943	0	0	0	0	0	0.214	0	0.00405	0	0	0.31	0.94	1.25	CL-U-2	15.68	7.81	-119	1820	4.7	0.6	1.17
CLW-1	0	39.4	303	1.12	7.88	64.5	692	0	0.002	0.0589	0	0	0.00742	0	0	0.203	0	0.00481	0	0	0	0.41	0	CLW-1	15.59	7.68	-68	1540	0.9	2.06	0.984
CLW-2	0	55.1	416	1.25	7.8	96.4	976	0	0.0259	0.0743	0	0	0	0	0	0.253	0	0.00423	0	0	0.21	0.75	0	CLW-2	15.77	7.86	-187	1870	1.7	1.5	1.2
CLW-3	0	44.5	351	1.34	7.83	98.4	884	0	0.0382	0.0970	0	0	0	0	0	0.243	0	0.00488	0	0	0.16	0.49	0	CLW-3	15.45	7.93	-201	1720	2.1	1.37	1.1
CLW-4	0	38.8	321	1.45	7.90	85.5	968	0	0.0376	0.0819	0	0	0	0	0	0.232	0	0.00425	0	0	0.47	0.54	0	CLW-4	15.51	7.97	-203	1610	12.7	1.55	1.03
CLW-5	0	38.5	340	1.85	7.93	85.6	936	0	0.0236	0.0707	0	0	0	0	0	0.226	0	0.00515	0	0	0.14	0.28	0	CLW-5	15.07	7.94	-214	1.69	3.8	3.03	1.08
CLW-6	0	38.4	270	1.55	7.89	72.8	828	0	0.0271	0.0896	0	0	0	0	0	0.214	0	0.00478	0	0	0.2	0.78	0	CLW-6	16.62	8.04	-225	1570	1.1	1.54	1
CLW-7	0	51.3	336	1.07	7.76	68.9	792	0	0.0228	0.0511	0	0	0	0	0	0.205	0	0.00323	0	0	-0.09	0.54	0	CLW-7	16.75	7.76	-79	1630	0.5	0.91	1.05
CLW-8	0	44.3	317	1.11	7.81	67.2	776	0	0.0257	0.0621	0	0	0.00200	0	0	0.212	0	0.00358	0	0	0.27	0.22	0	CLW-8	16.41	7.82	-99	1570	0.07	1.7	1.01
CLW-9	0	26.2	298	2.02	7.91	86.4	760	0	0.0368	0.0462	0	0	0	0	0	0.168	0	0.00518	0	0	0.21	0.21	0	CLW-9	15.39	7.98	-184	1550	3.6	0.83	0.993
CL-U-3	0	59.6	390	0.872	7.83	114	984	0	0.0183	0.0495	0	0	0.00565	0	0	0.212	0	0.00372	0	0	0	0.48	0	CL-U-3	15.07	7.55	-197	1830	0.3	2.51	1.17
								1												1											
													Results															Field Res	ults		
Bottom Ash							TOC							6.1.1					6.1	w	D . 4" 225	n - 1 220	Radium 226 and	Bottom Ash			DEDOV				TOC
BA-U-1	Boron	Calcium 174	Chloride	Fluoride	pH 7.61	Sulfate 271	TDS 2050	Antimony	Arsenic 0.002	0.0776	Beryllium	Cadmium	Chromium	Cobalt	Lead 0	Lithium	Mercury	Molybdenum 0.00312	0.00458	Thallium	Radium 226	0.4	228 combined	BA-U-1	Temp	pH 7.67	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BA-U-1 BA-U-2	0	91.8	934 718	0.919	7.68	102	1350	0	0.002	0.0776	0	0	0	0	0	0.354	0	0.00312	0.00458	0	0.18	0.4	0	BA-U-1 BA-U-2	18.39 16.57	7.81	-60 -97	3720 2710	1.1	0.31	2.38 1.74
BAC-1	1.31	72.4	431	0.197	8.42	404	1830	0	0.0211	0.0567	0	0	0.00359	0	0	0.300	0	0.142	0.00234	0	0.18	0.09	0	BAC-1	19.56	8.75	-282	1340	22.8	1.17	0.852
BAC-2	10.3	233	1700	1.11	7.2	2590	8310	0	0.0121	0.0387	0	0	0.00556	0	0	0.172	0	0.142	0.00278	0	0.28	0.48	0	BAC-2	18.83	7.25	-282	5370	2.2	1.17	3.38
BAC-3	8.64	417	3400	1.3	7.24	4090	12900	0	0.0313	0.0180	0	0	0.00593	0	0	1.030	0.000105	0.0388	0.0145	0	0.17	0.48	0	BAC-3	17.57	7.34	-11	8.95	1.1	1.61	5.64
BAC-4	0.553	72.4	488	1.22	7.76	269	1270	0	0.0472	0.0272	0	0	0.00393	0	0	0.281	0.000103	0.0196	0.0200	0	0.16	0.77	0	BAC-4	15.14	7.6	-57	2600	0	1.94	1.66
BAC-4	0.555	91.8	585	1.07	7.73	393	1540	0	0.0319	0.0594	0	0	0	0	0	0.334	0	0.0196	0	0	-0.1	0.38	0	BAC-5	15.14	7.68	-62	2960	0	2.03	1.00
BAC-6	4.4	137	536	0.866	7.84	963	2260	0	0.0234	0.0206	0	0	0	0	0	0.283	0	0.0923	0	0	-0.09	-0.38	0	BAC-6	15.21	7.63	-44	3880	0	1.48	2.48
BAC-7	5.17	142	529	1.34	7.72	985	2760	0	0.0248	0.0200	0	0	0	0	0	0.284	0	0.0923	0.00388	0	0.09	0.34	0	BAC-7	15.95	7.74	-71	4210	0	1.37	2.7
BAC-8	0	27.8	266	1.61	7.92	81.1	708	0	0.0519	0.0732	0	0	0	0	0	0.165	0	0.0055	0.00500	0	0.31	0.41	0	BAC-8	17.34	7.98	-91	1490	3.9	1.21	0.954
BAC-9	0	28.4	283	1.7	7.91	82.6	736	0	0.583	0.051	0	0	0	0	0	0.167	0	0.00451	0	0	0.06	0.53	0	BAC-9	16.49	8.02	-69	1460	1.6	0.96	0.937
BAC-10	0	31.1	273	1.66	7.91	85	788	0	0.0527	0.0612	0	0	0	0	0	0.171	0	0.00567	0	0	0.15	0.5	0	BAC-10	17.35	8	-80	1500	2.9	0.94	0.963
																														$\overline{}$	
								1											1												
Waste Water	Results								*											*								Field Res	ults		
																							Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
SI-U-1	0	147	744	0.519	7.59	263	1840	0	0.00927	0.0634	0	0	0	0	0	0.271	0	0.00206	0	0	0.27	0.59	0	SI-U-1	16.23	7.68	-37	3470	1.9	0.36	2.22
WW-U-1	1.39	323	1820	0.416	7.27	1140	5120	0	0.00592	0.0442	0	0	0.00432	0	0	0.431	0	0.00702	0.00748	0	0.38	0.89	1.27	WW-U-1	16.64	7.24	-17	8020	0	0.41	5.05
WW-U-2	1.16	347	1170	0.633	7.45	872	4270	0	0.0114	0.0473	0	0	0.00237	0	0	0.484	0	0.00411	0.0113	0	0.19	0.54	0	WW-U-2	17.11	7.41	-8	7650	1.1	0.51	4.82
WWC-1	12.9	584	4600	0.245	7.1	3190	13800	0	0.0215	0.0183	0	0	0	0	0	1.000	0.00018	0.00794	0.0146	0	0.13	0.82	0	WWC-1	16.68	7.13	2	9830	0	1.37	6.19
WWC-2	0	54.2	316	0.534	7.75	128	824	0	0.0161	0.0296	0	0	0	0	0	0.128	0	0.00348	0	0	-0.06	0.5	0	WWC-2	15.94	8.03	-95	1550	2.9	1.56	0.989
WWC-3	0	35.3	244	1.14	7.79	86	764	0	0.0226	0.0306	0	0	0	0	0	0.151	0	0.00471	0	0	0.06	0.38	0	WWC-3	16.07	8.01	-144	1310	0	2.09	0.841
WWC-4	1.34	240	1030	0.449	7.97	673	2780	0	0.0133	0.0412	0	0	0	0	0	0.388	0	0	0	0	-0.03	0.56	0	WWC-4	15.29	7.38	-19	4910	0	1.4	3.14
WWC-5	3	388	1600	0.493	7.12	1440	5160	0	0.0134	0.0309	0	0	0	0	0	0.557	0	0.00203	0.00448	0	0.18	1.12	1.12	WWC-5	15.41	7.16	-6	7900	0.5	1.67	4.98
WWC-6	0.535	137	943	0.25	7.54	451	2470	0	0.0133	0.0822	0	0	0	0	0	0.204	0	0.00484	0	0	0.48	0.81	0	WWC-6	15.12	7.59	-62	4040	1.6	0.72	2.59
WWC-7	0	42.8	187	0.422	7.93	119	640	0	0.0165	0.0314	0	0	0	0	0	0	0	0.00386	0	0	0.16	0.18	0	WWC-7	14.7	8.01	-200	1120	7.6	2.26	0.718
WWC-8	0.561	151	943	0.391	7.54	537	440	0	0.0081	0.173	0	0	0	0	0	0.23	0	0.00632	0.00274	0	0.29	0.68	0	WWC-8	17.02	7.76	-113	3990	22.2	1.66	2.55
WWC-9	0	42.6	212	1.11	8.01	78.2	560	0	0.0261	0.0973	0	0	0	0	0	0.147	0	0.00538	0	0	0.16	0.27	0	WWC-9	16.66	7.89	-91	1.53	13	1.32	0.985
WWC-10	0	52.3	328	0.651	7.85	141	1070	0	0.0265	0.0615	U	0	0	0	U	0.115	0	0.00854	0	0	0.13	0.49	0	WWC-10	15.91	8.12	-152	1700	9.8	1.42	1.09
						1			1							1		1	I	1											

Round 12 Field Results

Results below reporting limit are recorded as 0.

Date Oct. 2018

Results below laboratory Reporting Limit (RL) are recorded as 0. RLs as follows: 0.001 0.002 0.002 0.002 0.005 0.002 0.004 0.002 0.1 0.00015 0.002 0.002 0.002

Round 12 (all results ppm) Assessment Monitoring - April 4 - May 15, 2019 Results

Assessment	Results																						
																					Radium	Radium	and 228
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium		228	combined
RW-4	0.798	61.8	633	0.919	7.78	247	1660	0	0.0295	0.0823	0	0	0.00278	0	0	0.235	0	0.00365	0	0	0.11	0.11	0
RW-5	0	30.8	165	0.563	8.01	109	548	0	0.027	0.0244	0	0	0	0	0	0	0	0.00393	0	0	-0.15	0.47	0
RW-7	0	44	333	0.626	7.87	127	920	0	0.0203	0.0311	0	0	0	0	0	0.132	0	0.00399	0	0	0.2	0.16	0

				Field Results			
Assessment	Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
RW-4							
RW-5							
RW-7							
WDB-19							

Round 13 (all results ppm) Assessment Monitoring - September 23 - October 15, 2019 Round 13 Field Results Landfill Wells Radium 226 and Landfill Wells DO Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 Radium 228 228 combined REDOX Conductance Turbidity (NTUs) TDS Temp 0 58.9 432 0.753 7.94 109 976 0 0.0289 0.0799 0 0 0 0 0 0 0.239 0 0.0035 0 0 0.03 0.75 CL-U-1 15.85 7.75 1.62 0.497 CL-U-1 0.75 -159 777 CL-U-2 60.6 424 0.792 7.87 112 968 0.0251 0.0935 0 0 0.229 0.00412 0.03 0.57 CL-U-2 15.96 7.7 -158 743 1.01 0.476 CLW-1 36 328 1.11 8.03 69.1 852 0.0295 0.0612 0 0 0 0.187 0.00357 0 0 0.29 0.38 CLW-1 15.83 7.73 -48 1480 1.3 2.01 0.948 CLW-2 50.8 438 0 1.13 8.15 88.1 924 0.0283 0.1510 0 0 0 0 0.253 0.0102 0 0 0.08 0.56 CLW-2 16.6 7.79 -191 760 2 0.488 CLW-3 363 7.99 90.8 828 0.039 0.0976 0.00504 0.43 CLW-3 7.84 1730 1.43 1.24 0 0 0 0.242 0 0.6 17.14 -215 1.11 CLW-4 34.6 332 1.55 7.97 75.6 768 0.0387 0.0797 0 0 0 0.235 0.00441 0 0.22 1.06 1.06 CLW-4 16.47 7.88 -233 1600 1.61 1.03 CLW-5 0 37.5 351 1.89 8 76.9 1060 0.0231 0.0685 0 0 0 0.237 0.00479 0 0 0.25 0.44 CLW-5 17.05 7.83 -220 1700 1.9 1.84 1.09 7.98 74.4 1110 CLW-6 0 34.5 330 1.7 0.0145 0.0936 0 0 0 0.239 0.00607 0 0 0.42 1.05 1.47 CLW-6 16.65 7.7 -229 1590 1.6 2.69 1.02 CLW-7 43.7 362 7.89 71.4 0 -0.03 CLW-7 17.74 7.76 1 796 0.0238 0.0523 0 0 0.192 0.00402 0 0.12 -57 1580 0.6 1.24 1.01 CLW-8 39.9 337 1.04 7.98 70.7 836 0.0266 0.0521 0.00000 0 0.196 0.00449 0 -0.05 0.32 CLW-8 16.37 7.81 -36 1520 1.51 0.969 CLW-9 26.9 288 1.94 8.12 88.7 792 0.0398 0.0469 0.00287 0 0 0.181 0 0.00573 ٥ 0 0.36 0.02 CI W-9 16.03 7.72 -299 1610 0.2 7 56 1.03 2.13 CL-U-3 0 64.6 304 0.429 8.85 168 596 0 0 0.0342 0 0 0.0738 0 0 0.152 0 0.00964 0 0 2.13 0.21 CL-U-3 16.1 9.08 -76 503 0 1.84 0.322 Rottom Ash Radium 226 and **Bottom Ash** Lead Lithium Mercury Molybdenum Selenium Radium 226 Radium 228 228 combined REDOX Turbidity (NTUs) DO TDS
 Boron
 Calcium
 Chloride
 Fluoride
 PH
 Sufface
 Sufface
 Sufface
 Barry
 Regular
 Maximum
 Remium
 Chromium
 Cobalt
 Lead
 Lithium
 Mercury
 Molybdenum
 Selenium

 0
 173
 1140
 0.587
 2.71
 314
 29.0
 0
 0.0223
 0.0770
 0
 0
 0
 0
 0.385
 0
 0.00302
 0.0502

 0
 1.038
 5.00
 0.037
 0
 0
 0
 0
 0.385
 0
 0.00302
 0.0502
 Thallium Temp Conductance 16.68 7.47 0 0.16 BA-U-1 1.03 BA-U-1 0.73 0.73 -58 1610 1.29 BA-U-2 47.1 400 0.893 8.18 56.6 972 0.0283 0.1270 0.247 0.00332 BA-U-2 16.37 8.94 -255 1550 0.8 0.99 0.26 93.7 17.09 BAC-1 1 43 801 0.307 8.16 701 2730 0 0.0126 0.0460 0.00163 n 0 0.259 Λ 0.128 0.00436 Λ Λ 0.14 BAC-1 7 98 -50 3950 1 32 3.4 2 53 BAC-2 9.49 208 1730 1.07 7.45 2760 7240 0.0647 0.0192 0.0058 0 0 0.466 0.00028 0.19 0.0145 0 0.12 0.39 BAC-2 16.92 7.19 28 10600 3.3 2.45 6.59 BAC-3 7.32 0.675 7.49 4310 13900 0.0027 0.0356 0.0321 0.00449 0.957 0.0255 0.45 BAC-3 16700 0.61 441 3500 0 0 0.0236 0 0 17.34 7.1 20 10.4 BAC-4 0.606 66.7 573 7.95 330 1820 0 0.0322 0.0637 0.279 0.0218 0.15 0.16 BAC-4 16.73 7.81 -57 2570 1.18 1.64 1.13 0 0 0 0 0 0.6 BAC-5 8.07 250 1410 0.0321 0.0814 0.00941 0.36 BAC-5 17.52 7.84 -50 2540 0.4 1.33 1.63 66.2 568 0.289 0.25 BAC-6 2.66 119 625 0.796 7.86 646 1870 0.0223 0.0338 0 0 0 0.288 0.0651 0.00273 0 0.31 0.83 1.14 BAC-6 16.78 7.74 -52 2670 0.7 0.87 1.71 BAC-7 5.06 107 566 1.31 7.96 1170 2320 0.0314 0.0174 0 0 0 0.248 0.0887 0.00276 0 0.04 0.22 0 BAC-7 17.16 7.83 -156 4000 3.1 0.86 2.56 BAC-8 23.2 280 784 0.00545 1.21 BAC-8 0.989 1.53 8.05 95.5 0.0639 0.0389 0 0.156 0 0.03 1.21 15.03 7.65 -41 1540 0.2 5.45 299 8.06 87.6 788 0.0593 0.0388 0 0 0.00483 0.09 15.03 7.68 -23 1560 27.1 1.45 0.16 0.3 1.2 0.993 BAC-10 0 25.7 280 1.51 8.09 87.4 808 0 0.0595 0.045 0 0 0 0 0 0.16 0 0.00584 0 0 0.8 1.8 BAC-10 14.98 7.65 -31 1560 0.1 1.15 0.999 Waste Water Radium 226 and Waste Water Radium 226 Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 228 228 combined Temp pН REDOX Conductance Turbidity (NTUs) DO TDS SI-U-1 136 824 0.38 7.71 281 1850 0.00981 0.0599 SI-U-1 7.63 0.78 0 0 0 0 0 0.277 0 0 0.19 1.61 1.61 16.51 -12 3290 0.1 2.11 7.37 588 5720 0.00594 0.0419 0.00166 0 0.00689 0.0077 7.19 WW-U-1 311 1010 0.485 -0.08 1.42 1.42 WW-U-1 16.11 14 8000 2.8 1.93 5.04 WW-U-2 1.02 346 2020 0 7.3 855 4400 0.00735 0.0499 0 0 0 0.54 n 0.00317 0.011 0 -0.2 1.36 1.36 WW-U-2 16.06 7.38 22 7390 0.6 1.32 4.66 WWC-1 13.2 473 4940 0.292 7.42 3570 14900 0.0264 0.0205 0 0 0 0.974 0.000278 0.0113 0.016 0 0.23 0.9 0.9 WWC-1 15.13 6.79 36 1910 3.67 11.8 WWC-2 57.6 349 0.427 7.99 141 0 0.81 -29 0.3 0 876 0.0166 0.0336 0 0 0.126 0 0.00327 0 0 -0.15 0.81 WWC-2 14.82 7.31 1720 0.47 1.1 WWC-3 33.3 262 0.986 8.13 95.3 776 0.0236 0.0331 0 0.151 0.00477 0 3.1 0.58 3.1 WWC-3 15.96 7.72 -244 1420 0.2 0.909

1.06

2.11

0.548

0.803

0

WWC-4

WWC-5

WWC-6

WWC-7

wwc-8

WWC-9

WWC-10

Date	Oct. 2018	
a 1: 1 1		

176 968 0.453

344 1530 0.448

0.23

47.1 309 0.909 8.04 107

380 0.629

125 855

46.7 186 0.418

144 1230 0.353

54.4

7.61 594

7.39 1290

7.66 451

177

8.12 129

7.7 579 3670

8.02

3080

4740 0

2340

652

780 0

988

0

0.0154 0.0456

0.0154 0.0382

0.0138 0.0852

0.0187 0.0316

0.0145 0.0627

0.0309 0.0643

0.0289 0.0347

Results below laboratory Reporting Limit (RL) are recorded as 0. RLs as follows:	0.001	0.002	0.002	0.002	0.005	0.002	0.004	0.002	0.1	0.00015	0.002	0.002	0.002		Т

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0.538

0 0 0.204

0 0

0 0 0.246

0 0 0.153

0 0 0.329

0

0.125

0

0

0

0.00256

0.00595

0.00414

0.00284

0.00351

0.00932

0.00177

0.00596

0.00422

0

0

0

0

0

0

0

0

0

0.72

0.26

0.034

0.14

0.05

0.14

0.03

0.57

1.05

0.41

0.21

0.42

0.05

0.14

WWC-4

WWC-5

WWC-6

WWC-7

wwc-8

wwc-9

WWC-10

1.05

0

0

0

14.38 7.21

16.43 6.92

14.67 7.23

15.01 7.23

14.97 7.79

15.26 7.79

14.48 7.49

-34

13

-190

-60

-96

-132

-200

4460

7170

3970

1150

4920

1540

1880

2.35 2.86

0.21

1.64

0.28 0.736

0.32 3.15

5.51

1.72 0.99

4.52

2.54

0

0.3

1.7

0.6

1.4

0.6

Assessment	Results																						
																					Radium	Radium	Radium 226 and 228
	Boron	Calcium	Chloride	Fluoride	рН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	226	228	combined
RW-4	0.664	65.5	661	0.758	7.97	292	2280	0	0.0313	0.0880	0	0	0	0	0	0.247	0	0.00314	0	0	-0.11	0.77	0
RW-5	0	28.9	457	0.625	8.19	121	592	0	0.0337	0.0253	0	0	0	0	0	0	0	0.00482	0	0.664	0.08	0.61	0
RW-7	0	47.5	318	0.626	8.35	137	832	0	0.0223	0.0327	0	0	0	0	0	0.148	0	0.0047	0	0	3.1	0.25	3.1
WDB-19	0	33.4	306	1.3	8.23	65.6	824	0	0.0302	0.0476	0	0	0	0	0	0.214	0	0.00675	0	0	0.21	0.87	0.87

				Field Results			
Assessment	Temp	рН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
RW-4	15.2	7.49	-27	2940	0.2	0.27	1.89
RW-5	14.88	7.83	-42	1120	0.3	1.84	0.718
RW-7	15.32	7.65	-132	1610	0	0.55	1.03
WDB-19	17.02	7.89	-201	1610	1.3	4.54	1.03

Assessment 4 - January 7/8, 2020

													iuaiy 7/0, 202															essilient 4			
													Results															Field Resu	ilts		
Landfill Wells																							Radium 226 and	Landfill Wells							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
																													<u> </u>		
								•	•				Results															Field Resu	ılts		
Bottom Ash																							Radium 226 and	Bottom Ash							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
BAC-11	0	72.6	727	0.824	8.06	141	1680	0	0.0321	0.1250	0	0	0	0	0	0.236	0	0.00366	0	0				BAC-11	14.74	7.56	-9	2770	0.7	8	1.77
BAC-12	0	31.2	228	1.12	8.26	77.7	940	0	0.0331	0.2220	0	0	0	0	0	0.322	0	0.00526	0	0				BAC-12	14.53	7.87	-219	1250	0.9	0.24	0.802
BAC-13	0.604	107	1040	0.699	7.63	302	2160	0	0.0223	0.1020	0	0	0	0	0	0.281	0	0.0045	0	0				BAC-13	14.66	7.39	-36	3900	2.7	2.59	2.5
BAC-14	0.555	160	1160	0.538	8.29	527	2540	0	0.0296	0.0606	0	0	0	0	0	0.34	0	0.00201	0	0				BAC-14	14.4	7.37	10	4310	1	0.84	2.76
BAC-15	0	25.2	284	1.49	8.12	85.2	880	0	0.059	0.0506	0	0	0	0	0	0.155	0	0.00733	0	0				BAC-15	14.39	7.78	-5	1530	1.1	3.61	0.982
BAC-16	0	22.5	331	1.69	8.1	84.7	940	0	0.0851	0.0363	0	0	0	0	0	0.167	0	0.00591	0	0				BAC-16	14.71	7.79	-46	1730	0.3	1.82	1.11
BAC-17	0	25.1	135	0.644	8.41	104	420	0	0.032	0.0618	0	0	0	0	0	0	0	0.00497	0	0				BAC-17	15.42	8.12	-252	920	2.9	0.33	0.589
Waste Water	Results																											Field Resu	ilts		
																							Radium 226 and	Waste Water							
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Radium 226	Radium 228	228 combined		Temp	pH	REDOX	Conductance	Turbidity (NTUs)	DO	TDS
WWC-11	0	4.85	132	0.35	11.2	72.1	740	0	0.00231	0.0762	0	0	0.00246	0	0	0.196	0	0.0119	0	0				WWC-11	13.28	11.3	-488	1350	10.9	1	0.861
WWC-12	0	53.8	367	0.377	8.96	140	1080	0	0.0264	0.0583	0	0	0	0	0	0.117	0	0.00444	0	0				WWC-12	13.91	9.19	-295	1610	10.1	0.74	1.03
WWC-13	0	56.3	349	0.34	8.78	131	820	0	0.019	0.0589	0	0	0	0	0	0.109	0	0.00442	0	0				WWC-13	14.29	8.85	-277	1590	4.9	0.74	1.02

Results below reporting limit are recorded as 0.

Date Oct. 2018

Results below laboratory *Reporting Limit* (RL) are recorded as 0. *RLs* as follows: 0.001 0.002 0.002 0.002 0.002 0.005 0.002 0.004 0.002 0.1 0.0015 0.002 0.002 0.002 0.002

Round 14 (all results ppm) Assessment Monitoring - March 25 - April 9, 2020 Round 13 Field Results Landfill Wells Radium 226 and Landfill Wells Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 Radium 228 228 combined REDOX Conductance Turbidity (NTUs) DO TDS Temp 0 57.6 429 0.979 7.70 122 916 0 0.0310 0.0800 0 0 0.00551 0 0 0.241 0 0.00505 0 0.36 0.93 Round 13 14.31 7.53 0.46 CL-U-1 0 1.29 -172 1970 1.0 1.26 964 CL-U-2 60.0 408 1.01 7.68 118 0.0266 0.0901 0.221 0.00404 0.09 CL-U-2 14.47 7.47 -132 1890 4.72 1.21 CLW-1 36.6 304 0.979 7.91 61.0 856 0.0300 0.0612 0.00551 0 0 0.172 0.00527 0 0 0.25 0.12 CLW-1 15.51 7.45 -110 1500 0.3 0.40 0.96 CLW-2 0 47.0 418 1.23 7.84 86.0 992 0.0258 0.0770 0.00337 0 0 0.212 0.00556 0 0 0.03 0.54 0 CLW-2 15.46 7.59 -189 1950 1.0 0.14 1.25 CLW-3 39.4 361 7.88 101 488 0.0387 0.0991 0.00560 -0.04 CLW-3 7.66 -230 1.27 0.00251 0.206 0 0.20 15.26 1760 1.0 0.16 1.13 CLW-4 33.6 323 1.34 7.88 85.5 960 0.0381 0.0822 0.00245 0 0.204 0.00508 0 -0.03 0.47 CLW-4 15.25 7.67 -237 1650 3.3 0.17 1.06 CLW-5 0 34.5 340 1.58 7.86 83.9 800 0.0227 0.0737 0 0 0 0.198 0.00585 0 0 0.15 0.62 CLW-5 15.20 7.57 -234 1730 7.5 0.40 1.11 CLW-6 0 33.0 312 1.48 7.94 81.2 544 0.0225 0.0878 0 0 0.203 0.00540 0 0 0.43 -0.06 CLW-6 14.63 7.57 -236 1650 0.9 0.26 1.06 CLW-7 7.79 60.5 1020 -0.08 CLW-7 0.24 44.3 329 1.03 0.0242 0.0526 0 0 0.180 0.00392 0 0.20 16.02 7.45 1610 0.2 1.03 CLW-8 40.8 316 1.03 7.86 63.7 880 0.0267 0.0634 0 0 0.182 0.00400 0.12 0.12 CLW-8 16.24 7.47 -106 1540 6.0 0.37 0.98 CLW-9 25.2 296 1 90 7.96 83.5 937 0.0402 0.0499 0 0 0 0.170 ٥ 0.00597 0 0.15 0.32 CI W-9 13 95 7 72 -276 1590 19 6.57 1.02 CL-U-3 0 57.7 386 0.889 7.75 116 1090 0 0.0206 0.0478 0 0 0.00553 0 0 0.205 0 0.00467 0 0 -0.06 0.95 0.95 CL-U-3 14.31 7.51 -210 1870 1.7 5.53 1.20 Rottom Ash Radium 226 and **Bottom Ash** 228 combined REDOX Conductance DO TDS Calcium Chloride Fluoride
 Calcium
 Chloride
 Fluoride
 pH
 Sulfate
 TDS
 Antimony
 Arsenic
 Barium
 Beryllium
 Cadmium
 Chromium

 188
 1090
 0.817
 7.50
 367
 3050
 0
 0.0226
 0.0774
 0
 0
 0.0711
 TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 Radium 228 Temp Turbidity (NTUs) 0 0 0.375 0 0.0152 0.00519 0 1.20 BA-U-1 15.43 7.22 BA-U-1 0.28 1.2 -203 4340 0.20 2.78 BA-U-2 2.47 395 0.912 10.70 42.7 872 0.00683 0.0804 0.00611 0.327 0.00629 -0.03 BA-U-2 15.98 10.31 -330 469 0.35 0.305 239 BAC-1 3.00 1890 0.645 7 39 1300 5270 0.0154 0.0340 0.00219 n 0 0.547 0.0170 0.00791 Λ 0.09 0.83 0.83 RAC-1 17.25 7.20 -60 2060 2.4 0.32 5.09 BAC-2 8.38 210 1710 1.16 7.27 2440 6380 0.0609 0.0206 0.00986 0.431 0.000193 0.172 0.0128 0 0.33 1.21 1.21 BAC-2 16.70 7.16 -30 10100 8.1 5.44 6.26 BAC-3 447 7.21 4380 12500 0.0321 0.0284 0.0150 BAC-3 7.18 16500 3.7 0.50 3620 1.26 0 0.913 0.0251 0.0204 0 0.16 0.51 16.05 10.2 BAC-4 0.613 70.5 541 1.09 7.89 295 1540 0.0330 0.0649 0 0.0211 0 -0.06 0.17 BAC-4 15.70 7.53 -107 2600 0.18 1.67 0 0 0.272 0 0.0 BAC-5 83.5 0.991 7.79 416 1760 0.0297 0.0560 0.306 0.0242 0.03 BAC-5 7.51 -74 2900 1.86 0.547 552 0.16 BAC-6 4 02 115 560 0.847 7.74 1020 2340 0.0255 0.0215 0 0 0 0.242 0.0805 ٥ 0 0.14 0.52 BAC-6 16 17 7 49 -63 3540 0.9 0.33 2.26 BAC-7 5.48 92.6 532 1.48 7.91 1090 2400 0.0350 0.0168 0 0 0 0 0.218 0 0.0805 0.00202 0 0.21 0.25 BAC-7 15.35 7.66 -115 3840 1.9 2.47 2.46 BAC-8 BAC-8 BAC-10 BAC-10 BAC-11 84.4 676 0.984 7.71 147 1100 0.0312 0.116 0 Ω 0.244 0.00345 0 0 0.36 0.09 BAC-11 15.03 7.41 12 2980 7.1 7.33 1.91 BAC-12 25.9 210 7.99 71.7 360 0.0423 0.0938 0.132 0.00479 0.23 0.18 BAC-12 14.93 7.75 -152 1280 6.36 0.821 1.24 0 0 0 0 0 1.4 0.604 46400 BAC-13 BAC-13 115 7.50 276 0.0329 0.285 0.00250 0.35 0.55 7.28 3850 1.1 6.99 2.47 BAC-14 0.565 158 940 0.972 7.53 432 1180 0.0359 0.0542 0 0 0 0.321 0.00222 0 0.03 0.08 BAC-14 14.81 7.20 4230 22 2.0 4.84 2.7 BAC-15 0 25.5 267 1.66 7.90 77.9 4600 Ω 0.0588 0.0423 0 0 0 0 0 0.156 Ω 0.00705 0 0 0.22 0.00 BAC-15 14.67 7.72 -45 1550 1.5 7.69 0.99 4620 0 0.00633 BAC-16 14.41 7.71 -64 1710 7.76 BAC-16 24.0 310 1.79 7.93 77.5 0 0.0856 0.0364 0 0 0 0.171 0 0.23 0.29 0.5 0 0 1.1 BAC-17 BAC-17 Waste Water Field Results Results Radium 226 and Waste Water Calcium Chloride Fluoride Sulfate TDS Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Lead Lithium Mercury Molybdenum Selenium Thallium Radium 226 Radium 228 228 combined REDOX Conductance Turbidity (NTUs) DΩ TDS SI-U-1 113 699 0.511 7.70 279 1230 0 0.00865 0.0609 0 0 0.00305 0 0 0.239 0 0.00280 0 0 0.20 1.04 1.04 SI-U-1 16.33 7.30 3 789 0.0 3.90 0.505 286 1940 0.324 7.24 1270 4740 1.42 0.00653 0.0391 0.00724 15.39 7.01 WW-U-1 0 0.00544 0 0 0.412 0 0.00811 0 0.21 1.38 1.38 WW-U-1 -38 3910 1.2 0.17 2.5 WW-U-2 1.23 337 2020 0.473 7.42 981 4020 0.0108 0.0502 0.00696 0 0 0.498 0.00309 0.0112 0 0 1.08 1.08 WW-U-2 13.24 7.19 -19 3800 0.7 1.02 2.43 WWC-1 13.4 464 4800 7.29 3440 13000 0.0256 0.0207 0.936 0.000238 0.0136 0.0133 0 0.36 WWC-1 14.71 6.90 -20 19400 2.8 0.31 12.0 WWC-2 51.7 322 0.452 7.88 124 644 0.0159 0.0357 0.00332 0 0 0.119 0 0.00455 0.24 -0.15 WWC-2 13.47 7.59 -97 1690 0.54 1.08 31.8 254 712 0.0219 0.0304 0 WWC-3 1.06 7.96 85.8 0.00240 0 0 0.142 0.00536 0 -0.08 0.19 0 WWC-3 14.65 7.67 -154 1430 1.1 0.17 0.916 WWC-4 1.20 182 935 0.426 7.44 638 2730 0.0140 0.0437 0 0 0 0.314 0.00207 0.00228 0.47 0.27 WWC-4 14.61 7.13 -12 4750 1.4 0.40 3.04 0 0 WWC-5 2.23 322 1580 0.295 7.15 1340 4670 0.0144 0.0367 0.00432 0 0 0.487 0.00283 0.00560 0 0.04 0.96 0.96 WWC-5 13.45 6.81 -15 7240 2.8 1.09 4.56 WWC-6 0.589 154 925 0.175 7.55 480 2490 0.0140 0.0925 0 0 0 0.00566 0 0.60 0.13 WWC-6 12.59 7.24 -179 4390 1.5 1.21 2.81 WWC-7 41.0 186 0.357 7.96 122 596 0.0194 0.0297 0 0 0 0 0.0044 0 0 0.11 0.17 0 WWC-7 13.36 7.54 -191 1150 1.9 4.72 0.738 WWC-8 0.652 154 1040 0.472 7.58 593 2700 0.0155 0.0564 0 0 0 0.229 0.00322 0.00385 0 0.18 0.18 wwc-8 14.61 7.27 -60 4680 0.8 0.25 2.99 WWC-9 40.5 302 0.843 7.99 98.8 652 0.0305 0.0629 0 0.147 0.00350 0 0.13 0.09 WWC-9 14.20 7.61 -23 1590 3.8 0.22 1.02 WWC-10 55.2 369 0.491 7.85 164 804 0.0240 0.0361 0 0 0 0.107 0.00656 0 0.03 0.40 WWC-10 15.12 7.70 -135 1830 5.35 WWC-11 0 34.9 197 0.467 8.64 97.8 280 0 0.00470 0.150 0 0 0 0 0 0 0 0.00718 0 0 0.21 0.48 0 WWC-11 14.21 8.05 -305 1170 13.8 6.12 0.745 WWC-12 0 77.1 382 0.453 8.85 143 320 0 0.0428 0.0761 0 0 0.00414 0 0 0.111 0 0.00423 0 0 0.03 0.42 WWC-12 13.44 7.98 -267 1830 29.5 0.27 1.17

WWC-13	n	66.4	350
W WC-13	U	00.4	330
Results below rep	orting limit	are record	ed as 0.

WWC-13

66.4 350 7.94 138

0.389

360 0

Oct. 2018 Results below laboratory Reporting Limit (RL) are recorded as 0. RLs as follows: 0.001 0.002 0.002 0.002 0.005 0.002 0.004 0.002 0.1 0.00015 0.002 0.002 0.002

0

0

0

0 0 0.103 0 0.00382

0

0

0.15

0.24

WWC-13

13.45 7.69 -173

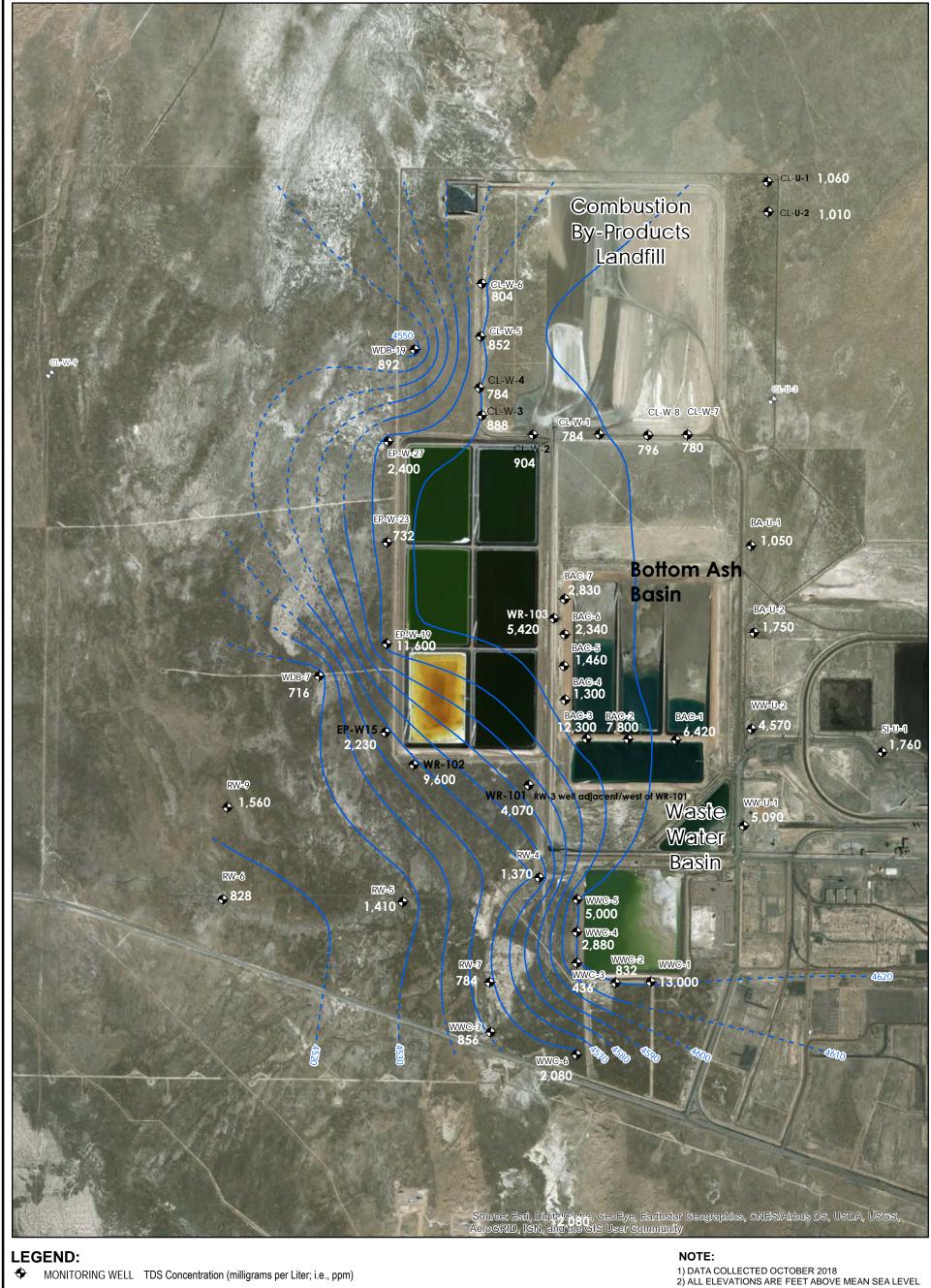
1700

3.1

6.94

1.09

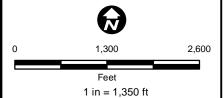
0.0207 0.0450


Assessment	Results																						
																							Radium 226
																					Radium	Radium	and 228
	Boron	Calcium	Chloride	Fluoride	pН	Sulfate	TDS	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	226	228	combined
RW-4	0.709	77	676	0.831	7.78	305.0	1760	0	0.0264	0.0890	0	0	0	0	0	0.262	0	0.00292	0	0	0	0.66	0
RW-5	0	29.6	179	0.627	8.14	115	568	0	0.0306	0.0258	0	0	0	0	0	0	0	0.00466	0	0	0.07	0.4	0
RW-7	0	45.0	361	0.564	7.92	133	676	0	0.0206	0.0317	0	0	0	0	0	0.142	0	0.00442	0	0	-0.07	0.58	0
WDB-19	0	33.6	333	1.44	7.89	78.0	968	0	0.0294	0.0481	0	0	0	0	0	0.224	0	0.00429	0	0	0.18	0.25	0
RW-1																							
EPW-15	0.521	174	1220	0.614	7.56	314	2750	0	0.0209	0.0465	0	0	0.00220	0.00782	0	0.341	0	0.00206	0	0	0.12	1.08	1.08
																							i

	Field Results							
Assessment	Temp	pН	REDOX	Conductance	Turbidity (NTUs)	DO	TDS	
RW-4	14.38	7.47	-26	3080	0.8	6.51	1.97	
RW-5	14.84	7.80	-129	1100	1.4	7.86	0.711	
RW-7	14.93	7.67	-78	1670	1.4	0.23	1.07	
WDB-19	15.03	7.59	-180	1700	2.0	0.21	1.09	
RW-1								
EPW-15	18.47	7.27	-12	4710	6.0	0.37	3.02	

AMENDED ASSESSMENT OF CORRECTIVE MEASURES REPORT

Appendix A Historical Groundwater Flow and TDS Concentration Maps, Excerpted from Semi-Annual Assessment Monitoring Reports
November 30, 2020


Appendix A Historical Groundwater Flow and TDS
Concentration Maps, Excerpted from Semi-Annual Assessment
Monitoring Reports

MONITORING WELL TDS Concentration (milligrams per Liter; i.e., ppm)

✓ GROUND WATER CONTOUR

Q:\active\203709098 Intermountain Power\GIS\2018_11\fig12_Oct2018GWE_20181105.mxd

INTERMOUNTAIN POWER SERVICE CORP. INTERMOUNTAIN GENERATION FACILITY DELTA, UTAH

OCTOBER 2018 TDS Concentrations Superimposed atop

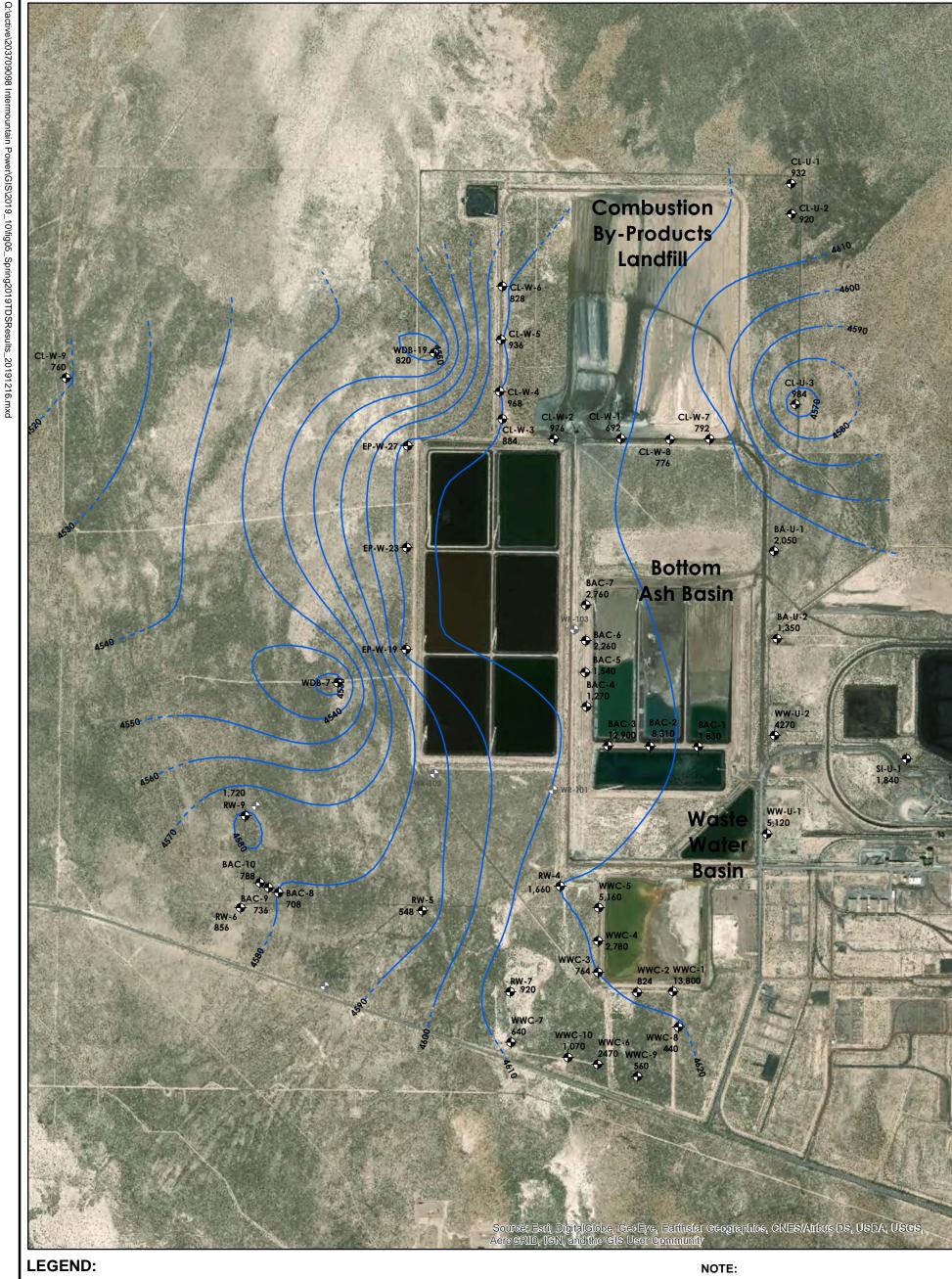
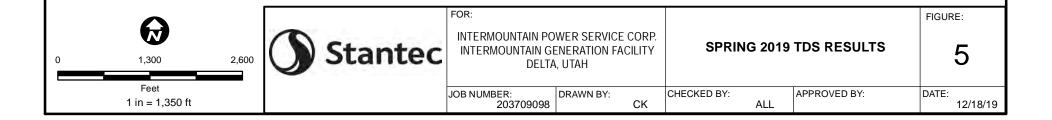

ALL

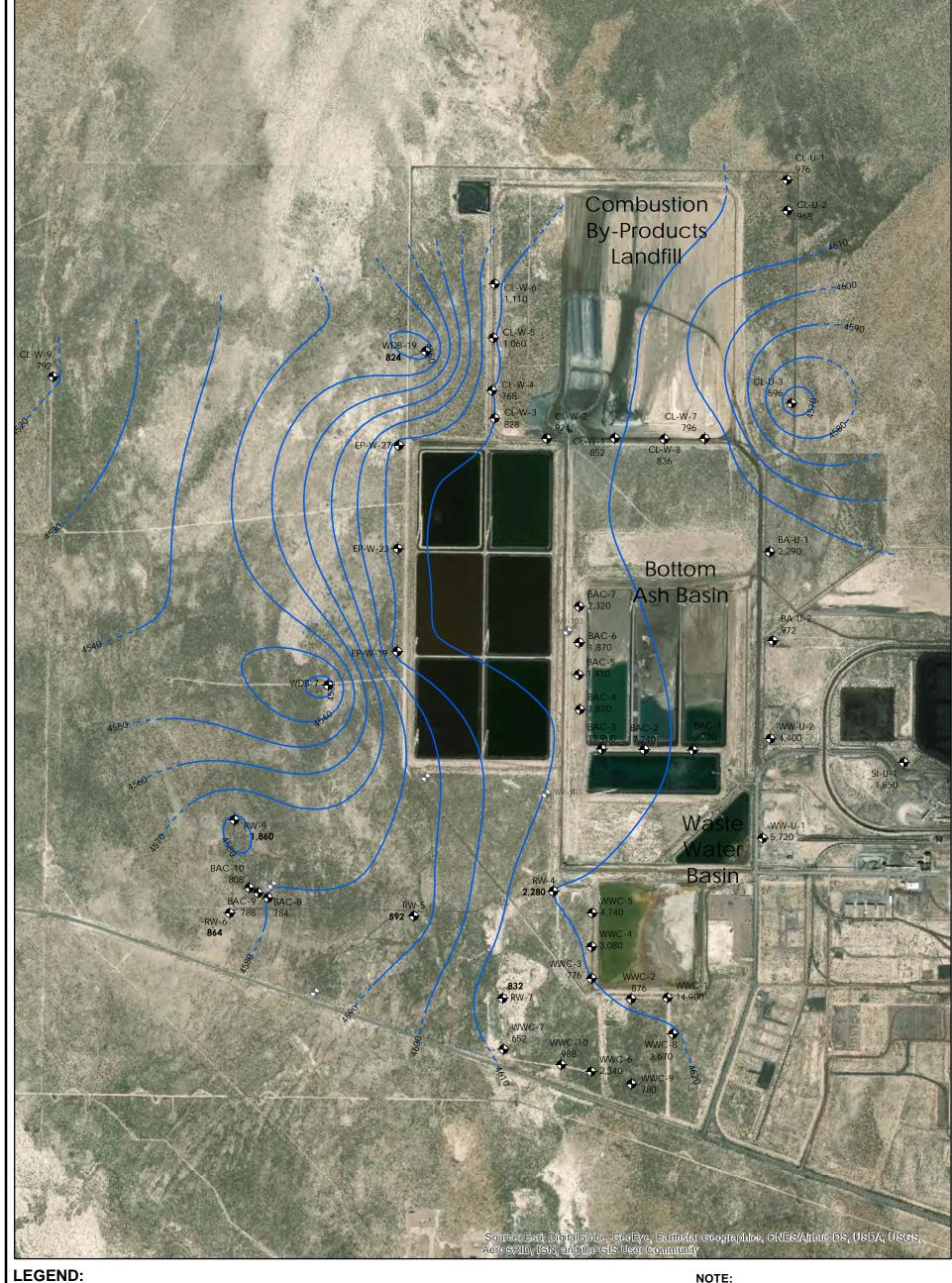
FIGURE:

Oct. 2018 Potentiometric Map JOB NUMBER: 203709098 CHECKED BY: DRAWN BY: APPROVED BY:

JR

11/21/18



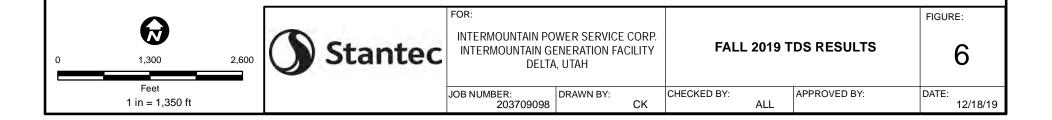

MONITORING WELL (GREYED WHEN NOT USED FOR CONTOURING

718 TDS RESULT (parts per million-ppm)

✓ GROUNDWATER CONTOUR

1) DATA COLLECTED SPRING 2019 2) ALL ELEVATIONS ARE FEET ABOVE MEAN SEA LEVEL

MONITORING WELL (GREYED WHEN NOT USED FOR CONTOURING)

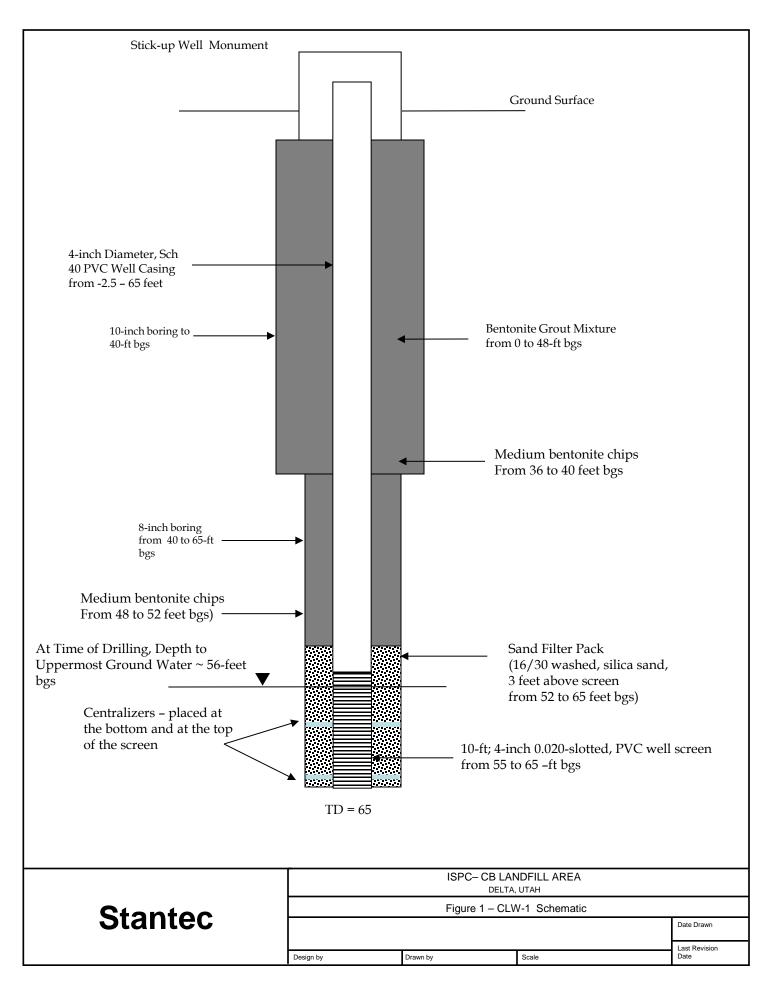

TDS RESULT (parts per million-ppm)

GROUNDWATER CONTOUR

Q:\active\203709098 Intermountain Power\GIS\2019_10\fig06_Fall2019TDSResults_20191216.mxd

NOTE:

1) DATA COLLECTED FALL 2019 2) ALL ELEVATIONS ARE FEET ABOVE MEAN SEA LEVEL


AMENDED ASSESSMENT OF CORRECTIVE MEASURES REPORT

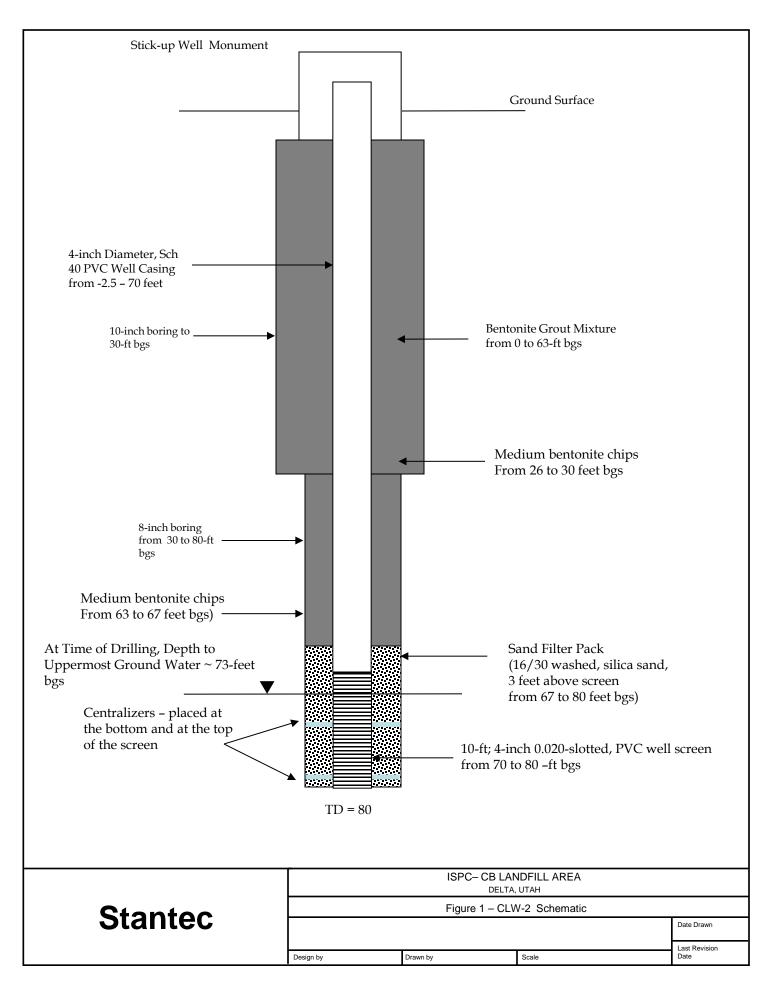
Appendix B Drilling Logs and Well Schematic Diagrams November 30, 2020

Appendix B Drilling Logs and Well Schematic Diagrams

Interval (feet)	Drilling Method	Sample Description		
()		5/11/2015		
0-3	10" Sonic	Brown fine grained Sand with gravel, dry		
3-6	10" Sonic	Light to Dark Brown fine to medium grained Sand, no gravel present, dry		
6-8	10" Sonic	Light Brown fine grained Sand		
8-11.5	10" Sonic	Grayish white fine grained Sand, gravels present, rounded, dry		
11.5-13.5	10" Sonic	Tan SILT with clay matrix, slightly moist		
13.5-17	10" Sonic	Grayish Tan CLAY with small amount of silt present, slightly moist		
17-23	10" Sonic	Grayish Tan SILT with fine grain sand present, trace amounts of clay, slightly moist		
23-27	10" Sonic	Tannish Gray CLAY, denser, dry		
27-32	10" Sonic	Tan CLAY, slightly moist		
32-35	10" Sonic	Tan CLAY, denser material, slightly moist		
		5/12/2015		
35-48	10" Sonic to 40 feet	Tannish gray CLAY, moist		
48-51	8" Sonic	Tannish gray CLAY, moist, softer		
51-52	8" Sonic	Orangish, Brown, black fine grained Sand, moist		
52-54	8" Sonic	Orangish, Brown, Red CLAY, slightly moist		
54-56	8" Sonic	Orangish Brown CLAY with a fine grained sand matrix, slightly moist		
56-62	8" Sonic	Light Brown fine grained Sand, saturated		
62-63	8" Sonic	Light Brown CLAY, slightly moist		
63-63.5	8" Sonic	Fine to medium grained Sand, slightly moist		
63.5-64	8" Sonic	Light Brown CLAY, dry to slightly moist		
64-65	8" Sonic	Light Brown fine grained Sand with clay matrix, moist		

TD = 65; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55

Boring Logs IPSC Delta, Utah


CLW-2

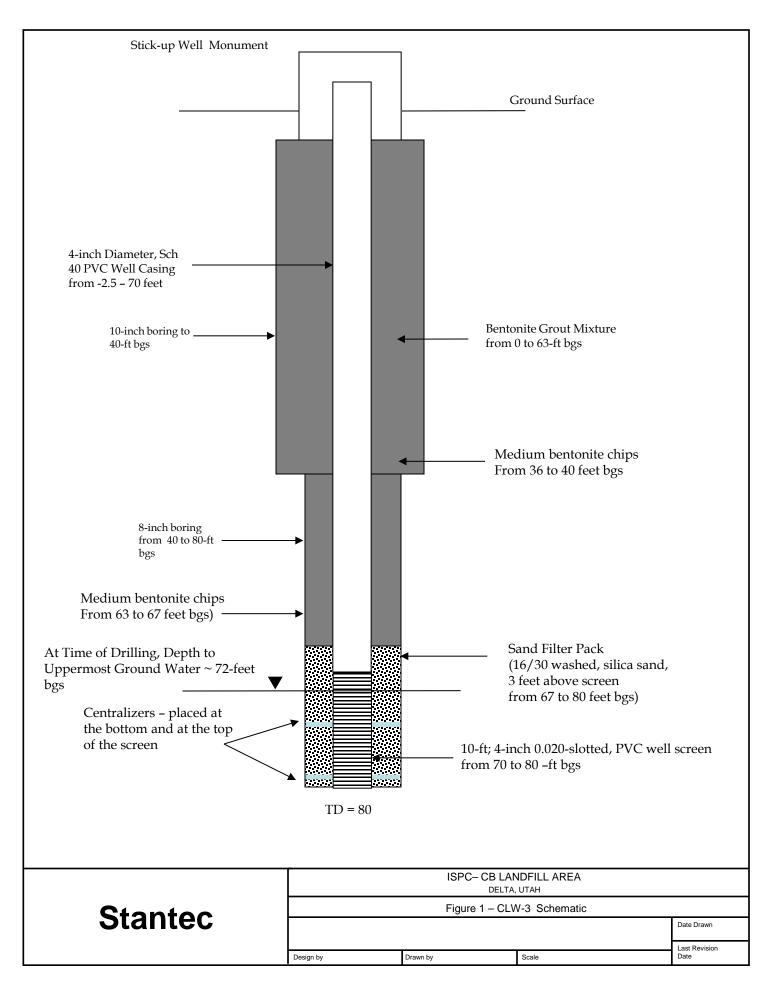
Interval			
(feet)	Drilling Method	Sample Description	
		5/14/2015	
0-8	10" Sonic	Brown fine grained Sand, clay present with gravel, dry	
8-10	10" Sonic	Light to Dark Brown medium to course grained SAND, gravel present, dry	
10-17	10" Sonic	Light Brown to Brown clayey SILT, slightly moist	
17-25	10" Sonic	Light Brown Silty CLAY, moist	
25-46	10" Sonic to 30 feet	Brown CLAY, slightly moist, from 40 to 45 feet transitioned to a Tan to Light Gray color	
46-46.5	8" Sonic	Very moist to saturated zone, very soft clay , very sticky	
46.5-50	8" Sonic	Light Gray CLAY, moist	
50-51	8" Sonic	Tan to Light Gray with Orange zones, CLAY, slightly moist	
51-51.5	8" Sonic	Very moist zone, CLAY	
62	8" Sonic	Transitioning to a Orangish Red CLAY, Slightly moist	
66-66.5	8" Sonic	Moist zone, transitioning from an Orangish Red to a Brown CLAY	
66.5-73	8" Sonic	Reddish brown fine grained Sand with a clay matrix, very moist	
73-80	8" Sonic	Brown fine gained Sand, trace amounts of clay, saturated.	

TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70

Drilling Company - Cascade Drilling

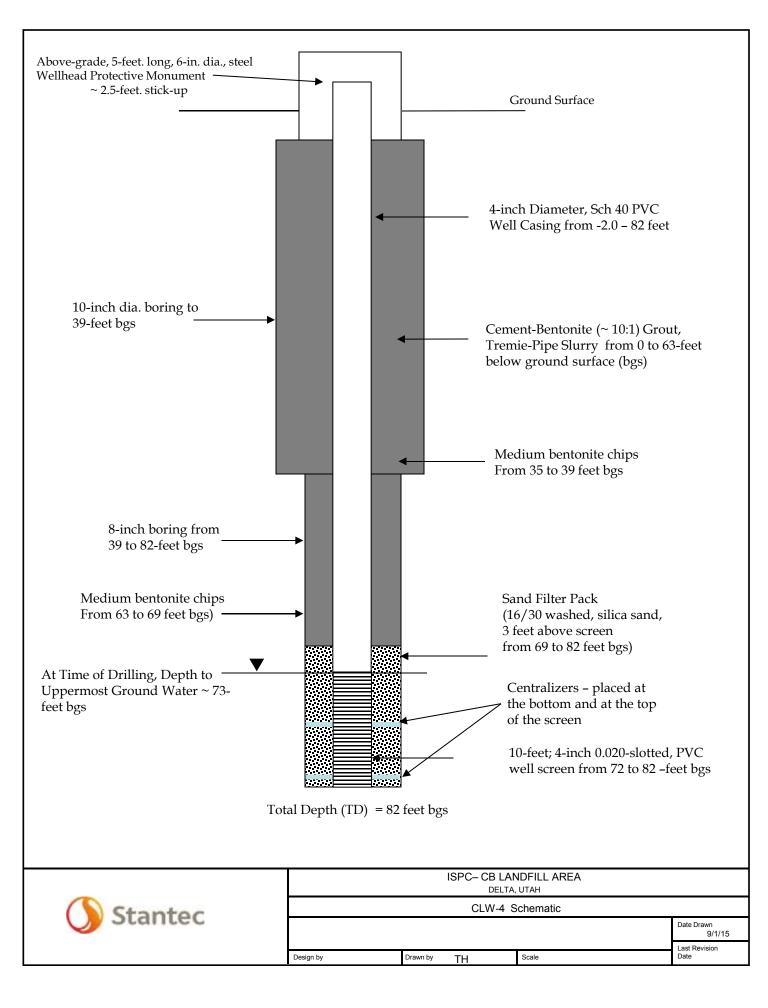
Driller - Rick Mallett Geologist - Thomas Hedrick

Boring Logs IPSC Delta, Utah

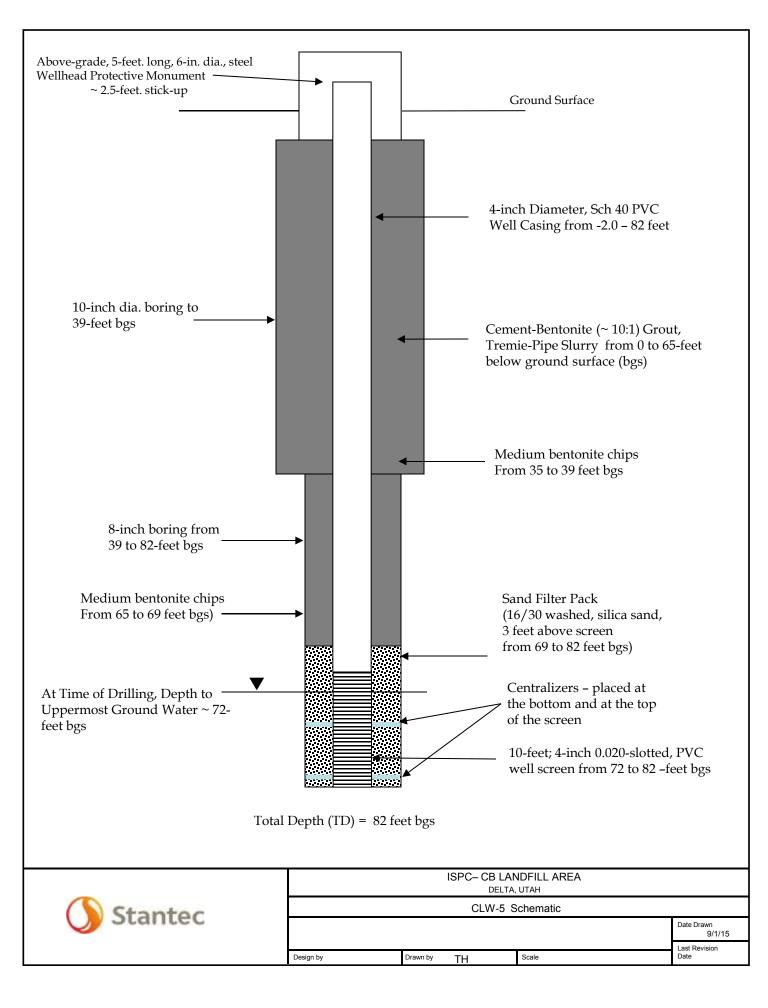

CLW-3

Interval		1	CLW-3
(feet)	Drilling Method	Drill Time	Sample Description
			5/13/2015
0-3	10" Sonic		Brown fine grained Sand , clay present with gravel, dry
3-6	10" Sonic		Light to Dark Brown fine to medium grained Sand, no gravel present, dry
6-11	10" Sonic		Grayish White fine grained Sand, gravels present, rounded, dry
11-13	10" Sonic		Brownish Orange SILT, with fine grained sand present, soft
13-16	10" Sonic		Tannish Gray SILT with a clay present, very moist, sticky
16-21	10" Sonic		Tannish Gray SILT with a clay matrix, very moist, sticky
21-24	10" Sonic		Light Gray CLAY, with silt present, very moist
24-33	10" Sonic		Light Gray to Orange CLAY, with silt present, slightly moist
32-40	10" Sonic to 40 feet		Tan CLAY, denser material, slightly moist
40-66	8" Sonic		Tan to Light Brown CLAY, slightly moist to Dry
63	8" Sonic		Transiting into a Darker Gray CLAY, Moist
66-72	8" Sonic		Very moist to saturated, clay very plastic, firm and sticky
72-73	8" Sonic		Dark Gray fine to medium grained Sand, saturated
73-74	8" Sonic		Dark Gray CLAY, sticky firm, very moist
74-80	8" Sonic		Dark Gray fine to medium grained Sand, saturated

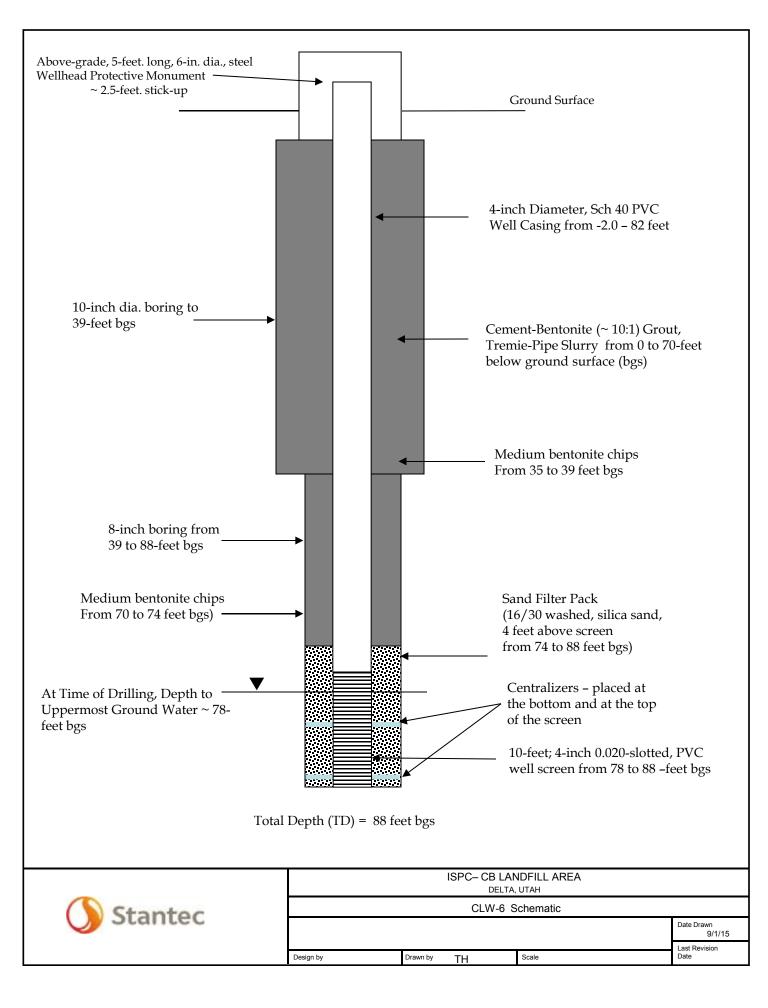
TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70


Drilling Company - Cascade Drilling

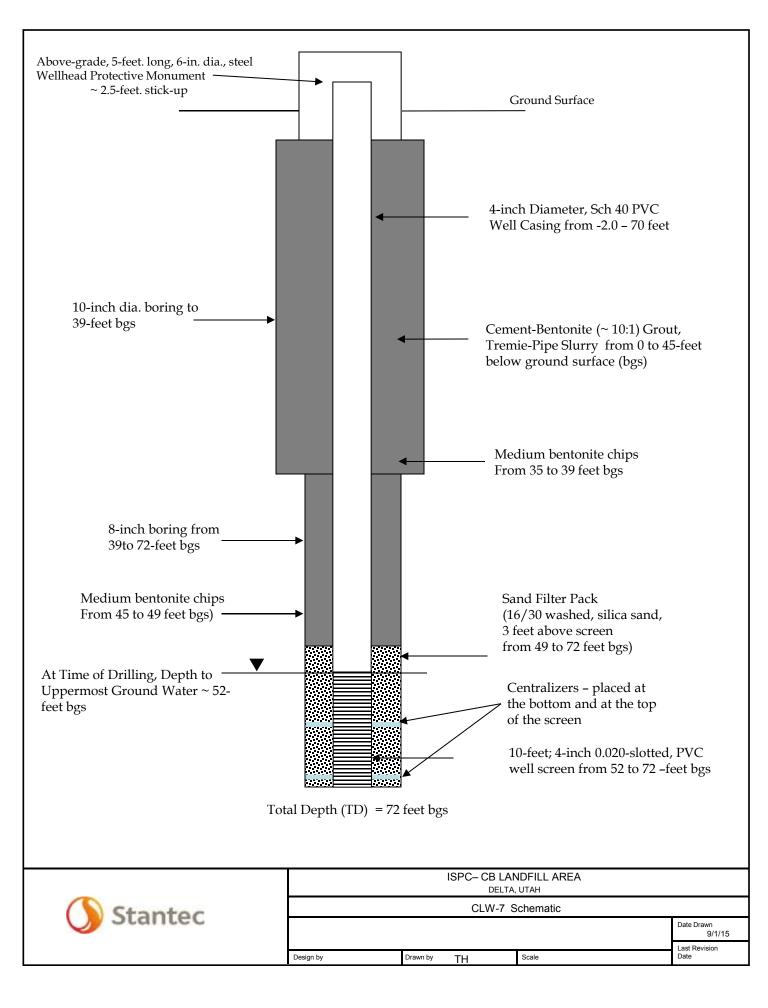
Driller - Rick Mallett Geologist - Thomas Hedrick


		CEW-4			
Interval (feet)	Drilling Method	od Sample Description			
. ,	Ü	7/24/2015			
0-2	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry			
2-5	10" Sonic	Light Brown fine grained Sands, dry			
5-11	10" Sonic	Light Brown to gray fine grained SAND, dry to slightly moist			
11-13	10" Sonic	Light Brown silty CLAY, slightly moist, good plasticity			
13-14	10" Sonic	Light Brown fine grained SAND, with clays present, poor plasticity, dry			
14-16	10" Sonic	Light Brown clayey SILT, dry			
16-18	10" Sonic	Light Brown to Brown silty CLAY, slightly moist, good plasticity			
18-21	10" Sonic	Light Brown to Gray silty CLAY, slightly moist to moist, good plasticity			
21-24	10" Sonic	Brownish Gray CLAY, moist, high plascity			
34-32	10" Sonic	Browninsh Gray CLAY, moist to very moist, high plasticity			
32-53	10" Sonic to 39 feet	Brownish Gray CLAY, dencer, slightly moist,			
		44 - thin layer of brownish orange fine grained sand			
		47 - transitioning into a gray clay			
		49 - thin layer of brownish orange fine grained sand			
53-55	8" Sonic	Brownish Gray CLAY, dense, very plastic, slightly moist			
55-73	8" Sonic	Brown CLAY, very plastic, slightly moist			
73-82	8" Sonic	Brown fine grained SAND with a clay matrix, saturated			

TD = 82; PVC 4-inch screen from 72 to 82; PVC 4-inch riser from -2.5 to 72


		CLW-9		
Interval (feet)	Drilling Method	Sample Description		
		7/26/2015		
0-3	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry		
3-4	10" Sonic	Gravels with medium to fine grand sands, moist		
4-7.5	10" Sonic	Light Brown sitly CLAY, slightly moist, good plasticity		
7.5-10	10" Sonic	Light Brown fine to medium grained SAND, dry		
10-12	10" Sonic	Light Brown to Gray fine to medium grained SAND, gravels present, slightly moist		
12-13	10" Sonic	Light Brown clayey SILT, slightly moist,		
13-15	10" Sonic	Brown fine to medium grained SAND, wht clays and silts, slightly moist		
		7/27/2015		
15-22	10" Sonic	Brown silty CLAY, slightly moist, good plasticity		
22-32	10" Sonic	Light Brown CLAY, moistgood plasticity		
32-38	10" Sonic	Brown CLAY, slightly moist, high plasticity		
38-40	10" Sonic to 39 feet	Light Gray CLAY, slightly moist, hight plasticity		
40-44	8" Sonic	Light Brown to Brown CLAY, slightly moist, high plasticity		
44-52	8" Sonic	Light Gray CLAY, hight plasticity, slighly moist		
52-53	8" Sonic	Brown CLAY, high plasticity, slightly moist		
53-55	8" Sonic	Gray CLAY, high plasticity, slightly moist		
55-72	8" Sonic	Gray CLAY, high plasticity, moist		
72-74	8" Sonic	Gray fine grained SAND, with clay matrix, moist to saturated		
74-75	8" Sonic	Gray CLAY with fine grained sandy matrix, poor plasticity, moist		
75-78	8" Sonic	Gray fine grained SAND wht a clayey matrix, poor plasticity, saturated		
78-80	8" Sonic	Gray CLAY with fine grained sandy matrix, poor plasticity, moist		
80-82	8" Sonic	Gray fine grained SAND wht a clayey matrix, poor plasticity, saturated		

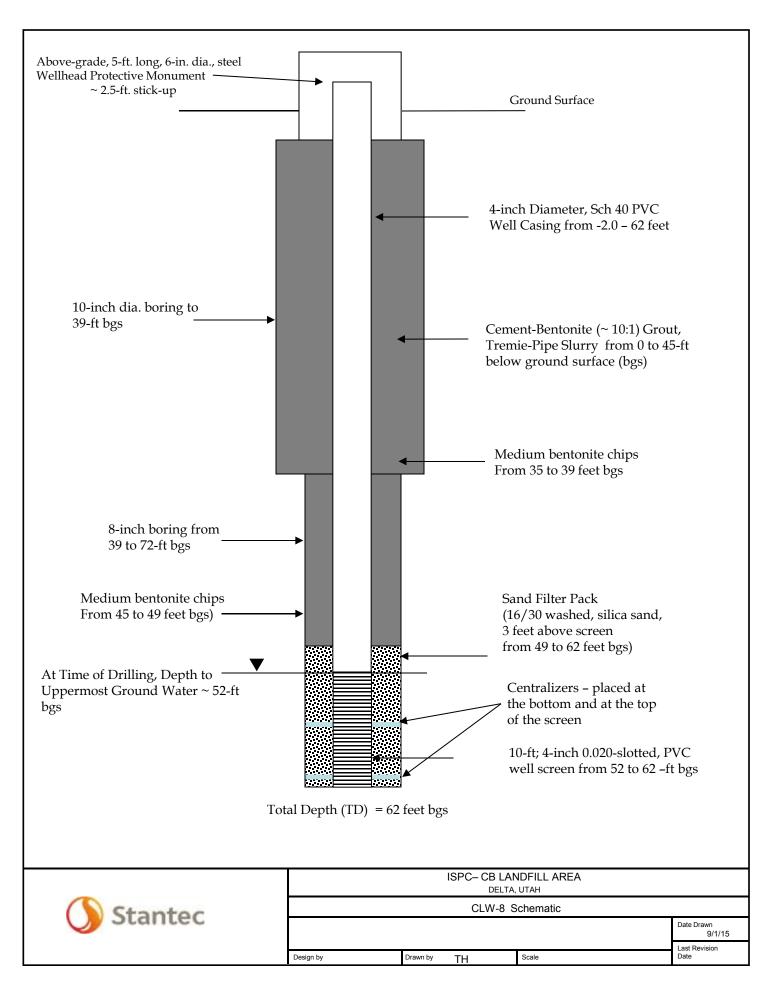
TD = 82; PVC 4-inch screen from 72 to 82; PVC 4-inch riser from -2.5 to 72


Interval (feet)	Drilling Method	Sample Description
		7/26/2015
0-3	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry
3-5	10" Sonic	Light Brown silty fine grained SAND, dry
5-7	10" Sonic	Light Brown fine grained sandy SILT, dry
7-12	10" Sonic	Light Brown fine to medium grained SAND, dry
12-15	10" Sonic	Light Brown fine grained sand, with a clay matrix, dry
15-21	10" Sonic	Light Brown to Brown clayey SILT, slightly moist, poor plasticity
21-22	10" Sonic	Light Brown fine grained sand, with a clay matrix, dry
21-23		Light Brown to Brown clayey SILT, slightly moist, poor plasticity
23-32	10" Sonic	Light Brown CLAY, moist, sticky, high plasticity
32-38	10" Sonic	Light Brown to Gray CLAY, moist, high plasticity
38-47	10" Sonic	Light Gray to Gray CLAY, slightly moist, high plasticity
47-55	10" Sonic to 39 feet	Transitioned to a Brownish gray CLAY, high plasticity, slight moist
55-72	8" Sonic	Brown CLAY, high plasticity, slightly moist
		58 - 58.5 very moist to saturated, 59 - slightly moist
72-78	8" Sonic	Gray CLAY, very moist, high plasticity
78-82	8" Sonic	Gray fine grained SAND with a clay matrix, poor plasticity, saturated
82-84	8" Sonic	Gray CLAY, high plasticity, very moist
84-85	8" Sonic	Gray fine grained SAND with a clay matrix, poor plasticity, saturated
85-88	8" Sonic	Gray CLAY, high plasticity, very moist

TD = 88; PVC 4-inch screen from 78 to 88; PVC 4-inch riser from -2.5 to 78

		=		
Interval (feet)	Drilling Method	Sample Description		
		7/24/2015		
0-8	10" Sonic	Light Brown fine grained Sands with silts and gravel, angular, Dry		
8-12	10" Sonic	Light Brown fine grained Sands with silts and clay, No gravel, Dry		
12-15	10" Sonic	Tan SILT with a clay matrix, Dry		
15-17	10" Sonic	Light Brown to Gray CLAY, medium plasticity, silty present, Dry		
17-22	10" Sonic	Light Brown Clayey SILT, slightly moist		
22-24	10" Sonic	Light Brown to Grayish silty CLAY, Dry		
24-32	10" Sonic	Light Brown to Grayish CLAY, Brown silts and fine grained sands present, , Dry		
32-40	10" Sonic to 39 feet	Light Brown CLAY, slightly moist, became denser at 35 feet		
40-43	8" Sonic	Light Brown to Grayish CLAY, very dense, slightly moist		
43-48	8" Sonic	Gray CLAY, slightly moist, some layers of a brown fine grained sand present every 3 to 4 inches alone the core		
48-50	8" Sonic	Gray CLAY, slightly moist, some Iron Oxide present		
50-51.5	8" Sonic	Brown fine to medium grained SANDS, saturated		
51.5-58	8" Sonic	Brown CLAY, moist to slightly moist		
58-58.5	8" Sonic	Brown fine grained SANDS, with a clay matrix, saturated		
58.5-61	8" Sonic	Brown CLAY, moist to slightly moist		
61-68	8" Sonic	Brown fine to medium grained SANDS, saturated		
68-70	8" Sonic	Brown CLAY, moist to slightly moist		
70-72	8" Sonic	Brown fine to medium grained SANDS, saturated		

TD = 72; PVC 4-inch screen from 52 to 72; PVC 4-inch riser from -2.5 to 52



Boring Logs IPSC Delta, Utah

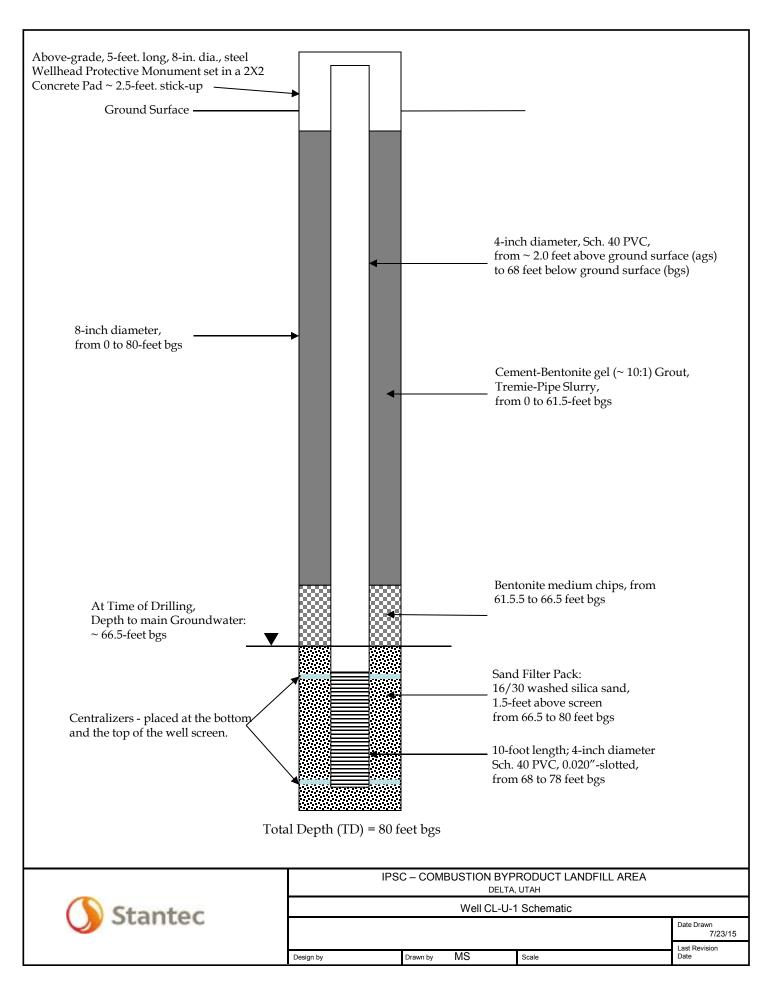
CLW-8

Interval		I	
(feet)	Drilling Method	Sample Description	
		7/24/2015	
0-3	10" Sonic	Light Brown fine grained Sands with silts and gravel, dry	
3-5	10" Sonic	Light Brown fine grained Sands, slightly moist	
5-7	10" Sonic	Tannish white fine grained Sand, with smooth, rounded pebbles, slightly moist	
7-10	10" Sonic	Tannish white silty, fine grained Sand, slightly moist	
10-13	10" Sonic	Tan SILT with a clay matrix, slightly most, slightly plastic	
13-15	10" Sonic	Tan Clayey SILT, dry, plastic	
15-18	10" Sonic	Light Brown to tan silty CLAY, slightly moist, good plasticity	
18-24	10" Sonic	Light Brown CLAY with silts present, slightly moist, good plasticity	
24-32	10" Sonic	Brown silty CLAY, slightly moist, good plasticity	
32-37	10" Sonic	Brown CLAY, dence, dry to slihgtly moist, very plastic	
37-52	10" Sonic to 39 feet	Transitioned fomrthe Brown CLAY to a Gray CLAY, with interbeds of brown fine gran sand layers, highly plastic, slihglty moist	
52-62	8" Sonic	Brown fine grained SAND with a clay matrix, saturated	

TD = 62; PVC 4-inch screen from 52 to 62; PVC 4-inch riser from -2.5 to 52

CL-U-1

Interval (feet)	Drilling Method	USCS	Sample Description		
	7/22/2015				
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.		
0.5-2	8" Sonic	SP/SM	SAND with silt:		
2-2.5	8" Sonic	SM/ML	Silty SAND/Sandy Silt:		
2.5-5	8" Sonic	SM	Silty SAND:		
5-6	8" Sonic	CL	CLAY:		
6-7.5	8" Sonic	SM/ML	Silty SAND/Sandy SILT with clay:		
7.5-10	8" Sonic		CLAY:		
10-11	8" Sonic	СН	CLAY:		
11-12.5	8" Sonic	CII	CLAY:		
12.5-13.5	8" Sonic		CLAY:		
13.5-15	8" Sonic	ML	Sandy SILT:		
15-16.5	8" Sonic	SP/SM	SAND with silt:		
16.5-17.5	8" Sonic	SM	Silty SAND:		
17.5-20	8" Sonic	SP	SAND:		
20-21	8" Sonic		SAND:		
21-22	8" Sonic	ML	Sandy SILT:		
22-23	8" Sonic	SP	SAND:		
23-24	8" Sonic	ML	Sandy SILT:		
24-25	8" Sonic	SP	SAND:		
25-26	8" Sonic		Sandy SILT:		
26-28	8" Sonic	ML	Sandy SILT:		
28-30	8" Sonic	1112	SILT with clay:		
30-32	8" Sonic		Sandy SILT:		
32-34	8" Sonic	SP	SAND:		
34-35	8" Sonic	ML	Sandy SILT with clay:		
35-40	8" Sonic	CL	CLAY:		
40-42	8" Sonic	ML	SILT with clay:		
42-45	8" Sonic		CLAY:		
45-55	8" Sonic	CH	CLAY:		
55-65	8" Sonic		CLAY:		
	1		7/23/2015		
65-66.5	8" Sonic	СН	Sandy CLAY:		
66.5-67.5	8" Sonic	SP/SM	SAND with silt:		
67.5-72.5	8" Sonic	-	SAND with silt:		
72.5-73.5	8" Sonic	SP	SAND:		
73.5-75	8" Sonic	SC	Clayey SAND:		
75-76.5	8" Sonic	SW	SAND:		
76.5-79	8" Sonic	SP	SAND:		
79-80	8" Sonic	CH	CLAY:		

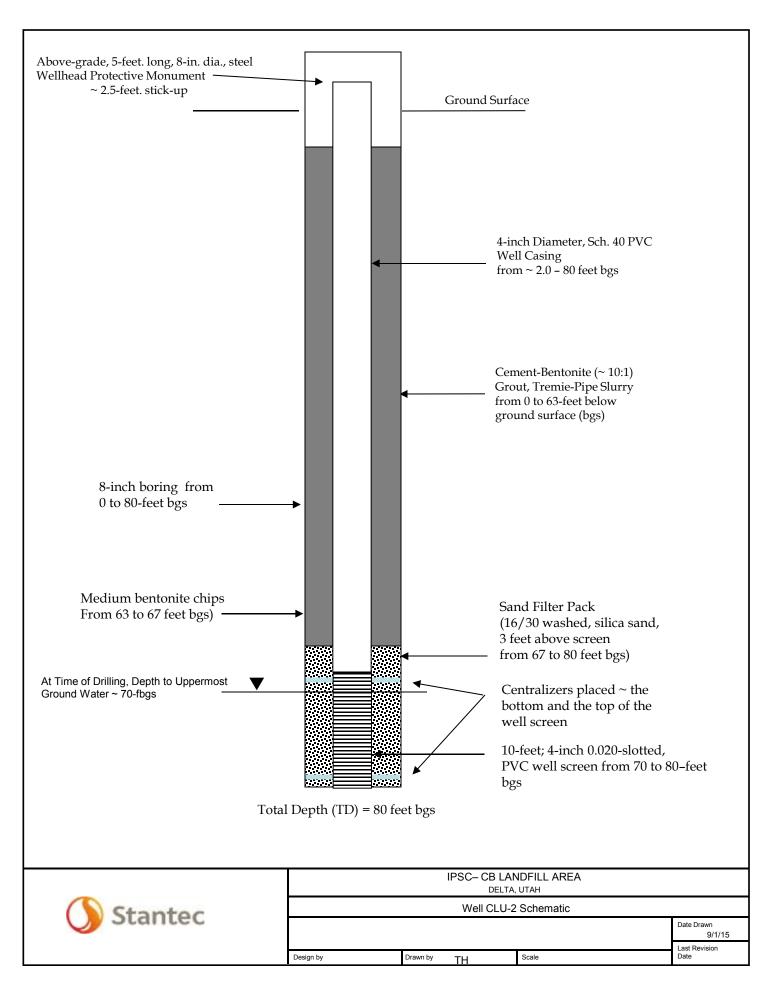

TD = 80'; PVC 4-inch screen from 68 to 78; PVC 4-inch riser from -2.5 to 68 $\,$

Drilling Method: Guspech GS24-300RS 8" Rotosonic

Drilling Company - Cascade Drilling

Driller - Daniel Dodge

Geologist - Michael Sauerwein

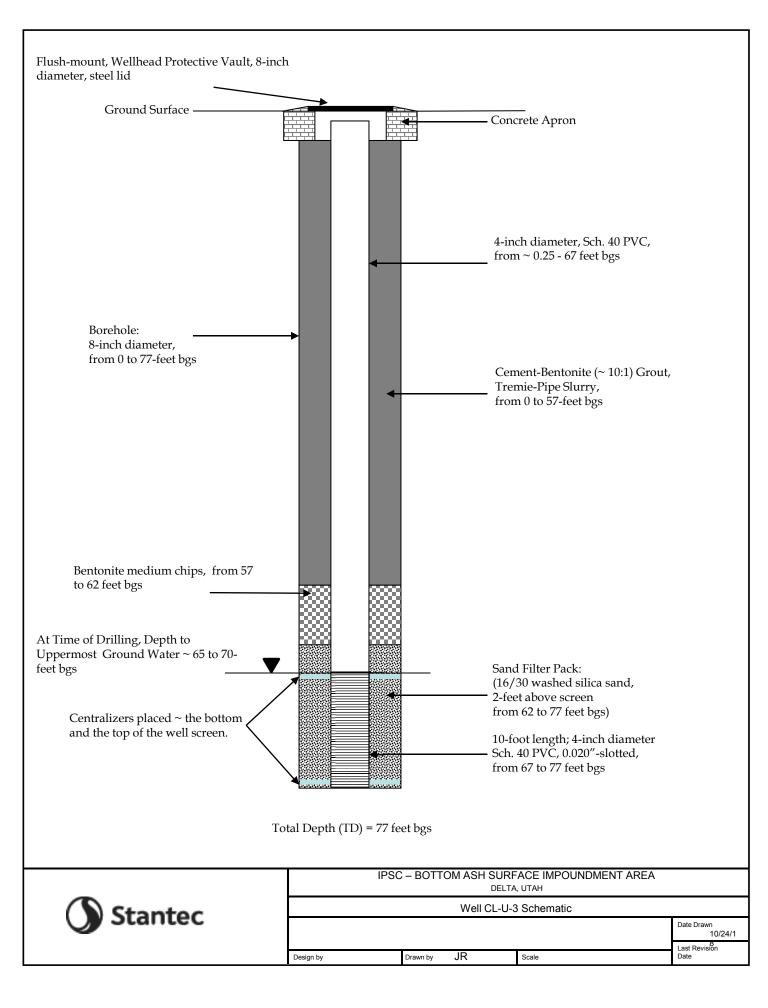


Boring Logs IPSC Delta, Utah

CLU-2

Interval (feet)	Drilling Method	Sample Description			
(reet)	Drining Wethou	7/22/2015			
0-6	8" Sonic	Light Brown fine grained SAND with silt, dry			
6-7.5	8" Sonic	Light Brown to Tan CLAY with silt, slightly moist			
7.5-13	8" Sonic	Light Brown fine grained SAND with silt, dry			
13-16	8" Sonic	Brown fine grained SAND with clayey matrix, slightly moist, some plasticity			
16-24	8" Sonic	Light Brown fine grained SAND, dry			
24-35	8" Sonic	Light Brown clayey SILT, dry			
35-44	8" Sonic	Light Brown Silty CLAY, dry, good plasticity			
44-48	8" Sonic	Gray Clayey SILT, dry, slightly plastic			
48-49	8" Sonic	Brownish Orange CLAY, with a silty matrix, dry, good plasticity			
49-60	8" Sonic	Brownish Orange CLAY, slightly moist			
	8" Sonic	53-55 soil becomes slightly moist and Iron Oxide present			
	8" Sonic	57-61 soil is dry			
61-67	8" Sonic	Brownish Gray CLAY, at 61 feet very moist, very plastic			
67-70	8" Sonic	Gray CLAY, moist, very plastic			
70-75	8" Sonic	Gray fine to medium grained SAND, saturated, nonplastic			
75-77	8" Sonic	Greenish Gray to Brown Clay fine grained SAND with a CLAY matrix, saturated			
77-80	8" Sonic Brownish Gray, fine to medium grained SAND, saturated				

TD = 80; PVC 4-inch screen from 70 to 80; PVC 4-inch riser from -2.5 to 70

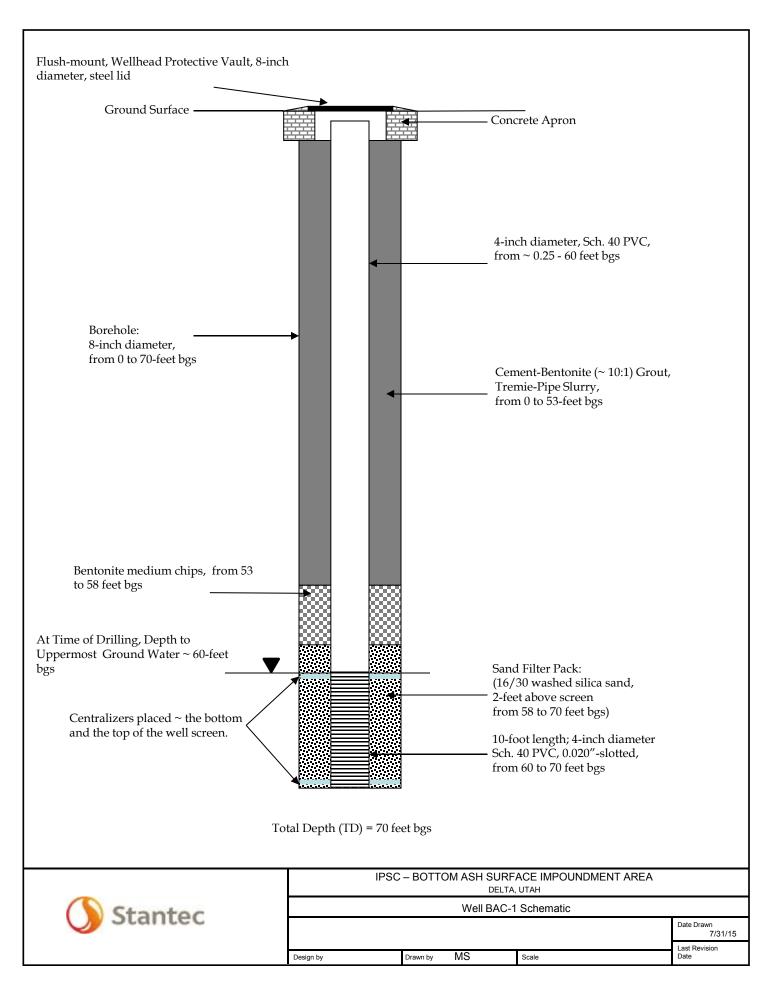

CL-U-3

Interval (feet)	Drilling Method	USCS	Sample Description
			3/26/2018
0-2	8" Sonic	SW	Sand, silt and clay
2-14	8" Sonic	SP	Sand, poorly graded, dry
14-17	8" Sonic	MH	Silt, dry
17-18	8" Sonic	MH	Silt with trace clay, dry
18-27.5	8" Sonic	MH	Silt, dry
27.5-37	8" Sonic	СН	Clay, silt stringers every 3-10", red mottling, moist
37-48	8" Sonic	СН	Clay, distance between silt stringers increasing to 10-18"
48-57	8" Sonic	СН	Clay, massively bedded
57-64	8" Sonic	СН	Clay, massively bedded
64-65	8" Sonic	SP	Sand, medium-grain, saturated
65-66	8" Sonic	MH	Silt, saturated
66-67	8" Sonic	SP	Sand, saturated
67-74	8" Sonic	SP	Sand, saturated
74-75	8" Sonic	СН	Clay
75-77	8" Sonic	SP	Sand, saturated

TD = 77; screen 67-77; sand 62-7; plug 57-62; grout to surface; centralizers 66.5 and

Drilling Method: Sonic

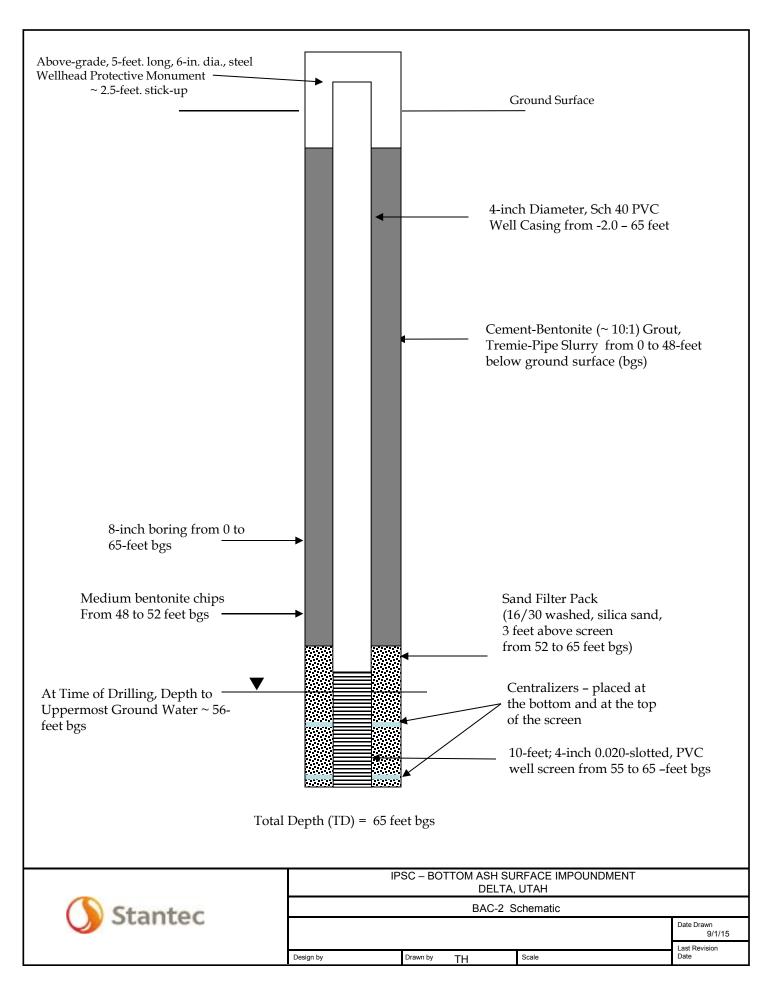
Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler


BAC-1

Interval (feet)	Drilling Method	USCS	Sample Description
7/31/2015			
0-0.75	8" Sonic	Concrete	Surface - concrete soil mixture
0.75-2.5	8" Sonic	SM	Silty SAND:
2.5-3.25	8" Sonic	Sivi	Silty SAND:
3.25-5	8" Sonic		SAND with silt:
5-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13.5	8" Sonic		SAND with silt:
13.5-14.5	8" Sonic	ML	Sandy SILT:
14.5-15	8" Sonic	WIL	Sandy SILT:
15-17.5	8" Sonic	SP	SAND:
17.5-19	8" Sonic	SP/SW	SAND:
19-20	8" Sonic	SP/SM	SAND with silt:
20-21.5	8" Sonic	SP	SAND:
21.5-22.5	8" Sonic		Sandy SILT:
22.5-24	8" Sonic	ML	Sandy SILT:
24-25	8" Sonic	SP	SAND:
25-26.75	8" Sonic	SM	Silty SAND:
26.75-27.5	8" Sonic	SP	SAND:
27.5-28.5	8" Sonic		SAND:
28.5-30	8" Sonic	SM	Silty SAND:
30-31.5	8" Sonic	SP	SAND:
31.5-32.25	8" Sonic	SM	Silty SAND:
32.25-33.75	8" Sonic	SP/SM	SAND with silt:
33.75-35	8" Sonic	SM	Silty SAND:
35-36	8" Sonic	SP/SM	SAND with silt:
36-37.5	8" Sonic	SM	Silty SAND:
37.5-38	8" Sonic	SP/SM	SAND with silt:
38-38.5	8" Sonic	SM	Silty SAND:
38.5-40	8" Sonic	ML	Sandy SILT:
40-42.5	8" Sonic	SC	Clayey SAND:
42.5-43.5	8" Sonic		Sandy CLAY:
43.5-44.5	8" Sonic		Sandy CLAY:
44.5-45	8" Sonic	CL	Sandy CLAY:
45-46	8" Sonic		Sandy CLAY:
46-47	8" Sonic		Sandy CLAY:
47-47.75	8" Sonic	SW	SAND:
47.75-48.5	8" Sonic	СН	Sandy CLAY:
48.5-50	8" Sonic		Sandy CLAY:
50-51.5	8" Sonic		CLAY:
51.5-53.5	8" Sonic		Sandy CLAY:
53.5-56	8" Sonic		CLAY:
56-57.5	8" Sonic		Sandy CLAY:
57.5-58	8" Sonic	SC	Clayey SAND:
58-59.5	8" Sonic	CH	CLAY:
59.5-60	8" Sonic	SC	Clayey SAND:
60-64.5	8" Sonic	SM	Silty SAND with clay:
64.5-65.5	8" Sonic	SC	Clayey SAND:
65.5-67.5	8" Sonic	SP	SAND:
67.5-70	8" Sonic	SW	SAND:
07.5-70	0 Joine	311	OTHER.

TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from 0 to 60

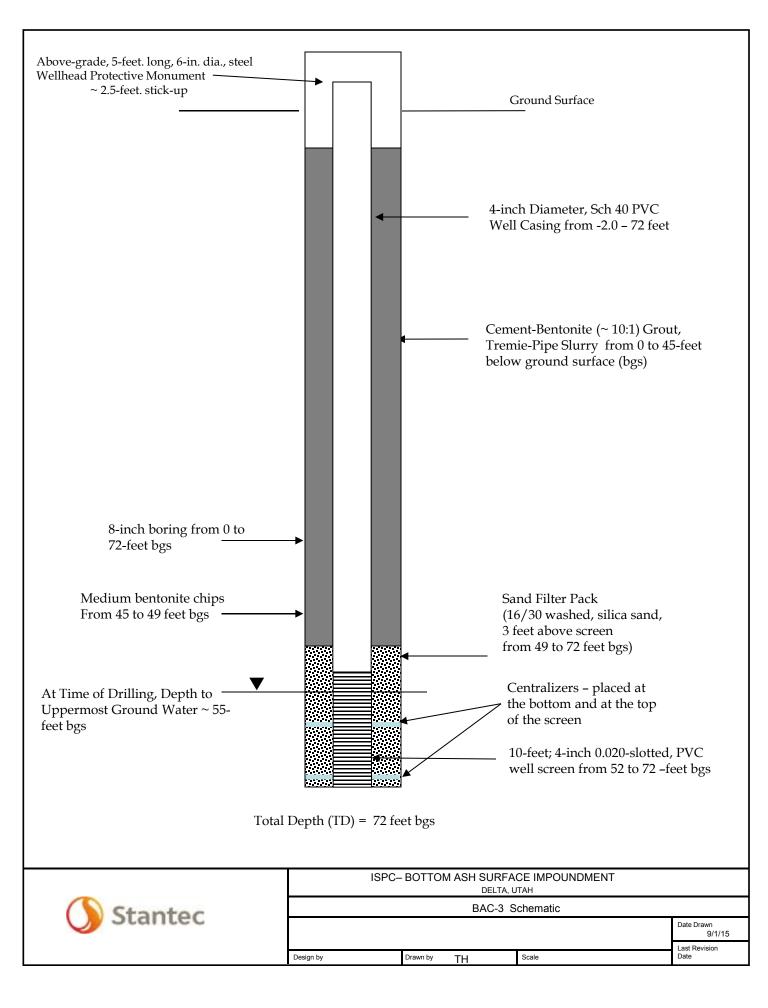
Drilling Method: Guspech GS24-300RS, 8" Rotosonic


Drilling Company - Cascade Drilling Driller - Daniel Dodge Geologist - Michael Sauerwein

Interval		DAC-2
(feet)	Drilling Method	Sample Description
		7/29/2015
0-6	8" Sonic	Light Brown fine grained Sand, gravels, dry
6-12	8" Sonic	Light Brown fine grained SAND, moist
12-18	8" Sonic	Light Brown fine to medium grained sand, dry
18-23	8" Sonic	Light Brown fine to medium grained sand, with a clay matrix, dry
23-24	8" Sonic	Light Brown fine to medium grained sand, very moist, trace amount of clay
24-26	8" Sonic	Brown fine to medium grained sand, slightly moist
26-30	8" Sonic	Brown fine to medium grained sand, with gravels present, slightly moist
30-33	8" Sonic	Light Brown fine grained sand, slightly moist
33-34	8" Sonic	Light Brown CLAY, very moist, high plasticity
34-36	8" Sonic	Light Brown fine grained sand, with a clay matrix, moist
36-38	8" Sonic	Light Brown Silty CLAY, moderately plastic, slightly moist
38-40	8" Sonic	Brownish Red silty CLAY, good plasticity, slightly moist
40-41	8" Sonic	Brown fine grained SAND, saturated
41-42	8" Sonic	Brown SILT with a clay matrix, slightly moist
42-52	8" Sonic	Reddish brown CLAY, high plasticity, dry to slightly moist
52-55	8" Sonic	Reddish brown CLAY, high plasticity, dry to slightly moist, very dense
55-56	8" Sonic	Brown fine grained SAND with a clay matrix very moist to saturated
56-57	8" Sonic	Reddish brown CLAY, high plasticity, slightly moist to moist
57-65	8" Sonic	Brown fine grained SAND with a clay matrix, saturated

TD = 65; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Thomas Hedrick

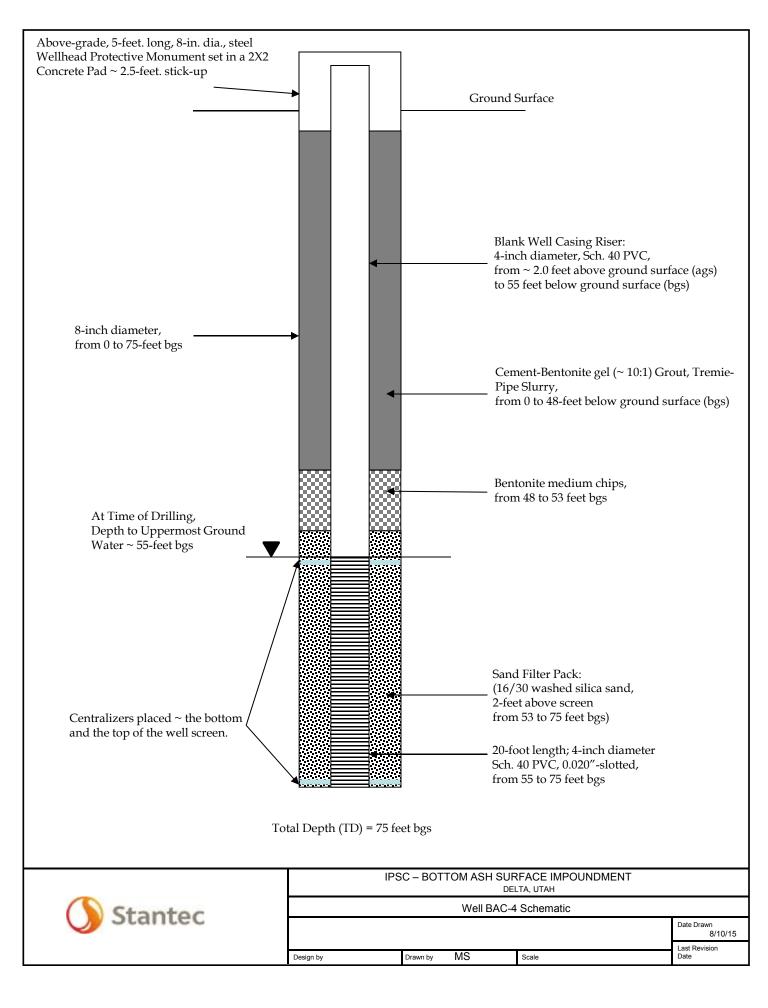

Boring Logs IPSC Delta, Utah

BAC-3

Interval		
(feet)	Drilling Method	Sample Description
		7/28/2015
0-8.5	8" Sonic	Light Brown fine grained Sand, dry
8.5-11	8" Sonic	Light Brown fine to medium grained SAND, moist
11-14	8" Sonic	Light Brown fine grained sand, with a clay matrix, dry
14-17	8" Sonic	Gravels with fine to medium grained SAND, slightly moist
17-20	8" Sonic	Brown fine grained sand, slightly moist
20-22	8" Sonic	Brown fine to medium grained sand, with a clay matrix, slightly moist
22-26	8" Sonic	Brown fine to medium grained sand, with a clay matrix, moist
26-30	8" Sonic	Brown fine grained sand, moist
30-43	8" Sonic	Light Brown CLAY, slightly moist to moist, high plasticity
		30-33 Silty CLAY, poor plasticity
		33-35 Silty CLAY, moderately plastic
		35-43 very little silt present, high plasticity
43-45	8" Sonic	Transitioned to a Reddish Brown CLAY, dry, high plasticity
45-50	8" Sonic	Transitioned to a Brown CLAY, dry, high plasticity
50-55	8" Sonic	Light Brown CLAY, moist, high plasticity
55-58	8" Sonic	Light Brown fine grained SAND, with a clay matrix, slightly moist to moist
58-72	8" Sonic	Light Brown CLAY, with a sandy matrix medium to poor plasticity, moist

TD = 72; PVC 4-inch screen from 52 to 72; PVC 4-inch riser from -2.5 to 52

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Thomas Hedrick

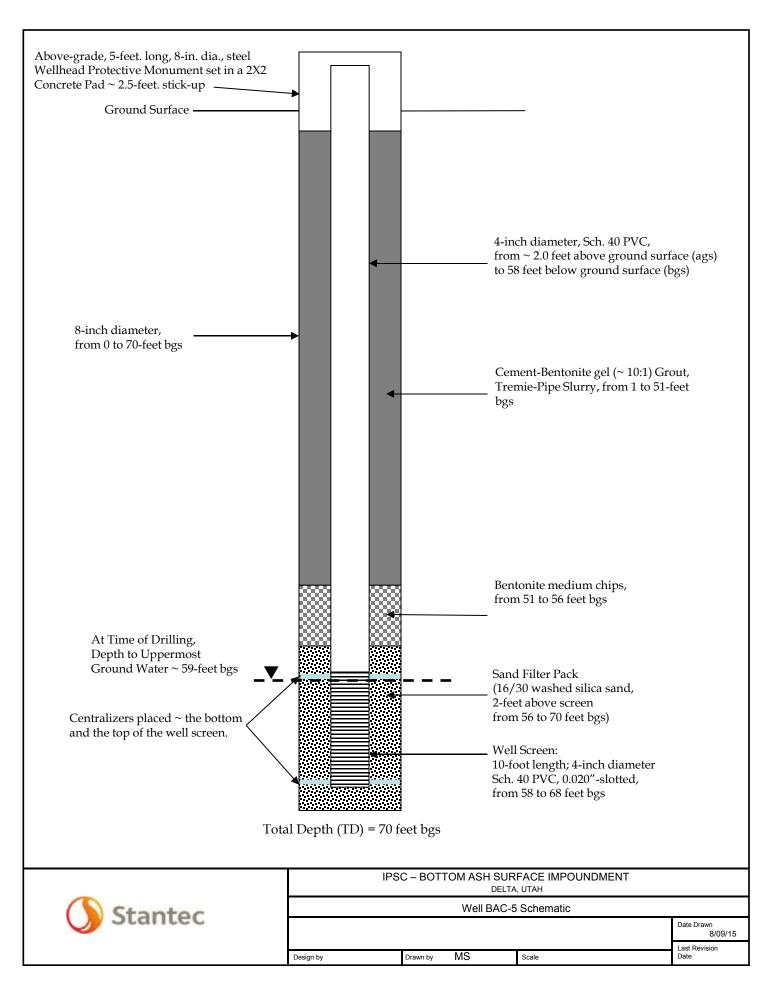


Interval (feet)	Drilling Method	USCS	Sample Description				
	8/10/2015						
0-0.5	8' Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.				
0.5-2.5	8' Sonic	SP/SM	SAND with silt:				
2.5-5	8' Sonic	SP	SAND:				
5-9	8' Sonic		SAND:				
9-10	8' Sonic	SP/SM	SAND with silt:				
10-15	8' Sonic	SP	SAND:				
15-17.5	8' Sonic	SP/SM	SAND with silt:				
17.5-19	8' Sonic	,	SAND with silt:				
19-2	8' Sonic	SC	Clayey SAND:				
20-21	8' Sonic		Clayey SAND:				
21-22	8' Sonic	CL	Sandy CLAY:				
22-22.5	8' Sonic	ML	Sandy SILT:				
22.5-25	8' Sonic	CL	Sandy CLAY:				
25-32.5	8' Sonic	CH	CLAY:				
32.5-33.75	8' Sonic	SP	SAND:				
33.75-35	8' Sonic	SM	Silty SAND:				
35-36.5	8' Sonic	SP/SM	SAND with silt:				
36.5-37.5	8' Sonic		SAND with silt:				
37.5-38	8' Sonic	SM	Silty SAND:				
38-38.75	8' Sonic	CH	Sandy CLAY:				
38.75-39	8' Sonic	SP/SM	SAND with silt:				
39-40	8' Sonic	CH	Sandy CLAY:				
40-42.5	8' Sonic	ML	Sandy SILT with clay:				
42.5-43.5	8' Sonic	SM	Silty SAND and clay:				
43.5-45	8' Sonic	CII	CLAY:				
45-47.5	8' Sonic	CH	CLAY:				
47.5-48.5	8' Sonic		CLAY:				
48.5-50	8' Sonic	ML	Clayey SILT with sand:				
50-51.25	8' Sonic	CII	Clayey SILT:				
51.25-52.5	8' Sonic	CH	CLAY:				
52.5-55	8' Sonic	SC	Clayey SAND:				
55-56.5 56.5-57	8' Sonic	SM ML	Silty SAND:				
56.5-57	8' Sonic 8' Sonic	IVIL	Clayey SILT with sand: CLAY:				
57.5-58.5	8' Sonic	CH	CLAY:				
58.5-59.5	8' Sonic		Clayey SILT with sand:				
59.5-61	8' Sonic		Clayey SILT with sand: Clayey SILT with sand:				
61-64	8' Sonic	ML	Clayey SILT with sand: Clayey SILT with sand:				
64-65	8' Sonic		Clayey SILT with sand: Clayey SILT with sand:				
65-65.5	8' Sonic	SM	Silty SAND:				
65.5-67	8' Sonic	CL	Silty CLAY:				
67-67.5	8' Sonic	ML	Clayey SILT:				
67.5-69	8' Sonic	1711.	CLAY:				
69-69.5	8' Sonic	СН	CLAY:				
69.5-70	8' Sonic	Ç11	CLAY:				
70-72.5	8' Sonic	ML	Sandy SILT with clay:				
72.5-74	8' Sonic	CH	Silty CLAY:				
74-75	8' Sonic	SM	Silty SAND:				
14-10	O DOING	UIV1	JIII 2 75: DVC 4 inch screen from 55 to 75: DVC 4 inch vicer from 2.5 to 55				

TD = 75'; PVC 4-inch screen from 55 to 75; PVC 4-inch riser from -2.5 to 55

Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

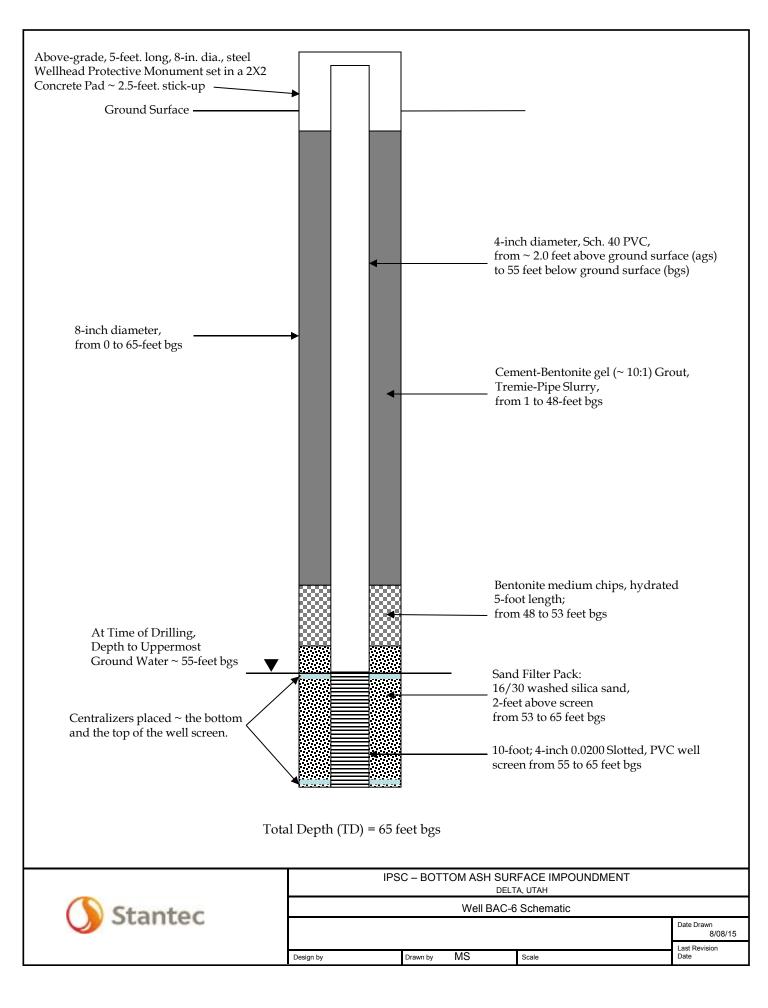

Interval (feet)	Drilling Method	USCS	Sample Description			
8/9/2015						
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
0.5-2.5	8" Sonic	SP/SM	Gravelly SAND with silt:			
2.5-3	8" Sonic		SAND:			
3-6.5	8" Sonic	SP	SAND:			
6.5-10	8" Sonic	51	SAND:			
10-12.5	8" Sonic		SAND:			
12.5-15	8" Sonic	SP/SM	SAND with silt:			
15-19	8" Sonic	SM	Silty SAND:			
19-19.5	8" Sonic	SC	Clayey SAND:			
19.5-20	8" Sonic	SP/SM	SAND with silt:			
20-22.5	8" Sonic		Sandy CLAY:			
22.5-23.75	8" Sonic		Sandy CLAY:			
23.75-25	8" Sonic	CL	Sandy CLAY:			
25-27.5	8" Sonic		Sandy CLAY:			
27.5-30	8" Sonic		CLAY:			
30-32.5	8" Sonic	CL/CH	CLAY:			
32.5-33.5	8" Sonic	SP	SAND:			
33.5-35	8" Sonic	3F	SAND:			
35-36	8" Sonic	SC	Clayey SAND:			
36-37.5	8" Sonic	ML	Sandy SILT:			
37.5-38.5	8" Sonic	IVIL	Sandy SILT:			
38.5-40	8" Sonic		Silty SAND with clay:			
40-42.5	8" Sonic	SM	Silty SAND:			
42.5-44.25	8" Sonic		Silty SAND with clay:			
44.25-45	8" Sonic		CLAY:			
45-46.5	8" Sonic	CH	CLAY:			
46.5-47.5	8" Sonic	СП	CLAY:			
47.5-49	8" Sonic		CLAY:			
49-50.75	8" Sonic	SM	Silty SAND:			
50.75-52.5	8" Sonic	CH	CLAY:			
52.5-53.5	8" Sonic	СП	CLAY:			
53.5-55.5	8" Sonic	SP	SAND:			
55.5-57.5	8" Sonic	CH	CLAY:			
57.5-59	8" Sonic	СП	CLAY:			
59-60	8" Sonic	SM	Silty SAND with clay:			
60-62.5	8" Sonic	SP	SAND:			
62.5-63	8" Sonic	SC	Clayey SAND:			
63-65	8" Sonic	SP	SAND:			
65-65.75	8" Sonic	SC	Clayey SAND:			
65.75-66.5	8" Sonic	CH	CLAY:			
66.5-67.5	8" Sonic	SC	Clayey SAND:			
67.5-69	8" Sonic	CH	CLAY:			
69-70	8" Sonic	CH	CLAY:			

TD = 70'; PVC 4-inch screen from 58 to 68; PVC 4-inch riser from -2.5 to 58

Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Rick Mallett

Geologist - Michael Sauerwein



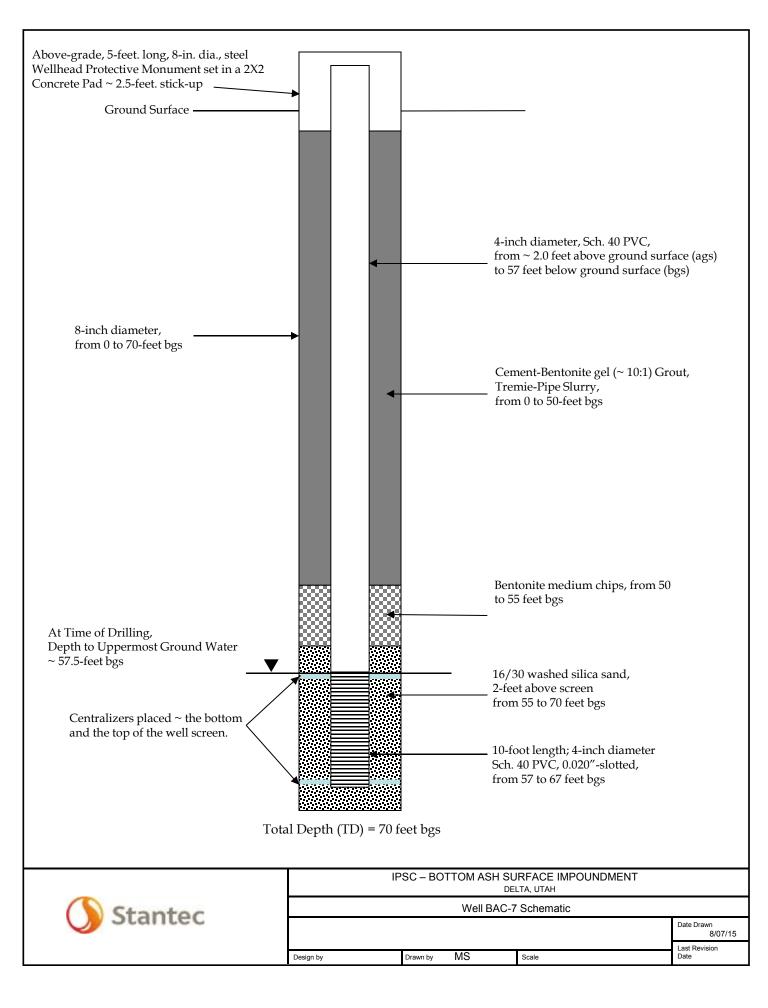
Interval (feet)	Drilling Method	USCS	Sample Description				
	8/8/2015						
0-0.5	8" Sonic	TOPSOIL	urface - Sand, Gravel, roots, coal ash.				
0.5-2.5	8" Sonic	SP/SM	Gravelly SAND with silt:				
2.5-5	8" Sonic	SP	SAND:				
5-6.5	8" Sonic	SP/SM	SAND with silt:				
6.5-7.5	8" Sonic		SAND:				
7.5-10	8" Sonic	SP	SAND:				
10-13.5	8" Sonic		SAND:				
13.5-15	8" Sonic	SM	Silty SAND:				
15-16	8" Sonic	SP	SAND:				
16-17.5	8" Sonic	SM	Silty SAND:				
17.5-18.25	8" Sonic	SP/SM	SAND with silt:				
18.25-18.75	8" Sonic	CL	Sandy CLAY:				
18.75-20	8" Sonic	SC	Clayey SAND:				
20-21.5	8" Sonic	CH	Sandy CLAY:				
21.5-23	8" Sonic	SM	Silty SAND:				
23-25	8" Sonic	CL	CLAY:				
25-27.5	8" Sonic		CLAY:				
27.5-30	8" Sonic	CH	CLAY:				
30-32.5	8" Sonic	CH	CLAY:				
32.5-33.5	8" Sonic		CLAY:				
33.5-35	8" Sonic	SW	SAND:				
35-36	8" Sonic	SM	Silty SAND:				
36-37.5	8" Sonic	SP/SM	SAND with silt:				
37.5-38.5	8" Sonic	CH	CLAY:				
38.5-40	8" Sonic	SM	Silty SAND with clay:				
40-42.5	8" Sonic	SIVI	Silty SAND:				
42.5-43.5	8" Sonic	CH	Sandy CLAY:				
43.5-45	8" Sonic	СП	CLAY:				
45-45.5	8" Sonic	SC	Clayey SAND:				
45.5-47.5	8" Sonic	CH	CLAY:				
47.5-48	8" Sonic	SP	SAND:				
48-49.5	8" Sonic	SM	Silty SAND with clay:				
49.5-50	8" Sonic		Sandy CLAY:				
50-52.5	8" Sonic	CH	CLAY:				
52.5-55	8" Sonic		CLAY:				
55-56	8" Sonic	SM	Silty SAND:				
56-60	8" Sonic	SW	SAND:				
60-61	8" Sonic	SVV	SAND:				
61-62.5	8" Sonic	CH	Sandy CLAY:				
62.5-63.5	8" Sonic	CH	CLAY:				
63.5-65	8" Sonic	SC	Clayey SAND:				

TD = 65'; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Daniel Dodge Geologist - Michael Sauerwein

Interval (feet)	Drilling Method	USCS	Sample Description		
	8/7/2015				
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.		
0.5-2	8" Sonic	SP/SM	Gravelly SAND:		
2-2.5	8" Sonic		Gravelly SAND:		
2.5-5	8" Sonic	SP	SAND:		
5-7	8" Sonic	51	SAND:		
7-8.5	8" Sonic		SAND:		
8.5-9	8" Sonic	SP/SM	SAND with silt:		
9-9.5	8" Sonic	SP	SAND:		
9.5-11	8" Sonic	SP/SM	SAND with silt:		
11-13	8" Sonic	31 / 3111	SAND with silt:		
13-17	8" Sonic	SM	Silty SAND:		
17-18.5	8" Sonic	SIVI	Silty SAND:		
18.5-19	8" Sonic	ML	Sandy SILT:		
19-20.25	8" Sonic	SP/SM	SAND with silt:		
20.25-22	8" Sonic	CL	Sandy CLAY:		
22-24	8" Sonic	CL	Sandy CLAY:		
24-25	8" Sonic	SC	Clayey SAND:		
25-27.5	8" Sonic	CH	CLAY:		
27.5-36.5	8" Sonic	CH	CLAY:		
36.5-40	8" Sonic	SP	SAND:		
40-41.25	8" Sonic	SF	SAND:		
41.25-43.75	8" Sonic	SP/SM	SAND with silt:		
43.75-45	8" Sonic		CLAY:		
45-47.5	8" Sonic	CH	CLAY:		
47.5-49	8" Sonic		CLAY:		
49-50	8" Sonic	SM	Silty SAND:		
50-57.5	8" Sonic	CH	CLAY:		
57.5-60	8" Sonic	SW	SAND:		
60-62.5	8" Sonic	344	SAND:		
62.5-64	8" Sonic	SP	SAND:		
64-65	8" Sonic		CLAY:		
65-66.25	8" Sonic	СН	Sandy CLAY:		
66.25-67.5	8" Sonic		CLAY:		
67.5-70	8" Sonic		CLAY:		


TD = 70'; PVC 4-inch screen from 57 to 67; PVC 4-inch riser from -2.5 to 57

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Drilling Company - Cascade Drilling

Driller - Daniel Dodge

Geologist - Michael Sauerwein

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: BAC-8

Boring Diameter: 10 inches

Drilling Firm: Cascade

Boring Method: Sonic

Project No.: 203709098 **Completion Date:** 2019-04-29

Driller: Ryan Miller **Logged by:** Rich Pratt

Depth to Water at Drilling: 67 feet

Depth to Water at Drilling (static at 24 hours):

45.59 feet

BAC-8

Interval (feet)	Description
0 - 1	Light brown fine-grained sand with clay, dry
1 - 13	Light brown clay with silt, dry
13 - 17	Light brown fine-grained sand with clay, dry
17 - 18	Light brown clay with sand, moist
18 - 19	Medium brown sand, saturated
19 - 21	Light brown clay with sand, moist
21 - 27	Light brown clay with sand, dry
27 - 28	Brown with red clay, moist
28 - 31	Brown clay, moist
31 - 34	Gray clay, moist
34 - 43	Brown clay, moist
43 - 56	Medium brown medium-grained sand, moist
56 – 56.5	Medium brown medium-grained sand with pebbles, moist
56.5 - 57	Medium brown medium-grained sand, moist
57 - 63	Brown clay, moist
63 - 65	Medium brown fine-grained sand, moist
65 – 66.5	Brown clay, moist
66.5 - 67	Medium brown fine-grained sand, moist
67 - 68	Medium brown fine-grained sand, saturated
68 - 69.5	Medium brown fine-grained sand
69.5 - 77	Red and brown clay

Well Completion materials and Depth Intervals (feet) Below Ground Surface

Surface Completion: Stick-up

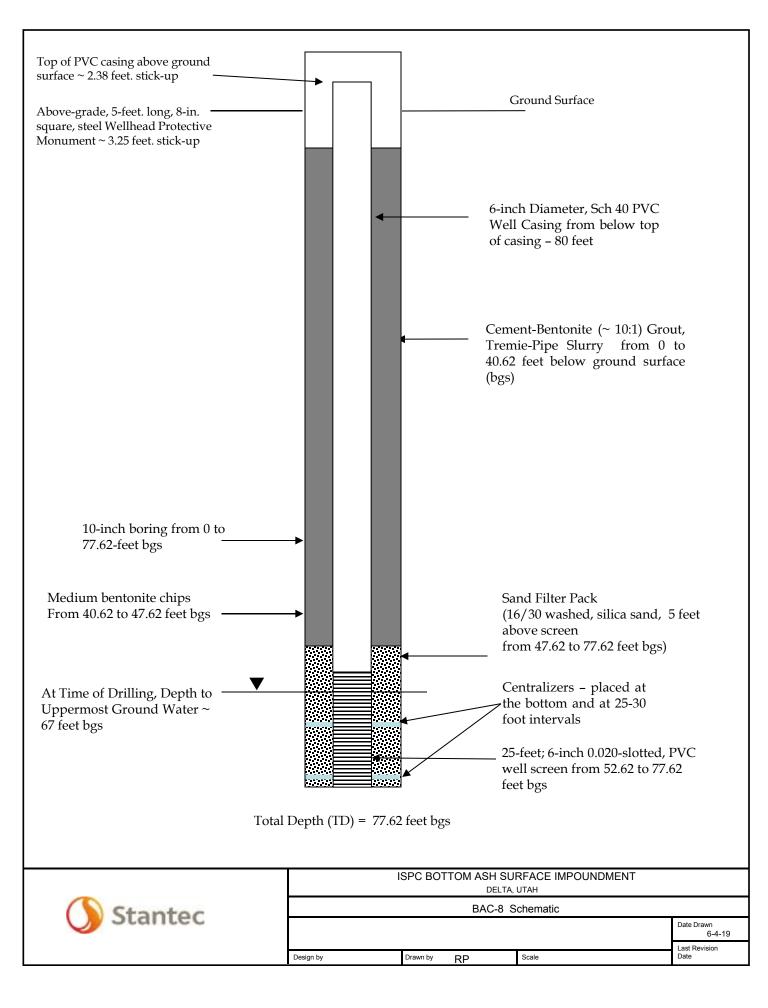
on. Ottok up

Casing, solid (6-inch PVC): 0-52.62 feet

Screen (6 inch, 0.02 slotted, PVC): 52.62-77.62 feet

Sand Pack: 16/30 sand, 47.62-77.62 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


40.62-47.62 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NA

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: BAC-9

Boring Diameter: 10 inches

Drilling Firm: Cascade

Boring Method: Sonic

Project No.: 203709098 **Completion Date:** 2019-05-1

Driller: Ryan Miller **Logged by:** John Russell

Depth to Water at Drilling: 60 feet

Depth to Water at Drilling (static at 24 hours):

44.82 feet

BAC-9

Interval (feet)	Description
0 - 10	Light gray to brown silt with clay to clay with silt, dry
10 - 20	Light gray to brown silt, dry
20 - 30	Light brown silt, dry
30 - 44	Light brown silt, dry
44 - 50	Medium brown clay, dry
50 - 54	Light brown silt to clay with silt, moist
54 – 54.5	Medium brown silt with clay, moist
54.5 - 60	Light brown clay with silt, moist
60 - 77	Medium brown silt with clay and silt stringers, saturated

Well Completion materials and Depth Intervals (feet) Below Ground Surface

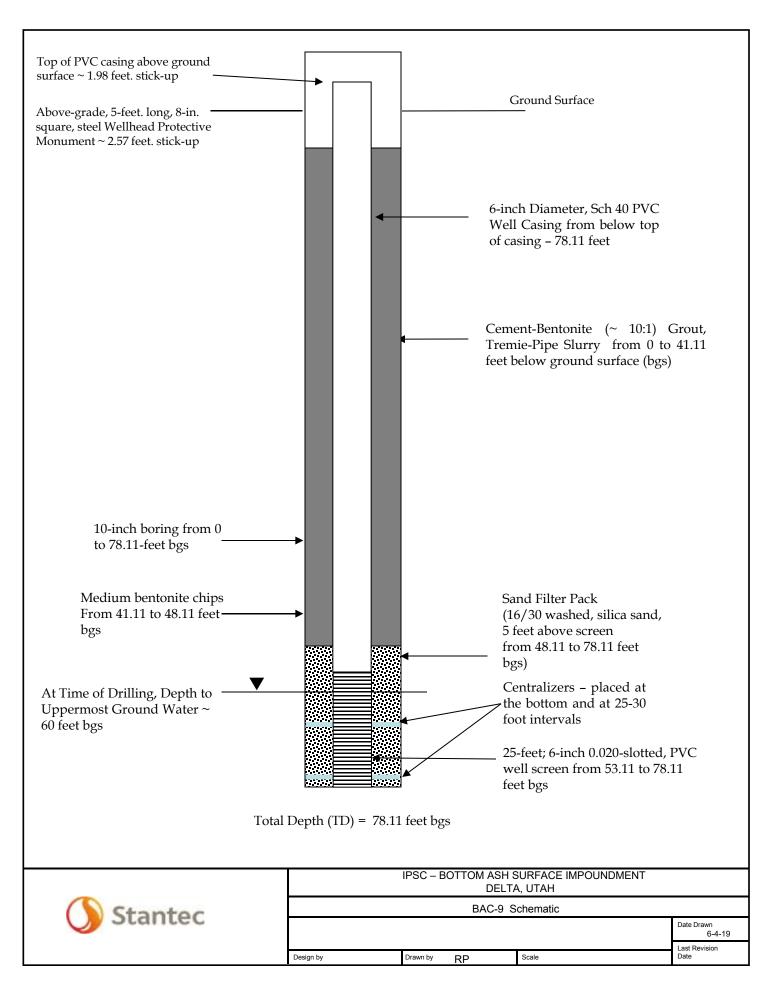
Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-53.11 feet

Screen (6 inch, 0.02 slotted, PVC): 53.11-78.11 feet

Sand Pack: 16/30 sand, 48.11-78.11 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


41.11-48.11 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NA

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: BAC-10

Drilling Firm: Cascade

Boring Method: Sonic

Boring Diameter: 10 inches

Project No.: 203709098 Completion Date: 2019-05-3

Driller: Ryan Miller **Logged by:** Rich Pratt

Depth to Water at Drilling: 69 feet

Depth to Water at Drilling (static at 24 hours): 63.1

feet

BAC-10

Interval (feet)	Description
0 - 1	Light brown silt, dry
1 - 3	Light brown silt with clay, dry
3 - 14	Light brown clay with silt, dry
14 - 17	Light brown fine-grained sand, dry
17 - 19	Light brown fine-grained sand with clay, moist
19 - 21	Light brown fine-grained sand with clay, moist
21 - 23	Light brown fine-grained sand, moist
23 - 25	Light brown fine-grained sand with clay, moist
25 - 26	Light brown fine-grained sand, moist
26 - 27	Light brown fine-grained sand with clay, moist
27 - 28	Light brown fine-grained sand, moist to moist
27 - 34	Light brown fine-grained sand, moist
34 – 34.5	Light brown silt with clay, dry
34.5 – 40.5	Red brown clay, dry
40.5 - 41	Medium brown medium grained sand, moist to moist
41 - 45	Medium brown clay, moist
45 - 46	Medium brown sand, moist to moist
46 - 48	Medium brown clay, moist
48 – 56.5	Red brown clay, moist
56.5 - 57	Gray clay, moist
57 - 62	Light brown clay, moist to moist
62 - 63	Medium brown medium grained sand, moist
63 - 64	Medium brown medium grained sand with clay, moist
64 - 69	Red, brown, and gray clay, moist
69 – 69.5	Medium brown sand, saturated
69.5 - 77	Red, brown, and gray clay
77 - 79	Medium brown clay with sand
79 - 81	Medium brown clay
81 - 85	Medium brown clay with sand

85 - 87	Medium brown clay, moist
---------	--------------------------

Well Completion materials and Depth Intervals (feet) Below Ground Surface

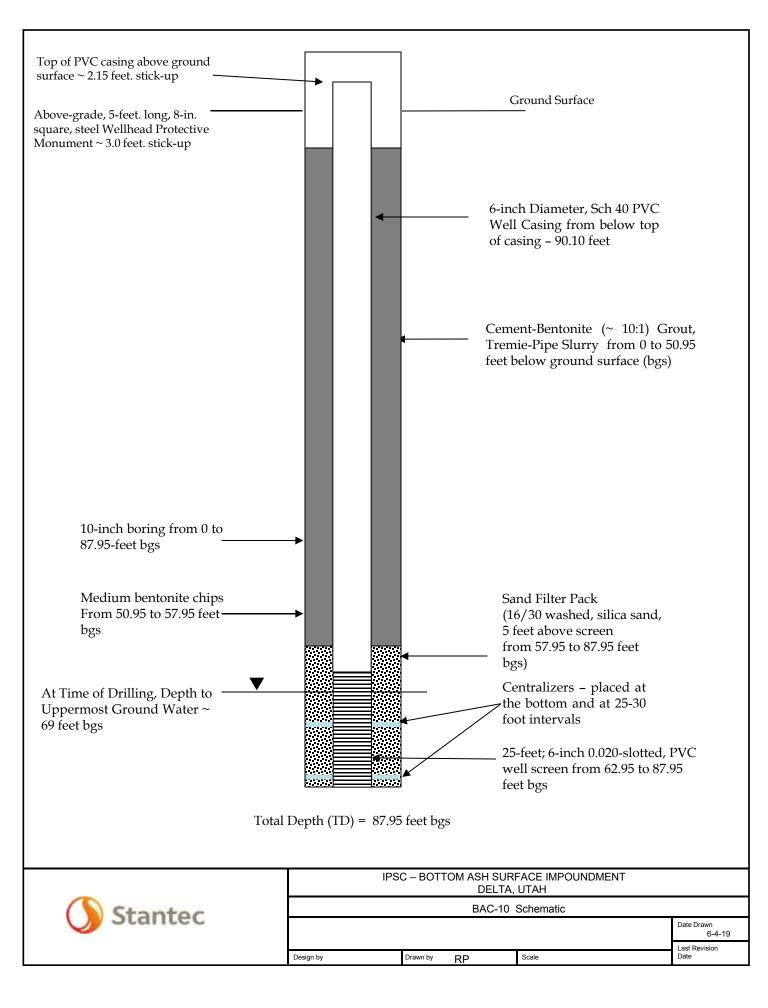
Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-62.95 feet

Screen (6 inch, 0.02 slotted, PVC): 62.95-87.95 feet

Sand Pack: 16/30 sand, 57.95-87.95 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


50.95-57.95 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NA

INTERMOUNTAIN POWER SERVICE CORP.

Intermountain Power Service Corporation CLIENT:

PROJECT Monitoring Well Installation Stantec

Southwest of Bottom Ash Basin Surface Impoundment SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: 90 degrees BOREHOLE ANGLE: TOTAL DEPTH (ft.): 81 GROUNDWATER LEVEL (ft. btoc.): 48.21

DATE STARTED: 12/6/2019 DATE FINISHED: 12/7/2019

			LOGGED BY:	Michael Ward		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				WELL CONSTUCTION DIAGRAM
0-	XXX	Fill Poorly Graded Sand with Silt (SP-SM), fine grained sand brown (10 YR 7/3).	1 100%, loose, so	ft, dry, very pale		Above ground monument with well cap
5— -	///	Clay with Sand (CL), low plasticity, soft to medium densi	ty moist light bro	ownish grav (10 YR		Borehole
10-		6/2). Poorly Graded Sand with Clay (SP-SC), fine grained san light brownish gray (10 YR 6/2); clay are low plasticity, m	nd 85%, loose, me			diameter 10 inches from 0 to 76 ft bgs., and 4
15 <u> </u>		_				inches from 76 to 81 ft bgs.
20-		Clay (CL), medium plasticity, medium dense, cohesive, r 6/2), mottled with brownish yellow (10 YR 6/8).	moist, light brown	ish gray (10 YR		Grout 0 to 38 ft bgs.
25— -						
30-	///	Poorly Graded Sand with Clay (SP-SC), fine grained san yellowish brown (10 YR 6/4); clay low plasticity, soft, nor	nd 90%, loose, so	ft, moist, light		0 to 50 ft bgs., 6 in dia., Sch. 40
35— -		Same as above, becoming brown (10 YR 5/3).				PVC riser
40-		Clay (CL), medium plasticity, medium dense, cohesive, t 6/4).	moist, light yellow	ish brown (10 YR		Bentonite 38 to 40 ft bgs.
45— -					8	<u> </u>
50 <u> </u>	///	Poorly Graded Sand (SP), fine to medium grained sand 5/3).	100%, loose, soft	, wet, brown (10 YF	₹	
55— -		Clay (CL), medium plasticity, medium dense, cohesive, t 6/4).	moist, light yellow	ish brown (10 YR		
60 <u> </u>	///	Clay with Sand (CL), low plasticity, soft, wet, pale brown Well Graded Sand (SW), fine to coarse Sand 95%, loose gravel, subrounded.	(10 YR 6/3). e, soft, wet, brown	ı (10 YR 5/3), trace		Filter Pack Sand 40 to 76 ft bgs.
65— -		Same as above, increase in coarse grained sand between Same as 60 ft bgs.	en 65.2 to 65.8 ft l	bgs.		50 to 75 ft bgs., 6 in dia., Sch. 40
70— -		-				PVC screen with 0.02 inch slot aperture
75— -		Clay (CL), medium plasticity, medium dense, moist, cohe 6/4).	esive, light yellow	ish brown (10 YR		End Cap
80-		End of borehole at 81 ft bgs. Installed monitoring well pe	r scope of work.			
85_		_				
Note	(ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red t = feet				1
		. 1001				

PROJECT

Intermountain Power Service Corporation CLIENT:

Monitoring Well Installation

SITE LOCATION:

Southwest of Bottom Ash Basin Surface Impoundment

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 81 GROUNDWATER LEVEL (ft. btoc.): 49.55

DATE STARTED: 12/4/2019 DATE FINISHED: 12/6/2019

Poorly Graded Sand with Sit (SP-SM), fine grained sand 95%, loose, soft, dry, pale brown (10 YR 6/2). Clay (CL), medium plasticity, medium dense, moist, cohesive, light brownish gray (10 YR 6/2). Poorly Graded Sand with Clay (SP-SC), fine grained sand 90%, loose, soft, dry, light brownish gray (10 YR 6/2); clay 10%, low plasticity, soft. Clay (CL), medium plasticity, medium dense, moist, cohesive, very pale brown (10 YR 7/3), mottled with brownish yellow (10 YR 6/8). Poorly Graded Sand with Silt (SP-SM), loose, soft, dry, pale brown (10 YR 6/3). Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3). Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3). Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3). Clay (CL), same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), under plasticity, medium dense, cohesive, wet, brown (10 YR 5/3). Clay (CL), under plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW, Sc), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3), in dia, Sch. PVC screen			LOGGED BY: Michael Ward		
Poorly Graded Sand with Silt (SP-SM), fine grained sand 95%, loose, soft, dry, pale brown (10 YR 6/3). Clay (CL), medium plasticity, medium dense, moist, cohesive, light brownish gray (10 YR 6/2). Poorly Graded Sand with Clay (SP-SC), fine grained sand 90%, loose, soft, dry, light brownish gray (10 YR 6/2). The first of the soft of the sof	(feet) LITHOLOGICAL GRAPHIC				
Clay (CL), medium plasticity, medium dense, moist, cohesive, light brownish gray (10 YR 6/2). Poorly Graded Sand with Clay (SP-SC), fine grained sand 90%, loose, soft, dry, light brownish gray (10 YR 6/2); clay 10%, low plasticity, soft. Clay (CL), medium plasticity, medium dense, moist, cohesive, very pale brown (10 YR 7/3), mottled with brownish yellow (10 YR 6/8). Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Well Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3), 5% clay. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 38.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 34.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay with Sand (CL), low low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay with Sand (CL), low low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay with Sand (CL), low low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay with Sand (CL), low low plasticity, medium dense, wet, non cohesive, brown (10 YR 5			d 95%, loose, soft, dry, pale brown		Above ground monument with well cap
Clay (CL), medium plasticity, medium dense, moist, cohesive, light brownish gray (10 YR 6/2). Poorly Graded Sand with Clay (SP-SC), fine grained sand 90%, loose, soft, dry, light brownish gray (10 YR 6/2); clay 10%, low plasticity, soft. Clay (CL), medium plasticity, medium dense, moist, cohesive, very pale brown (10 YR 7/3), mottled with brownish yellow (10 YR 6/8). Poorly Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3), Clay (CL), medium plasticity, soft, non cohesive, wet, brown (10 YR 6/2), Clay (CL), Same as 34.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, medium dense, wet, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Clay with Sand (CL), low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3) in dia, Sch. 10 YR 6/2. Clay with Sand (CL), low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5	5—				·
Clay (CL), medium plasticity, medium dense, moist, cohesive, very pale brown (10 YR 7/3), mottled with brownish yellow (10 YR 6/8). Poorly Graded Sand with Silt (SP-SM), loose, soft, dry, pale brown (10 YR 6/3). Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3), Clay (CL), same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, medium dense, wet, prown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, medium dense, wet, prown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0	Poorly Graded Sand with Clay (SP-SC), fine grained san	nd 90%, loose, soft, dry, light		diameter 10 inches from 0 to
mottled with brownish yellow (10 YR 6/8). Poorly Graded Sand with Silt (SP-SM), loose, soft, dry, pale brown (10 YR 6/3). Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3), Clay (CL), medium plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), same as 34.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Well Graded Sand with Gravel (SW), fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5— -				inches from 79
Well Graded Sand with Gravel (SW), fine to coarse sand 85%, loose, soft, dry, light brownish gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3). Clay (CL), medium plasticity, stiff, moist, cohesive, pale brown (10 YR 6/2). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3) mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0-		esive, very pale brown (10 YR 7/3),		Grout 0 to 38 ft bgs.
gray (10 YR 6/2), gravel 15%, small, subangular to subrounded, assorted matrix. Poorly Graded Sand (SP), fine grained sand 95%, loose, soft, moist, pale brown (10 YR 6/3), 5% clay. Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3), Clay (CL), medium plasticity, stiff, moist, cohesive, pale brown (10 YR 6/2), Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, medium dense, cohesive, moist, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), trace gravel. Clay (CL), medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5—		,		
Clay with Sand (CL), medium plasticity, medium dense, moist, light yellowish brown (10 YR 6/3). Clay (CL), medium plasticity, stiff, moist, cohesive, pale brown (10 YR 6/2). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay (CL), Same as 38.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3) in dia., Sch. PVC screen (0.02 inch slo aperture) Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0-	gray (10 YR 6/2), gravel 15%, small, subangular to subro Poorly Graded Sand (SP), fine grained sand 95%, loose	ounded, assorted matrix.		0 to 53 ft bgs., 6 in dia., Sch. 40
6/3). Clay (CL), medium plasticity, stiff, moist, cohesive, pale brown (10 YR 6/2). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), Same as 38.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, medium dense, cohesive , moist, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive , moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5-	5% clay.			
Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), Same as 39.5 ft bgs. Clay with Sand (CL), Same as 38.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay with Sand (CL), low plasticity, medium dense, cohesive , moist, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive , moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0-	(\6/3).	/		Bentonite 38 to 40 ft bgs.
Clay (CL), Same as 41.5 ft bgs. Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3), mottled with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5-	Clay with Sand (CL), low plasticity, soft, non cohesive, w Clay (CL), Same as 39.5 ft bgs.			
with yellowish brown (10 YR 5/6). Clay with Sand (CL), low plasticity, soft, non cohesive, wet, brown (10 YR 5/3). Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0	∖Clay (CL), Same as 41.5 ft bgs.	vet, brown (10 YR 5/3).		
Well Graded Sand (SW) fine to coarse sand 98%, loose, soft, wet, brown (10 YR 5/3), trace gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5		moist, brown (10 YR 5/3), mottled		
gravel. Clay with Sand (CL), low to medium plasticity, medium dense, wet, non cohesive, brown (10 YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0-///				Filter Pack Sand 40 to 79 ft bgs.
YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand 90%, loose, soft, wet, brown (10 YR 5/3): clay 10%, low plasticity, non cohesive. Clay (CL), medium plasticity, medium dense, cohesive, moist, brown (10 YR 5/3). End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5—	gravel.	, ,		53 to 78ft bgs., 6
Clay (CL), medium plasticity, medium dense, cohesive , moist, brown (10 YR 5/3). End Cap End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	0-	YR 5/3), mottled with light brownish gray (10 YR 6/2). Well Graded Sand with Clay (SW-SC), fine grained sand			in dia., Sch. 40 PVC screen with 0.02 inch slot
End of borehole at 81 ft bgs. Installed monitoring well per scope of work.	5	Clay (CL), medium plasticity, medium dense, cohesive ,	moist, brown (10 YR 5/3).		·
	0-///	End of borehole at 81 ft bgs. Installed monitoring well be	er scope of work.	000000000000000000000000000000000000000	End Cap
	5		_		

Intermountain Power Service Corporation CLIENT:

PROJECT: Monitoring Well Installation

Southwest of Bottom Ash Basin Surface Impoundment SITE LOCATION:

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

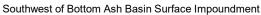
EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 91 GROUNDWATER LEVEL (ft. btoc.): 45.38

Stantec

DATE STARTED: 11/16/2019 DATE FINISHED: 11/18/2019

			LOGGED BY:	Michael Ward		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				CONSTUCTION DIAGRAM
0-		Poorly Graded Sand with Silt and Gravel (SP-SM), fine of gravel 5%, loose, dry, light gray (10 YR 7/2).	grained sand 85%	, silts 10%, trace		Above ground monument with well cap
5-	///	Same as above, becoming dense, consolidated. Well Graded Sand with Gravel (SW), sand fine to coarse pale brown (10 YR 6/3), gravel are subrounded.	e 85%, gravel 15%	6, loose, soft, dry,		
10- -		\Same as above, no gravel, sand 100%. Clay with Sand (CL), low plasticity, dry to moist, non coh clay interfingering, reddish yellow (5 YR 6/8).	esive, brown (10	YR 5/3), with small		Grout 0 to 42 ft bgs. Borehole
15- - 20-		Same as above, moist. Same as above, medium plasticity. Poorly Graded Sand (SP), fine grained sand 100%, loos	e. drv. dark brow	n (10 YR 3/3), thinly		diameter 10 inches from 0 to
20- - 25-		bedded. Clay with Sand (CL), low plasticity, moist, non cohesive, interfingering, reddish yellow (5 YR 6/8).				91 ft bgs.
30-		gomig, roadion jonov (o 1100).				0 to 65 ft bgs., 6
35–	///	Well Graded Sand with Gravel (SW), sand fine to coarse pale brown (10 YR 6/3), gravel are subrounded.	e 85%, gravel 15%	%, loose, soft, dry,	\neg	in dia., Sch. 40 PVC riser
40-		Poorly Graded Sand (SP), medium grained sand 100%, Clay (CL), medium plasticity, medium dense, moist, brown the Sand (SL) levels this is a fit described.	wnish yellow (10	YR 6/6).		
45 <u>-</u>		Clay with Sand (CL), low plasticity, soft density, wet, nor YR 6/4). Clay (CL), medium plasticity, medium dense, moist, coh		,	_	Bentonite 42 to 44 ft bgs.
50-		with mottled clay, brownish yellow (10 YR 6/8).				
55-		Clay with Sand (CL), low to medium plasticity, soft to me brown (10 YR 6/3).	edium dense, wet	non cohesive,	-	
60-		Clay (CL), medium plasticity, medium dense, moist to w YR 6/2). Clay with Sand (CL), low to medium plasticity, soft to me		3 , (7 1	Filter pack sand 44 to 91 ft bgs.
65 <u> </u>		Clay (CL), high plasticity, stiff, moist, cohesive, pale brown (CL), medium plasticity, medium dense, moist to work (YR 6/2).	vn (10 YR 6/3).	, ,		
70- -		Clay (CL), high plasticity, stiff, moist, cohesive, pale broven Poorly Graded Sand (SP), medium grained sand 95%, letrace gravel 5%, rounded to subrounded, assorted matrix	oose, soft, wet, b	rown (10 YR 5/3),		65 to 90 ft bgs., 6 in dia., Sch. 40
75- -		adoc graver 070, rounded to subrounded, assorted matri	^.			PVC screen with 0.02 inch slot aperture
80- -						
85- 90-		Clay with Sand (CL), low plasticity, soft, wet, non cohesi Clay (CL), medium plasticity, medium dense, moist to w				
90- 95 ⁻	///	End of borehole to 91 ft bgs., per scope of work.				End Cap
Not		bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red			I	1


PROJECT

SITE LOCATION:

CLIENT: Intermountain Power Service Corporation

Monitoring Well Installation

Stantec

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 81 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.

COORDINATE SYSTEM:

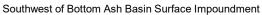
EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 81 GROUNDWATER LEVEL (ft. btoc.): 46.81

DATE STARTED: 11/21/2019 DATE FINISHED: 12/4/2019

		TO ITICIT SOURCE COLE DATE OF TO TO TO BYS.		ael Ward	16D. 12/4/20	713
DEPTH (feet)	CRAPHIC GRAPHIC	LITHOLOGICAL DESCRIPTION				ONSTUCTION AGRAM
0-	Well Grade	ed Sand (SW), fine to coarse sand 95%, loose avel, subrounded, small.	e, soft, dry, yellowish brow	/n (10 YR		Above ground monument with
5-	••••	ed Sand with Clay (SW-SC), fine to coarse sa	nd 95%, medium dense, o	dry, light		well cap
10- -		sand (CL), low to medium plasticity, soft to me	edium dense, dry to moist	, very pale		Borehole diameter 10 inches from 0 to 79 ft bgs. 4 inch
15 <u> </u>	Clay (CL)	medium plasticity, medium dense, moist, coh	esive inale hrown (10 YR	6/3) with		borehole to 81 ft bgs.
20- -		ed clay, brownish yellow (10 YR 6/8).	55176, paio 516 mi (16 111	Groj, war		Grout 0 to 38 ft bgs.
25 <u> </u>	Poorly Gra	ded Sand (SP), fine sand 100%, loose, soft, I	ight brownish gray (10 YR	R 6/2).		
30-		ded Sand with Clay (SP-SC), fine sand 90%,); clay 10% low plasticity, soft, non cohesive.	loose, soft, moist, light br	ownish gray		0 to 53 ft bgs., 6 in dia., Sch. 40
35-						PVC riser
40-	///	medium plasticity, medium dense, moist, coh ded Sand (SP), fine sand 100%, loose, soft, r				Bentonite 38 to 40 ft bgs.
45 <u> </u>						
50-	6/3), mottle	medium plasticity, medium to stiff dense, moi ed with reddish yellow (5YR 6/6). ded Sand with Clay (SP-SC), fine sand 90%,	•	,		Filter Pack Sand 40 to 79 ft bgs.
55 <u> </u>	clay 10% lo Clay (CL),	ow plasticity. medium plasticity, medium to stiff dense, moi ed with reddish yellow (5YR 6/6).		` /		
60-	Poorly Gra	ded Sand (SP), fine grained, loose, soft, wet, medium plasticity, medium dense, wet, cohes	sive, light yellowish brown			53 to 78 ft bgs., 6 in dia., Sch. 40
65-	YR 5/3); cl	ded Sand with Clay (SP-SC), fine sand 85%, ay 15% low plasticity, non cohesive, light yellow	owish brown (10 YR 6/4).	,		PVC screen with 0.02 inch slot
70-	Poorly Gra	medium plasticity, medium dense, wet, cohes ded Sand (SP), fine grained, loose, soft, wet, and (CL), low plasticity, soft, wet, non cohesi	brown (10 YR 5/3). ve, brown (10 YR 5/3).			aperture
75 <u> </u>	clay 10%, Poorly Gra	ded Sand with Clay (SP-SC), fine sand 90%, ow plasticity, soft, non cohesive. ded Sand (SP), fine grained, loose, soft, wet,	brown (10 YR 5/3).	0 YR 5/3);		
80-		medium plasticity, medium to stiff, moist, brovehole at 81 ft bgs. Installed monitoring well pe	· ,		(20000000000	End Cap
85– -		enoie at o i it bys. Installed monitoling well pe	a scope of work.			
Not	bgs. = below groundia. = diameter ft = feet	und surface Sch. = Schedule YR = Yellow-Red				1


PROJECT

SITE LOCATION:

Intermountain Power Service Corporation CLIENT:

Monitoring Well Installation

DRILLING METHOD: Sonic

DRILLING CONTRACTOR:

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

Cascade Drilling

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 81 GROUNDWATER LEVEL (ft. btoc.): 46.03

Stantec

DATE STARTED: 12/7/2019 DATE FINISHED: 12/9/2019

(feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
	10円				
0— -		Fill Poorly Graded Sand (SP), fine grained sand 98%, loose 7/3), trace gravel, subrounded.	, soft, dry, very pale brown (10 YR		Above ground monument with well cap
5— -		Clay (CL), medium plasticity, medium dense, cohesive, of trace white (10 YR 8/1), trace calcium carbonate between			Borehole
)— -					diameter 10 inches from 0 t 76 ft bgs., and
5— -	///	Poorly Graded Sand (SP), fine grained sand 98%, loose trace clay at depth.	, soft, dry, light gray (10 YR 7/1),		inches from 76 to 81 ft bgs.
)— -		Poorly Graded Sand with Clay (SP-SC), fine grained san pale brown (10 YR 6/3), clay low plasticity, medium dens			Grout 0 to 38 ft bgs.
5— -	///	Clay (CL), medium plasticity, medium dense, cohesive, r	moist_pale brown (10 YR 6/3)		
)— -		Same as above, becoming light yellowish brown (10 YR	, , , , , ,	-	0 to 50 ft bgs., in dia., Sch. 40 PVC riser
;— -		Clay with Sand (CL), low plasticity, soft, non cohesive, ligClay (CL), medium plasticity, medium dense, cohesive, r	, ,		
)— -		Well Graded Sand with Gravel (SW), fine to coarse sand	190% loose soft wet brown (10 V	-R	Bentonite 38 to 40 ft bgs.
;— -		5/3), gravel 10%, subrounded.		_	<u>*</u>
)— -		Same as above, with trace black staining.		-	Filter Pack Sar 40 to 76 ft bgs.
;— -		Clay with Sand (CL), low plasticity, soft, non cohesive, w Clay (CL), medium plasticity, medium dense, cohesive, r Clay with Sand (CL), low plasticity, soft, non cohesive, w	moist, yellowish brown (10 YR 5/6).	:	
)— -		Poorly Graded Sand (SP), fine grained sand 100%, loose Same as above, with some clay.	e, soft, wet, brown (10 YR 5/3)		50 to 75 ft bgs. 6 in dia., Sch.
;— -	777	Poorly Graded Sand (SP), fine grained sand 100%, loose Same as above, color change to yellowish brown (10 YR	R 6/4).		PVC screen wi 0.02 inch slot aperture
)— -		Clay (CL), medium plasticity, medium dense, cohesive, r Same as above, with mottled yellowish red (5 YR 5/6).	noist, yellowish brown (10 1R 5/4).	-	
;— -		Clay with Sand (CL), low plasticity, soft, non cohesive, w Clay (CL), medium plasticity, medium dense, cohesive, r			End Cap
)— –		Clay with Sand (CL), low plasticity, soft, non cohesive, w Poorly Graded Sand (SP), fine grained sand 98%, loose End of borehole at 81 ft bgs. Installed monitoring well pe	, soft, wet, brown (10 YR 5/3).		
;— _		—	. coope of work.		

INTERMOUNTAIN POWER SERVICE CORP.

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees
TOTAL DEPTH (ft.): 91 GROUNDWATER LEVEL (ft. btoc.): 47.45

Stantec

DATE STARTED: 11/18/2019 DATE FINISHED: 11/21/2019

		LOGGED BY: Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION		WELL CONSTUCTION DIAGRAM	I
)			Above grou	und
5-///	Fill. Clay with Sand (CL), low plasticity, soft to medium dense	e, dry, light gray (10 YR 7/1).	monument well cap	with
)—	No core retrieved from sonic core barrel.		0	40.5
	Clay with Sand (CL), low plasticity, soft to medium dense Well Graded Sand (SW), fine to coarse grained sand 95 YR 6/2), trace gravel 5%, subrounded, small.	%, loose, soft, light brownish gray (10	Grout 0 to 4 bgs. Borehole diameter 10	
-///	Clay with Sand (CL), low plasticity, soft to medium dense	e, dry, light gray (10 YR 7/1).	inches from 91 ft bgs.	
i-///	Clay (CL).			
)-	Clay with Sand (CL), low to medium plasticity, soft to me brown (10 YR 6/3). Poorly Graded Sand (SP), fine grained 100%, loose to me	, ,	0 to 65 ft bự in dia., Sch	
5—	7/1).		PVC riser	
	Clay (CL), medium plasticity, medium density, moist, ligh some interfingering clay, brownish yellow (10 YR 6/8). Clay with Sand (CL).	nt yellowish brown (10 YR 6/4), with	Bentonite 4	12 to
5— 	Poorly Graded Sand with clay (SP-SC), fine sand 90%, olight yellowish brown (10 YR 6/4).		44 ft bgs.	
)—	Clay (CL), medium plasticity, medium dense, cohesive, r Poorly Graded Sand with clay (SP-SC), fine sand 90%, olight yellowish brown (10 YR 6/4).	clay 10%, soft, loose, moist to wet,		
5- <i>///</i>	Clay (CL), medium plasticity, medium dense, cohesive, t 6/4).	moist, light yellowish brown (10 YR	Filter Dook	Con
)-///	Poorly Graded Sand (SP), fine grained sand 95%, loose interfingering clay 5%, yellowish red (5 YR5/6).	, soft, brown (10 YR 5/3), with trace	Filter Pack 44 to 91 ft I	
	Well Graded Sand (SW), fine to coarse sand 98%, loose gravel, small, subrounded.	` ′		
	Clay with Sand (CL), low to medium plasticity, soft to me gray (10 YR 6/2).		64 to 89 ft I	
;	Clay (CL), medium plasticity, medium to stiff, cohesive, r Poorly Graded Sand with Clay (SP-SC), fine grained sar brown (10 YR 5/3).	nd 85%, clay 15% loose, soft, wet,	6 in dia., So PVC screet 0.02 inch s	n wit
	Clay (CL), medium plasticity, stiff, cohesive, moist to wel	·	aperture	
777	Poorly Graded Sand (SP), fine grained sand 100%, loos Clay (CL), same as 73 ft bgs. Poorly Graded Sand (SP), same as 82 ft bgs.	e, soft, wet, brown (10 YR 5/3).		
)— <u>777</u>	Clay (CL), same as 73 ft bgs. Poorly Graded Sand with Clay (SP-SC), fine grained sar brown (10 YR 5/3).	//	End Cap	
5—	Clay (CL), same as 73 ft bgs., with mottled interbedded of End of borehole at 91 ft bgs. Installed monitoring well pe	clay, yellowish red (5 YR 5/6).		
)—				

Intermountain Power Service Corporation CLIENT:

PROJECT Monitoring Well Installation

Southwest of Bottom Ash Basin Surface Impoundment SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

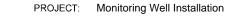
DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:


ELEVATION: 90 degrees BOREHOLE ANGLE: TOTAL DEPTH (ft.): 82 GROUNDWATER LEVEL (ft. btoc.): 45.3

DATE STARTED: 12/12/9/2019 ATE FINISHED: 12/10/2019

			LOGGED BY:	Michael Ward		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				ONSTUCTION GRAM
0_	Well Graded San	d with Silt (SW-SM), fine to coarse san trace calcium carbonate.	d 90%, loose, soft,	, pale brown (10		Above ground monument with well cap
5-	Well Graded San	d (SW), fine to coarse sand 100%, loos	se, soft, pale browr	n (10 YR 6/3).		·
10-						Borehole diameter 10 inches from 0 to 81 ft bgs.
15—	Well Graded San	d with Gravel and Clay (SW-SC), loose	soft fine to coars	se sand 90%	_ 8	
20— 25—	· · · ∖loose, soft, pale b	prown (10 YR 6/3), clay low plasticity, so d (SW), fine to coarse 98%, loose, soft	oft, gravel, small, s	subrounded.		Grout 0 to 40 ft bgs.
23		-,	((-)	, -,	_ 8	
30-		asticity, soft, wet, very pale brown (10 Y CL), low plasticity, soft, moist, light yello			-	0 to 56 ft bgs., 6 in dia., Sch. 40 PVC riser
35—						FVCTISEI
40— 45—	Clay (CL), mediul reddish yellow (5	m plasticity, medium dense, cohesive, l YR 6/6).	brown (10 YR 5/3),	mottled with some	e	 Bentonite 40 to 42 ft bgs.
50 <u> </u>						Filter Pack Sand 42 to 81 ft bgs.
55 <u> </u>	Clay with Sand (0	CL), low plasticity, soft, wet non cohesiv	ve, brown (10 YR 5	5/3).	-	
60-	Poorly Graded Sa	and with Clay (SP), fine grained sand 9 avel 2%, subrounded, small.	•	•		56 to 81 ft bgs., 6 in dia., Sch. 40
65						PVC screen with 0.02 inch slot
70-	YR 5/3), clay, me YR 5/4).	and with Clay (SP-SC), fine grained sar dium plasticity, soft to low density, non	cohesive, light yel	lowish brown (10		aperture
75-	Poorly Graded Sa 5/3), clay are low	m plasticity, medium dense, moist, coh and with Clay (SP-SC), fine grained sar plasticity, soft. CL), low to medium plasticity, soft, wet,	nd, loose, soft, wet	, brown (10 YR		
80-		and (SP), fine grained sand 100%, loos at 81 ft bgs. Installed monitoring well pe		(10 YR 5/3).		End Cap
85_ Note	bgs. = below ground surfa dia. = diameter ft = feet	ice Sch. = Schedule YR = Yellow-Red				1

ozizivi. momodinami owe

SITE LOCATION: Down Gradient North

DRILLING CONTRACTOR: Cascade Drilling

INTERMOUNTAIN POWER SERVICE CORP.

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/8/2020 DATE FINISHED: 5/9/2020

LOGGED BY: Rich Pratt

			LOGGED BY:	Rich Pratt	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION AGRAM
0-		Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap
5-					·
10-					Grout 0 to 41 ft bgs. Borehole
15-		Poorly graded Sand with Silt (SP), light brown, moist Well Graded Sand with Gravel (SW), light brown, moist			diameter 10 inches from 0 to 78 ft bgs.
20-		Well Graded Sand with Clay (SW-SC), light brown, moist	t		. 5 5 g 5.
25-		Well Graded Sand with Clay (SW-SC), light brown, moist	t		
30-					0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
35- 40-					
45-					
50-					
55-					Bentonite 41 to
60-		Well Graded Sand with Gravel (SW), light brown, wet Well Graded Sand with Gravel (SW), light brown, moist Clay (CL), light brown, moist			48 ft bgs. Filter pack sand 48 to 78 ft bgs.
65-		Clay (CL), with sand, light brown, moist Well Graded Sand with Gravel (SW), light brown, moist			
70-					53 to 78 ft bgs., 6 in dia., Sch. 80
75-		Well Graded Sand with Gravel (SW), light brown, wet Well Graded Sand with Gravel (SW), light brown, moist			PVC screen with 0.02 inch slot aperture End Cap
80-		End of borehole at 78 ft bgs. Installed monitoring well pe	r scope of work.		Στια Θαρ
Not	(gs. = below ground surface Sch. = Schedule ia. = diameter YR = Yellow-Red = feet			1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: Down Gradient South

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE FINISHED: 5/9/2020 DATE STARTED: 5/9/2020

LOGGED BY: Michael Ward

		LO	GGED BY: N	lichael Ward		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				CONSTUCTION DIAGRAM
0-		Well Graded Sand with Silt (SP-SM), fine to coarse sands, lo (10 YR 7/3).	ose, soft, dry, ve	ry pale brown		Above ground monument with well cap
5- 10-		Sand with Clay (SC), fine to coarse sand, soft, loose, dry to n Poorly Graded Sand (SP) medium grained, loose, soft, uncor				Borehole diameter 10 inches from 0 to
15- -		YR 7/2). Clay (CL), moderate plasticity, moist, soft, cohesive, brown (1	10 YR 5/3).			78 ft bgs.
20- - 25-		Poorly Graded Sand (SP) medium grained, loose, soft, uncor (10 YR 5/3).	nsolidated, moist	to dry, brown		Grout 0 to 48 ft bgs.
30-						0 to 58 ft bgs., 6 in dia., Sch. 80
35-		Clay (CL), moderate plasticity, moist, soft to medium dense, of Same as above, becoming moist to wet. Poorly Graded Sand (SP), fine grained sands, soft, loose, we				PVC riser
40- 45-	///	Same as above, with trace white staining. Clay (CL), moderate plasticity, medium to stiff, cohesive, broven	wn (7.5 YR 5/4).			Bentonite 48 to 53 ft bgs.
50- -			,		N N N N N N N N N N N N N N N N N N N	Filter Pack Sand 53 to 78 ft bgs.
55- -	///	Well Graded Sand (SW), fine to coarse sands, soft, loose, un 5/3).	nconsolidated, bro	own (10 YR —		
60- 65-		Clay (CL), moderate plasticity, medium to stiff, cohesive, brown	wn (7.5 YR 5/4).			58 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot
70-		Clayey Sand (SC), fine to medium grained sands, medium de with thin trace interbedded black lenses. Well Graded Sand (SW), fine to coarse sands, soft, loose, un 5/3).				aperture
75- -		Clay (CL), moderate plasticity, medium to stiff, cohesive, brown Well Graded Sand (SW), fine to coarse sands, soft, loose, un 5/3). End of borehole at 78 ft bgs. Installed monitoring well per sco	nconsolidated, bro	own (10 YR		End Cap
-08						
Not	(ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red tt = feat				1

Intermountain Power Service Corporation CLIENT:

PROJECT:

Monitoring Well Installation

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/9/2020 DATE FINISHED: 5/10/2020

LOGGED BY: Rich Pratt

			LOGGED BY:	Rich Pratt	
(feet)	GRAPHIC	LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
0 5		Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap
10—					Grout 0 to 41 ft bgs.
5-	•;;	Well Graded Sand with Gravel (SW), moist, dry Clay (CL), light brown, moist			Borehole diameter 10 inches from 0 to 78 ft bgs.
.0— .5—		5.5) (5 <u>-</u>), ign 5.5,			70 tt bys.
0-		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			0 to 53 ft bgs., 6 in dia., Sch. 80
5-					PVC riser
0 5		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			
0-					
5	// //	Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			Bentonite 41 to 48 ft bgs.
0—:		Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			Filter pack sand 48 to 78 ft bgs.
5— 0—.					
5		Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist		 	53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with 0.02 inch slot
0-	;;;	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe	r scope of work.		aperture End Cap
Votes		gs. = below ground surface Sch. = Schedule ia. = diameter YR = Yellow-Red			1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/10/2020 DATE FINISHED: 5/10/2020

Michael Ward LOGGED BY:

		LOGGED BY:	Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WE	LL CONSTUCTION DIAGRAM
0	Poorly Graded Sand with Silt (SP-SM), fine to coarse sand pale brown (10 YR 7/3).	d, loose, soft, und	zonsolidated, very	, –	Above ground monument with well cap
10-1//	Sandy Clay (SC), fine to coarse sands, medium dense, dr	ry, pale brown (10) YR 7/3). — —	-	Grout 0 to 43 ft bgs.
15	Clay (CL), low to medium plasticity, cohesive, medium del	nse, brown (10 Y	R 5/3). — — —		Borehole diameter 10 inches from 0 to 88 ft bgs.
25					Ŭ ,
0 ///	Well Graded Sand with Clay (SW-SC), fine grained sand, pale brown (10 YR 7/3).	medium dense, o	dry to moist, very		0 to 61 ft bgs., 6 in dia., Sch. 80 PVC riser
5 0	Clay (CL), medium plasticity, cohesive, medium dense, lig		,		FVCTISEI
5	Clay (CL), medium to high plasticity, stiff, cohesive, pale became as above, becoming yellowish red (10 YR 5/4).	orown (10 YR 6/3	<u>. </u>		
0- <i>777</i> 5- <i>8</i>	Well Graded Sand (SW), fine grained sand, loose, soft, or Clay (CL), medium to high plasticity, stiff, cohesive, pale be Sandy Clay (SC), fine grained sand, loose to medium den 5/4).	orown (10 YR 6/3).		Bentonite 43 to 48 ft bgs.
0- <i>///</i> 5- <i>///</i>	Clay (CL), medium plasticity, stiff, cohesive, light yellowish Sandy Clay (SC), fine grained sand, loose to medium den 5/4).	h brown (10 YR 6	/4) n brown (10 YR		Filter pack sand 48 to 88 ft bgs.
0-					61 to 88 ft bgs., 6 in dia., Sch. 80
5/// 0///	Wall Condad Cond (CW) madi in a contact of the	hrour (40)(D	E/A) — — —		PVC screen with 0.02 inch slot aperture
5	Well Graded Sand (SW), medium grained sand, soft, loos Clay (CL), medium plasticity, medium to stiff density, cohe	•	,		
)0-)5	6/4). End of borehole at 88 ft bgs. Installed monitoring well per				End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet				1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: South Wells

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/10/2020 DATE FINISHED: 5/10/2020

LOGGED BY: Rich Pratt

		LOGGED BY:	Rich Pratt	
(feet)	LITHOLOGICAL DESCRIPTION			ONSTUCTION IAGRAM
0	Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap
5— 	Poorly graded Sand with Silt and Clay (SP), light brow	n, dry	_	Grout 0 to 41 ft bgs. Borehole
20-	Clay (CL), light brown, moist			diameter 10 inches from 0 to 78 ft bgs.
25	Poorly graded Sand with Silt (SP), light brown, dry			
0-	Well Graded Sand with Clay (SW), light brown, moist			0 to 53 ft bgs., 6 in dia., Sch. 80
5-	Well Graded Sand with Gravel (SW), moist, light brow	'n	_	PVC riser
0-	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist			
5-				
0 5	Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist		/	Bentonite 41 to
0-	Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			48 ft bgs. Filter pack sand 48 to 78 ft bgs.
5-	Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown			
0-	Well Graded Sand with Gravel (SW), moist, light brow Well Graded Sand with Gravel (SW), moist, light brow	,	_	53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
5	Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well	ner scope of work		0.02 inch slot aperture End Cap
) —	Lind of porchoic at 70 it bys. Installed mornitolling well	por scope or work.		∟πα σ αρ
Vote	es: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red			1

CLIENT: Intermountain Power Service Corporation

PROJECT:

Monitoring Well Installation

INTERMOUNTAIN POWER SERVICE CORP.

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/11/2020 DATE FINISHED: 5/11/2020

LOGGED BY: Rich Pratt

		LOGGED BY:	Rich Pratt	
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
5	Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap
10—	Poorly graded Sand with Silt and Clay (SP), light brown,	, dry		Grout 0 to 41 ft bgs. Borehole diameter 10 inches from 0 to
20- 25-	Clay (CL), light brown, dry			78 ft bgs.
30-				0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40-	Well Graded Sand with Clay (SW), light brown, dry Poorly graded Sand with Silt (SP), light brown, dry Poorly graded Sand with Silt (SP), light brown, moist Clay (CL), light brown, moist			
45 50	Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			
	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Clay (SW), light brown, wet Clay (CL), light brown, moist			Bentonite 41 to 48 ft bgs.
65	Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			Filter pack sand 48 to 78 ft bgs.
70-	Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Clay (SW), light brown, moist			53 to 78 ft bgs.,
75	Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe	er scope of work.		6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture End Cap
	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft - feet			1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: South Wells

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 76.2 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/12/2020 DATE FINISHED: 5/12/2020

LOGGED BY: Rich Pratt

DEPTH (feet)	LITHOLOGICAL DESCRIPTION	WELL CONSTUCTION DIAGRAM
0-	Poorly graded Sand with Silt (SP), light brown, dry	Above ground monument with well cap
5-	Well Graded Sand with Gravel (SW), dry, light brown	
10-	Poorly graded Sand with Silt (SP), light brown, dry	Grout 0 to 41 ft bgs.
15-	Poorly graded Sand with Silt and Clay (SP), light brown, dry	Borehole diameter 10 inches from 0 to
20-	Poorly graded Sand with Silt (SP), light brown, dry	78 ft bgs.
25-	Well Graded Sand with Gravel (SW), moist, light brown Clay with well graded sand (SW), light brown, moist Clay (CL), light brown, dry Well Graded Sand with Gravel (SW), moist, light brown	
30-	Clay (CL), light brown, moist	0 to 51 ft bgs., 6 in dia., Sch. 80
35-	Well Graded Sand with Gravel (SW), dry, light brown Well Graded Sand with Gravel (SW), moist, light brown	PVC riser
40-		Bentonite 41 to
45-		48 ft bgs.
50-		
55-	Clay (CL), light brown, moist Clay with well graded sand (SW), light brown, moist Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), moist, light brown	
60-	Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist Clay (CL), light brown, moist	Filter pack sand 48 to 78 ft bgs.
65-	Clay (CL), light brown, moist Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown	
70-	veil Graded Sand with Graver (Svv), moist, light blown	51 to 76 ft bgs., 6 in dia., Sch. 80
75- -		PVC screen with 0.02 inch slot aperture
80-	End of borehole at 78 ft bgs. Installed monitoring well per scope of work.	End Cap
Not	eS: bgs. = below ground surface Sch. = Schedule	1

tes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red

1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: South Wells

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/12/2020 DATE FINISHED: 5/12/2020

LOGGED BY: Rich Pratt

LITHOLOGICAL WELL CONSTUCTION DESCRIPTION DIAGRAM Above ground 0 Poorly graded Sand with Silt (SP), light brown, dry monument with well cap 5 Poorly graded Sand with Silt and Clay (SP), light brown, dry Poorly graded Sand with Silt (SP), light brown, dry Poorly graded Sand with Silt and Clay (SP), light brown, dry 10 Grout 0 to 41 ft Poorly graded Sand with Silt (SP), light brown, dry bgs. Poorly Graded Sand with Clay (SW), light brown, dry Borehole 15 Poorly graded Sand with Silt and Clay (SP), light brown, dry diameter 10 Clay (CL) with sand, light brown, dry inches from 0 to 20 Clay (CL), light brown, moist 78 ft bgs. 25 30 0 to 53 ft bgs., 6 in dia., Sch. 80 **PVC** riser 35 Well Graded Sand with Gravel (SW), moist, light brown 40 Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist 45 Well Graded Sand with Clay (SW), light brown, moist 50 Well Graded Sand with Gravel (SW), moist, light brown Clay (CL) with sand, light brown, dry 55 Bentonite 41 to Well Graded Sand with Clay (SW), light brown, moist 48 ft bas. Clay (CL) with sand, light brown, dry Filter pack sand Clay (CL), light brown, moist 60 48 to 78 ft bgs. Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Gravel (SW), moist, light brown 65 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown 70 Clay (CL), light brown, moist 53 to 78 ft bgs., Clay (CL), light brown, moist 6 in dia., Sch. 80 Well Graded Sand with Gravel (SW), moist, light brown PVC screen with 75 Clay (CL), light brown, moist 0.02 inch slot Well Graded Sand with Gravel (SW), moist, light brown aperture 80 Well Graded Sand with Gravel (SW), wet, light brown End Cap Well Graded Sand with Gravel (SW), moist, light brown

Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red

Clay (CL), light brown, moist

85

90⁻ 95 Well Graded Sand with Clay (SW), light brown, moist

Well Graded Sand with Clay (SW), light brown, moist

End of borehole at 78 ft bgs. Installed monitoring well per scope of work.

1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: 90 degrees BOREHOLE ANGLE:

TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/13/2020 DATE FINISHED: 5/13/2020

LOGGED BY: Rich Pratt

			LOGGED BY:	Rich Pratt		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				DNSTUCTION AGRAM
0		Poorly graded Sand with Silt (SP), light brown, dry				Above ground monument with well cap
5— - 10—		_				
15—		Poorly graded Sand with Silt and Clay (SP), light brown, dr	ry		_	Grout 0 to 41 ft bgs. Borehole
20-		Poorly Graded Sand (SP), dry, light brown	 			diameter 10 inches from 0 to 78 ft bgs.
25—		Poorly graded Sand with Silt and Clay (SP), light brown, m	ooist			
30-		Clay (CL), light brown, moist				0 to 53 ft bgs., 6 in dia., Sch. 80
35-						PVC riser
10-						
I5— —						
50		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist				Bentonite 41 to
55— 60—	/// :::	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown			_	48 ft bgs. Filter pack sand 48 to 78 ft bgs.
55— 55—	::: ///	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist	-	 		
0-	::: ///	Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			_	53 to 78 ft bgs., 6 in dia., Sch. 80
75— <u>/</u>		Well Graded Sand with Clay (SW), light brown, moist			-	PVC screen with 0.02 inch slot aperture
80-		Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well per s	scope of work.		/	 End Cap
35-		_				
Note		ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red				1

SITE LOCATION:

Intermountain Power Service Corporation CLIENT:

PROJECT:

Monitoring Well Installation

DRILLING METHOD: Sonic

DRILLING CONTRACTOR:

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

Cascade Drilling

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

North Wells

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/13/2020 DATE FINISHED: 5/13/2020

			LOGGED BY:	Rich Pratt	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION AGRAM
0-		Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with
5-					well cap
10-					Grout 0 to 41 ft bgs.
15-		Poorly graded Sand with Silt and Clay (SP), light brown,	dry		Borehole diameter 10 inches from 0 to
20-					78 ft bgs.
25-	///	Clay (CL), light brown, moist			
30-					0 to 53 ft bgs., 6 in dia., Sch. 80
35-					PVC riser
40-					
45-					
50-		Well Graded Sand with Gravel (SW), moist, light brown			
55-		Clay (CL), light brown, moist		/	Bentonite 41 to 48 ft bgs.
60-		Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Clay (SW), light brown, moist			Filter pack sand 48 to 78 ft bgs.
65-		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown		/	
70-	::: ///	Well Graded Sand with Gravel (SW), wet, light brown Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist			53 to 78 ft bgs., 6 in dia., Sch. 80
75-					PVC screen with 0.02 inch slot aperture
80-		End of borehole at 78 ft bgs. Installed monitoring well pe	er scope of work.		 End Cap
Not		ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red		<u> </u>	1

SITE LOCATION:

Intermountain Power Service Corporation CLIENT:

PROJECT:

Monitoring Well Installation

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

North Wells

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/14/2020 DATE FINISHED: 5/14/2020

		LOGGED BY:	Rich Pratt		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WE	ELL CONSTUCTION DIAGRAM
0	Poorly graded Sand with Silt (SP), light brown, dry				Above ground monument with well cap
5—					
0—					Grout 0 to 41 ft bgs. Borehole
5—	Poorly graded Sand with Silt and Clay (SP), light brown, Poorly graded Sand with Silt (SP), light brown, dry	dry			diameter 10 inches from 0 to 78 ft bgs.
20— -	Poorly graded Sand with Silt and Clay (SP), light brown,	dry			75 it bys.
5-	Clay (CL), light brown, moist				
0-//					0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
5					
0-// 5-//					
0-//	Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist				
5-//					Bentonite 41 to
60- //	Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Clay (SW), light brown, wet Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist				48 ft bgs. Filter pack sand 48 to 78 ft bgs.
55-//					
0	Well Graded Sand with Clay (SW), light brown, wet Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist				53 to 78 ft bgs., 6 in dia., Sch. 80
5-//					PVC screen with 0.02 inch slot aperture
0-	End of borehole at 78 ft bgs. Installed monitoring well pe	er scope of work.			End Cap

CLIENT: Intermountain Power Service Corporation

PROJECT:

SITE LOCATION:

Monitoring Well Installation

North Wells

DRILLING METHOD: Sonic

DRILLING CONTRACTOR:

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

Cascade Drilling

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: 90 degrees BOREHOLE ANGLE: TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/15/2020 DATE FINISHED: 5/15/2020

LOGGED BY: Rich Pratt

			LOGGED BY:	Rich Pratt	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
0-		Poorly graded Sand with Silt (SP), light brown, dry			Above ground monument with well cap
5-					weii cap
10- -					Grout 0 to 41 ft bgs.
15 <u> </u>	···	Silty Clay, light brown, dry Poorly graded Sand with Silt and Clay (SP-SM), light brown, light		-	Borehole diameter 10 inches from 0 to
20-		Clay (CL), light brown, moist	own, moist 		78 ft bgs.
25-					
30-					0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
35- -					FVC lisei
40-		Well Graded Sand with Gravel (SW), moist, light brown			
45- -		Clay (CL), light brown, moist			
50- -		Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown		-	Particular 44.4s
55- -		Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown			Bentonite 41 to 48 ft bgs. Filter pack sand
60— - 65—		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist		/	48 to 78 ft bgs.
-		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			
70- - 75-		Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist			53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
- 80–	<i>#</i>	Well Graded Sand with Clay (SW), light brown, moist Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist			0.02 inch slot aperture End Cap
85_		End of borehole at 78 ft bgs. Installed monitoring well pe	er scope of work.		
Not		gs. = below ground surface Sch. = Schedule ia. = diameter YR = Yellow-Red			1

SITE LOCATION:

Intermountain Power Service Corporation CLIENT:

PROJECT:

Monitoring Well Installation

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

North Wells

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/14/2020 DATE FINISHED: 5/15/2020

			LOGGED BY:	Joel Pierson		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				ONSTUCTION AGRAM
0		Well Graded Sand with some Gravel (SP), sand 90%, gr (10 YR 8/2), increasing fines from 11'	avel 5%, fines 5%	, dry, light brown		Above ground monument with well cap
5– 10–						Borehole diameter 10
15—						inches from 0 to 78 ft bgs.
20-		Sand (SP), sand 90%, fines 10%, loose. Poorly-Graded Clay (ML) increasing from fines 60%, san medium plasticity, wet Silty Sand (SM), sand 80%, 20% fines, moist	nd 40% to fines 95	%, sand 5%, 		Grout 0 to 41 ft bgs.
25-		Poorly-Graded Silty Clay (CL), low plasticity, iron staining				ū
30 -						0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
35— 40—		Poorly-Graded Silty Clay (CL), increasing plasticity, incre	easing moisture			
45		Poorly-Graded Silty Clay (CL), decreasing plasticity Silty Sand (SP), moist Clay (CL), moist, low plasticity				Bentonite 41 to 48 ft bgs.
50-	///	Silty Sand (SP), sand 90%, fines 10%, moist, loose				Filter Pack Sand
55		Silty Clay (CL), moist, medium-high plasticity, dense and Sandy Clay (CL) lense			-	48 to 78 ft bgs.
30 -		Silty Clay (CL), moist, medium-high plasticity, dense and	l hard			53 to 78 ft bgs., 6 in dia., Sch. 80 PVC screen with
65 -		Silty Sand (SP), sand 90%, fines 10%, moist, loose Clay (CL), moist, hard, medium plasticity	=====			0.02 inch slot aperture
70 -	<i></i>	Silty Sand (SP), sand 90%, fines 10%, moist, loose Sandy Clay (CL), hard, moist, dense, medium-high plast		-		
75— 80—		End of borehole at 78 ft bgs. Installed monitoring well pe	-			End Cap
Note	(ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red t = feet				1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: North Wells

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

TOTAL DEPTH (IL.). TO GROUNDWATER LEVEL (IL. DIOC.)

DATE STARTED: 5/15/2020 DATE FINISHED: 5/18/2020

		LOGGED BY: Joel Pierson		
DEPTH (feet) LITHOLOGICAL	DESCRIPTION LITHOLOGICAL DESCRIPTION		WELL CONS DIAGE	
0	Silty Sand (SW), sand 50%, gravel 40%, fines 10%, dry pinkish-gray (5YR 7/2)	to slightly moist, very loose,		oove ground onument with ell cap
5—				orehole ameter 10
10-			8 👸 in	ches from 0 to 3 ft bgs.
20-72	Silty Clay (ML), fines 90%, sand 10%, slightly moist Silty Sand (SP), increasing fines from sand 80%, fines 2			
25	Sandy Clay (CL), fines 60%, sand 40%, moist, dense, iro (5YR 3/3)	on staining, dark reddish brown		rout 0 to 41 ft gs.
30-)	to 53 ft bgs., 6
35			🚫 💢 in	dia., Sch. 80 VC riser
40-	Sand (SR) cand 900/, fines 100/, maint loos decrees:	ng cond — — — — — —		entonite 41 to
45	Sand (SP), sand 90%, fines 10%, moist, loose, decreasi Clay (CL), fines 100%, moist, very hard, olive brown 2.5 Sandy Clay (CL), moist	Y 4/3	4	3 ft bgs.
50-	Silty Sand (SP), moist to very moist, increasingly coarse	sand — — — — — — — — — — — — — — — — — — —		Iter Pack Sand 3 to 78 ft bgs.
55-	Silty Clay (CH), fines 85%, sand 15% Silty Sand (SP), moist to very moist Clay (CH), fines 100%, very hard Silty Sand (SP), sand 90%, fines 10%, moist, loose			. 10 10 11 byo.
60-	Clay (CL), fines 100%, moist, very hard, medium-high pl	asticity	<u>⊗</u> 6	3 to 78 ft bgs., in dia., Sch. 80
65	Silty Sand (SP), fines vary from 10% to 30%, moist to ve clay lense at 65'	ery moist, some iron staining, ~4-5"	<u></u> 0.	VC screen with 02 inch slot perture
70-	Clay (CH), moist to very moist, high plasticity from 73' to	74.5', very hard from 74.5' to 76.5'		
75	Silty Sand (SP), sand 80%, fines 20%, grayish brown (2. End of borehole at 78 ft bgs. Installed monitoring well pe	.5Y 5/2)	E,	nd Cap
80-	End of botonoic at 70 it ogs. Installed monitoring well pe	a doope of work.		.a oap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet			1

CLIENT: Intermountain Power Service Corporation

PROJECT:

Monitoring Well Installation

North Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/19/2020 DATE FINISHED: 5/19/2020

			LOGGED BY: Not Availal	ble	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION IAGRAM
0-		Lithological Description infered from BAC-26. Poorly gradry	ded Sand with Silt (SP), light br	own,	Above ground monument with well cap
10-		Poorly graded Sand with Silt and Clay (SP), light brown,	dry		Borehole diameter 10 inches from 0 to
15-		Poorly graded Sand with Silt (SP), light brown, dry		_	78 ft bgs.
20-		Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown,	moist		Grout 0 to 41 ft bgs.
25-	///	Clay (CL), light brown, moist			
35-		ola, (C2), ight blown, molet			0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
35-					
45-					Bentonite 41 to 48 ft bgs.
50-		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist	=======		Filter Pack Sand 48 to 78 ft bgs.
55-		Well Graded Sand with Gravel (SW), wet, light brown			
60-		Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown Well Graded Sand with Gravel (SW), wet, light brown		_ /	53 to 78 ft bgs., 6 in dia., Sch. 80
65-		Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown			PVC screen with 0.02 inch slot aperture
70-		Clay (CL), light brown, moist			
75- 80-	777	Well Graded Sand with Clay (SW), light brown, moist Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe			End Cap
85-		_			
Not		bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet			1

SITE LOCATION:

Intermountain Power Service Corporation CLIENT:

PROJECT:

Monitoring Well Installation

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

North Wells

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/18/2020 DATE FINISHED: 5/18/2020

			LOGGED BY:	Not Available		
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			V	WELL CONSTUCTION DIAGRAM
0- 5-		Lithological Description inferred from BAC-26. Poorly grabrown, dry	aded Sand with Sil	t (SP), light		Above ground monument with well cap
10 <u> </u>		Poorly graded Sand with Silt and Clay (SP), light brown,	dry		-	Borehole diameter 10 inches from 0 to 78 ft bgs.
15-		Poorly graded Sand with Silt (SP), light brown, dry				76 It bys.
20-		Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown,	moist			Grout 0 to 41 ft bgs.
25-						8
30-		Clay (CL), light brown, moist				0 to 53 ft bgs., 6 in dia., Sch. 80
35-						PVC riser
40-						Bentonite 41 to 48 ft bgs.
45-						
50- 55-		Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			7	Filter Pack Sand 48 to 78 ft bgs.
60-		Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown				53 to 78 ft bgs., 6 in dia., Sch. 80
65-		Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist				PVC screen with 0.02 inch slot
70-	 ///	Well Graded Sand with Gravel (SW), moist, light brown Clay (CL), light brown, moist			_	aperture
75-		Well Graded Sand with Clay (SW), light brown, moist				
80-	///	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well pe	r scope of work.			End Cap
85-		—				
Not		bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red tt = feet				1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

North Wells SITE LOCATION:

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/21/2020 DATE FINISHED: 5/21/2020

LOGGED BY: Not Available

(feet)	LITHOLOGICAL DESCRIPTION	WELL CONSTUCTION DIAGRAM
0— 5—	Lithological Description inferred from BAC-26. Poorly graded Sand with Silt (SP), light brown, dry	Above ground monument with well cap
0-	Poorly graded Sand with Silt and Clay (SP), light brown, dry	Borehole diameter 10 inches from 0 to 78 ft bgs.
5- - -	Poorly graded Sand with Silt (SP), light brown, dry Poorly Graded Sand (SP), dry, light brown Poorly graded Sand with Silt and Clay (SP), light brown, moist	Grout 0 to 41 ft
5-	Clay (CL), light brown, moist	bgs.
D- 		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
		Bentonite 41 to 48 ft bgs.
5	Well Graded Sand with Gravel (SW), moist, light brown	Filter Pack Sand 48 to 78 ft bgs.
5-2	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown	53 to 78 ft bgs., 6 in dia., Sch. 80
	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, light brown	PVC screen with 0.02 inch slot aperture
	Clay (CL), light brown, moist Well Graded Sand with Clay (SW), light brown, moist	
)- -	Well Graded Sand with Gravel (SW), wet, light brown Clay (CL), light brown, moist End of borehole at 78 ft bgs. Installed monitoring well per scope of work.	End Cap
i —		

Intermountain Power Service Corporation CLIENT:

PROJECT:

SITE LOCATION:

Monitoring Well Installation

Stantec

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

North Wells

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/28/2020 DATE FINISHED: 5/29/2020

		LC	OGGED BY: Joel Pierson	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION		ONSTUCTION GRAM
0		Silty Sand (SP), sand 90%, fines 10%, very loose, very fine,	dry, reddish gray (2.5 YR 7/1)	Above ground monument with well cap
5-				weіі сар
10-				Borehole diameter 10 inches from 0 to 78 ft bgs.
15—				ŭ
20-		Silty Sand (SM), fines 70%, very fine sand 30%, loose		Grout 0 to 41 ft
25		Sandy Silt (ML), fines 70%, very fine sand 30%, medium der oxidation, slightly moist, pale yellow (2.5Y 7/3)		bgs.
30-		Sandy Silty Clay (CL), moist, medium plasticity, dense, mois gray (2.5 YR 6/2), yellow (2.5 YR 7/6), hard	;, some oxidation, light brownish	0 to 53 ft bgs., 6 in dia., Sch. 80
35-				PVC riser
40-				Bentonite 41 to 48 ft bgs.
45-				
50-		Sandy Silty Clay (CL), fines 60%, very fine sand 40%, small	sand increase, weak, loose	Filter Pack Sand 48 to 78 ft bgs.
55-		Sandy Silty Clay (CL), moist, medium plasticity, dense, mois gray (2.5 YR 6/2), yellow (2.5 YR 7/6), hard	t, some oxidation, light brownish	
60-		Fine Sand (SP), sand 90%, fines 10%, loose, weak, moist, v 3/2), sand lense at 64.5' with medium sand 100%	əry dark grayish brown (2.5Y	53 to 78 ft bgs., 6 in dia., Sch. 80
65	///	Silty Sandy Clay (CL), fines 90%, sand 10%, moist, dense, k	ow to medium plasticity	PVC screen with 0.02 inch slot aperture
70		Silty Sand (SP), sand 80%, fines 20%, moist, loose, very dar Clay lense (CL), very fine sand 90%, fines 10% Silty Sand (SP), sand 80%, fines 20%, moist, loose, very dar		apolitic
75	///	Sandy Silty Clay (CL), fines 90%, very fine sand 10%, moist,	dense, low plasticity, reddish	
80-		gray (5YR 5/2) End of borehole at 78 ft bgs. Installed monitoring well per sco	ope of work.	End Cap
Note		bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red		 1

Intermountain Power Service Corporation CLIENT:

PROJECT: Monitoring Well Installation

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/30/2020 DATE FINISHED: 5/31/2020

		LOGGED BY: Joe	l Pierson	
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION AGRAM
0	Silty Sand (SM), sand 80%, fines 15%, gravel 5%, dry, v gray (2.5Y 7/2)	very loose, subangular cl	asts, light	Above ground monument with well cap
5- 10- -				Borehole diameter 10 inches from 0 to 78 ft bgs.
15— 20—	Silty Sandy Clay (CL), fines 80%, fine sand 20%, dense, light olive brown (2.5Y 5/3). Small fracture with iron oxida			Grout 0 to 41 ft bgs.
25 30				0 to 53 ft bgs., 6 in dia., Sch. 80
35	No recovery from 33 to 38 ft bgs			PVC riser
40— 45—	Silty Sand (SM), fine sand 70%, fines 30%, loose, moist fines from 45' to 46' with sand 50%, fines 50%	, olive brown (2.5Y 5/3),	increasing	Bentonite 41 to 48 ft bgs.
50-	Silty Clay (CL), fines 100%, dense, moist, medium plasti Silty Clay (CL), fines 70%, very fine sand 30%	,		Filter Pack Sand
55-	Silty Clay (CL), fines 100%, dense, moist, medium plasti			48 to 78 ft bgs.
60-	Gravelly Silty Sand (SM), sand 80%, gravel 10%, fines 1 brown (2.5YR 6/4), gravel lense at 59', decreasing fines Silty Clay (CL), fines 90%, very fine sand 10%, moist, decreasing fines sand 10%, fines			53 to 78 ft bgs., 6 in dia., Sch. 80
65 70 UU	Silty Sand (SM), very fine sand 70%, fines 30%, reddish	vollow (7.5VP.7/6)	ct loops	PVC screen with 0.02 inch slot aperture
70— - 75—	Siny Sand (Sivi), very line Sand 70%, lines 50%, reddish	yellow (7.51K 7/6), Mol	st, 1005e	
- <u> </u>	End of borehole at 78 ft bgs. Installed monitoring well pe	er scope of work.		End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red tt = feet			1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

South Wells SITE LOCATION:

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/29/2020 DATE FINISHED: 5/30/2020

	To mon some sore barrer o to 70 K bgs.,	LOGGED BY: Joel Pierson		
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			WELL CONSTUCTION DIAGRAM
0	Silty Fine Sand (SM), sand 80%, fines 20%, dry, loose, li	ght gray (2.5 Y 7/2)		Above ground monument with well cap
5— -				Borehole
10-				diameter 10 inches from 0 to 78 ft bgs.
15-			_	
20-	Silty Sandy Clay (CL), fines 90%, sand 10%, slightly moi yellow (2.5Y 7/3) Silty Sandy Clay (CL), fines 70%, fine sand 30%, loose	st, low plasticity, dense, nard, pa	le _	Grout 0 to 41 ft bgs.
25-	Silty Sandy Clay (CL), fines 90%, sand 10%, slightly moi staining, yellow (2.5Y 7/3)	st, low plasticity, dense, hard, iro	n —	
30-				0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
35-	Silty Fine Sand (SM), fine sand 70%, fines 30%, moist, lo	oose		I VO IISEI
40-	Fine Gravel (GM), sand 60%, gravel 30%, fines 10%, an Silty Fine Sand (SM), fine sand 70%, fines 30%, moist, lo	oose		Bentonite 41 to 48 ft bgs.
45-	Sandy Clay (CL), fines 90%, sand 10%, moist, medium of gray (2.5 YR 6/2)	lense, low plasticity, light brownis	sh	Ĵ
50	Fine Silty Sand (SM), sand 80%, fines 20%, moist, loose Silty Clay (CL), 100% fines, moist, hard, low plasticity, re		 	Filter Pack Sand 48 to 78 ft bgs.
55	Silty Sand (SP), sand 90%, fines 10%, reddish gray (5Y Silty Sand (SP), sand 70%, fines 30%, reddish gray (5YF	R 5/2)		
60				53 to 78 ft bgs., 6 in dia., Sch. 80
65	Silty Clay (CL), fines 100%, dense, moist, medium-high principle. Fine Silty Sand (SM), sand 80%, fines 20%, moist, loose	-		PVC screen with 0.02 inch slot
70- -	Sarry Suria (GW), Suria 6076, 11165 2076, 111651, 10056			aperture
75-	Fine Silty Sand (SM), sand 60%, fines 40%, moist, loose Fine Silty Sand (SM), sand 80%, fines 20%, moist, loose			
80-	End of borehole at 78 ft bgs. Installed monitoring well pe	r scope of work.		End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		·	1

Intermountain Power Service Corporation CLIENT:

PROJECT: Monitoring Well Installation

South Wells SITE LOCATION:

Cascade Drilling DRILLING CONTRACTOR:

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 78 ft bgs.,

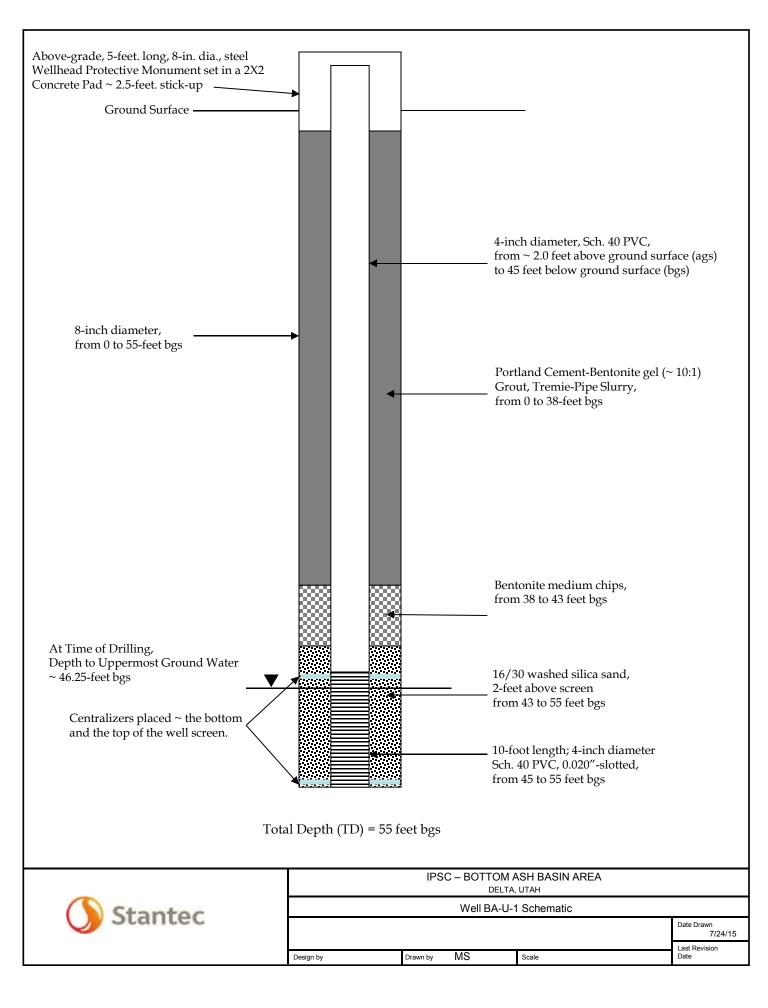
10 inch sonic core barrel 0 to 78 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 78 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/31/2020 DATE FINISHED: 5/31/2020

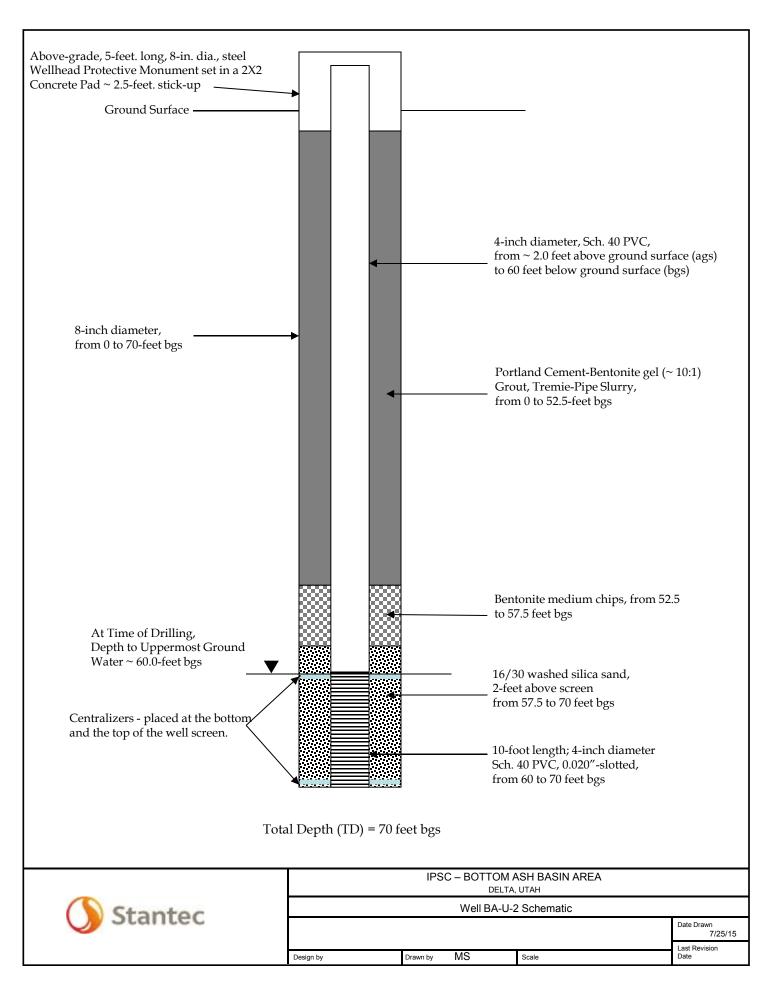

LOGGED BY: Joel Pierson

		LOGGED BY:	Joel Pierson		
DEPTH (feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION				ONSTUCTION IAGRAM
0-	Silty Fine Sand (SM), sand 70%, fines 30%, dry, very loo	se, light yellowish	brown (2.5Y 6/3)		Above ground monument with well cap
5— 10—					Borehole diameter 10
15	Silty Sandy Clay (CL), fines 80%, sand 20%, slightly mois (2.5Y 7/3). Fracture-like facies with iron oxidation	st, low plasticity, o	lense, olive brown		inches from 0 to 78 ft bgs.
20-	Gravel Sand (SP), sand 80%, gravel 20%, very loose, dry	y, light yellowish b	orown (2.5Y 6/3)	- 8 8	Grout 0 to 41 ft bgs.
25— 30—	Silty Clay (CL), fines 100%, slightly moist, low plasticity, o	dense, red (2.5YF	(5/8) — — — —		042.52.65.00
35-	Silty Sand (SP), sand 90%, fines 10%, loose, moist, light	olive brown (2.5)	/ 5/ 3)		0 to 53 ft bgs., 6 in dia., Sch. 80 PVC riser
40-	Silty Clay (CL), fines 100%, moist, medium-high plasticit	·	·		Bentonite 41 to 48 ft bgs.
45— 50—	Silty Clay (CL), lines 100%, moist, medium-nigh plasticit	y, dense, red (2.5	1 K 5/4)		
55	Silty Sand (SM), sand 80%, fines 20%, loose, moist, light	t olive brown (2.5	Y 5/ 3) — — — —		Filter Pack Sand 48 to 78 ft bgs.
60-	Silty Clay (CL), transitioning from fines 90%, sand 10% to medium-high plasticity, dense, red (2.5YR 5/8)	o fines 60%, sand	40%, moist,		53 to 78 ft bgs., 6 in dia., Sch. 80
65	Fine sand (SP), sand 100%, moist, very loose, dark grayi	ish brown (2.5Y 3	<u>-</u> /2) — — — — —		PVC screen with 0.02 inch slot aperture
70— - 75—					
80-	End of borehole at 78 ft bgs. Installed monitoring well per	r scope of work.			End Cap
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet				1

BA-U-1

Interval (feet)	Drilling Method	USCS	Sample Description				
	7/24/2015						
0-0.5	8" Sonic	TOPSOIL	IL Surface - Sand, Gravel, roots, coal ash.				
0.5-1.5	8" Sonic	SM	Silty SAND:				
1.5-2.5	8" Sonic	SC	Clayey SAND:				
2.5-3.5	8" Sonic	ML	Sandy SILT:				
3.5-5	8" Sonic	SM/ML	Silty SAND/Sandy Silt:				
5-6	8" Sonic		SAND:				
6-9.5	8" Sonic	SP	SAND:				
9.5-11	8" Sonic		SAND:				
11-11.5	8" Sonic	SM	Silty SAND:				
11.5-12	8" Sonic	JIVI	Silty SAND:				
12-13	8" Sonic	SP/SM	SAND with silt:				
13-17	8" Sonic	SP	SAND:				
17-17.5	8" Sonic	SP/SM	SAND with silt:				
17.5-20	8" Sonic	SP	SAND:				
20-22.5	8" Sonic	- 31	SAND:				
22.5-25	8" Sonic	SM	Silty SAND:				
25-26	8" Sonic	SP	SAND:				
26-27.5	8" Sonic	SP/SM	SAND with silt:				
27.5-28.25	8" Sonic	SM	Silty SAND with clay:				
28.25-29.25	8" Sonic	SP/SM	SAND with silt:				
29.25-30	8" Sonic	CL	CLAY:				
30-31.5	8" Sonic	CL	Sandy CLAY:				
31.5-33	8" Sonic	ML	Sandy SILT:				
33-35	8" Sonic	SM	Silty SAND with clay:				
35-36.25	8" Sonic	SP/SM	SAND with silt:				
36.25-40	8" Sonic	СН	CLAY:				
40-46.5	8" Sonic	CII	CLAY:				
46.5-47.5	8" Sonic	SP/SM	SAND with silt:				
47.5-50	8" Sonic	SM	Silty SAND with clay:				
50-51	8" Sonic	SC	Clayey SAND:				
51-51.75	8" Sonic	SW	SAND:				
51.75-52.5	8" Sonic	SP	SAND:				
52.5-53	8" Sonic		Sandy CLAY:				
53-54	8" Sonic	CH	Sandy CLAY:				
54-55	8" Sonic		CLAY:				

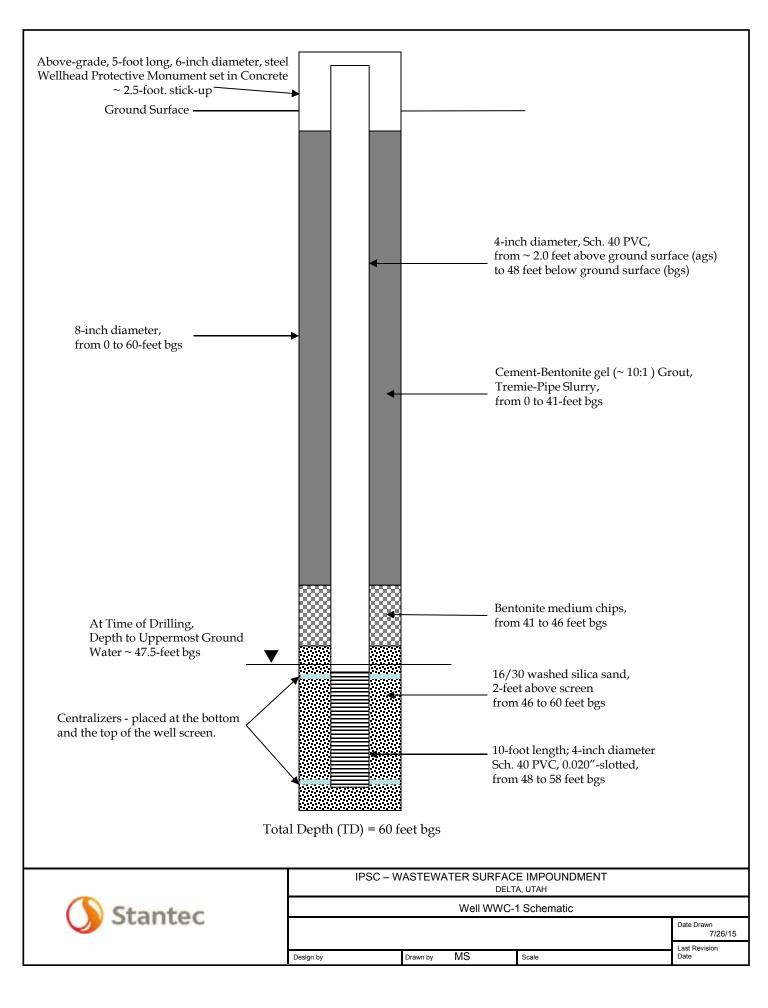
TD = 55'; PVC 4-inch screen from 45 to 55; PVC 4-inch riser from -2.5 to 45 Drilling Method: Guspech GS24-300RS, 8" Rotosonic



BA-U-2

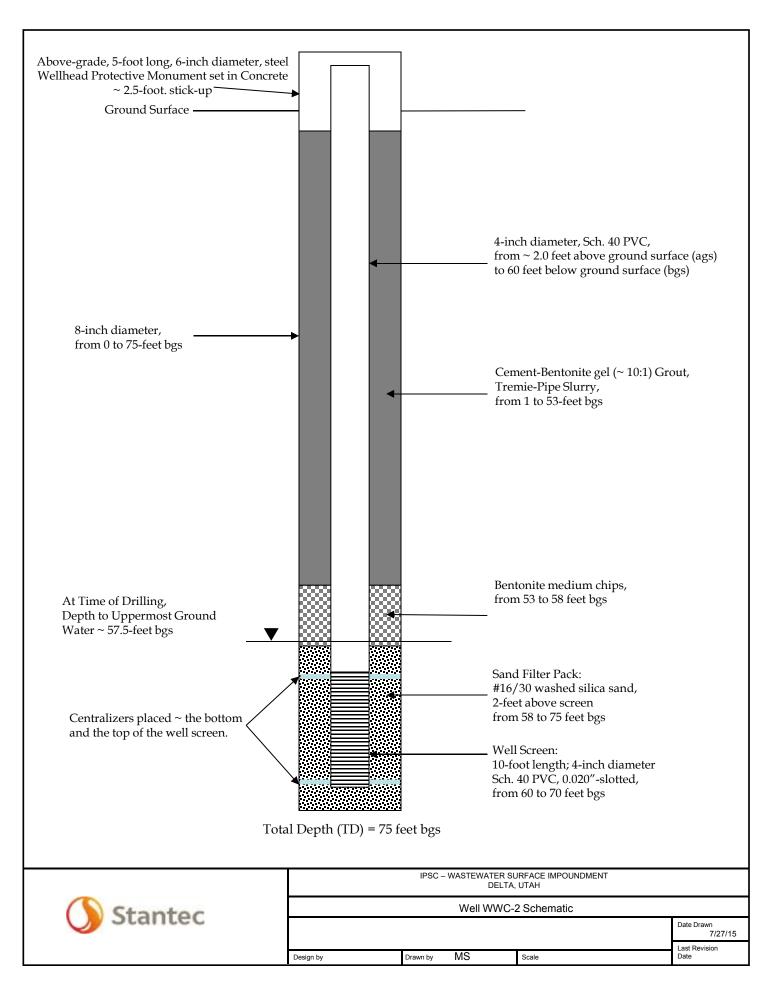
Interval (feet)	Drilling Method	USCS	Sample Description	
		U	7/25/2015	
0-0.5	8" Sonic	TOPSOIL	L Surface - Sand, Gravel, roots, coal ash.	
0.5-1.5	8" Sonic	ML	Sandy SILT:	
1.5-2.5	8" Sonic	SP/SM	SAND with silt:	
2.5-4	8" Sonic	SP/SM	SAND with silt:	
4-5	8" Sonic	ML	SILT with sand and clay:	
5-6	8" Sonic	SP/SM	SAND with silt:	
6-7	8" Sonic	SP	SAND:	
7-9	8" Sonic	SW	Gravelly SAND:	
9-9.75	8" Sonic	SVV	Gravelly SAND:	
9.75-10.25	8" Sonic	SP	Gravelly SAND:	
10.25-11	8" Sonic	SP/SM	SAND with silt:	
11-12.5	8" Sonic	CL	CLAY:	
12.5-13	8" Sonic		SAND:	
13-15.5	8" Sonic		SAND:	
15.5-18	8" Sonic	SP	SAND:	
18-22.5	8" Sonic		SAND:	
22.5-23	8" Sonic		SAND:	
23-23.5	8" Sonic	SM	Silty SAND:	
23.5-25	8" Sonic	SP/SM	SAND with silt:	
25-30	8" Sonic	SM	Silty SAND:	
30-32.5	8" Sonic	SC	Clayey SAND:	
32.5-35	8" Sonic	SM	Silty SAND with clay:	
35-37.5	8" Sonic	SIVI	Silty SAND:	
37.5-40	8" Sonic	CL	Sandy CLAY:	
40-42	8" Sonic	SC	Clayey SAND:	
42-45	8" Sonic		CLAY:	
45-47.5	8" Sonic	CH	Sandy CLAY:	
47.5-51.75	8" Sonic		CLAY:	
51.75-53	8" Sonic	SM	Silty SAND:	
53-54	8" Sonic	SIVI	Silty SAND:	
54-55	8" Sonic	SC/SM	Clayey SAND with silt:	
55-56.5	8" Sonic	CH	CLAY:	
56.5-57.5	8" Sonic	СП	CLAY:	
57.5-60	8" Sonic	SC	Clayey SAND:	
60-60.75	8" Sonic	SM	Silty SAND with clay:	
60.75-61.5	8" Sonic	SC	Clayey SAND:	
61.5-62.5	8" Sonic	SP	SAND:	
62.5-63.5	8" Sonic	3F	SAND:	
63.5-65	8" Sonic	SW	SAND:	
65-67.5	8" Sonic	SP	SAND:	
67.5-70	8" Sonic	5P	SAND:	

TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60


Drilling Method: Guspech GS24-300RS, 8" Rotosonic

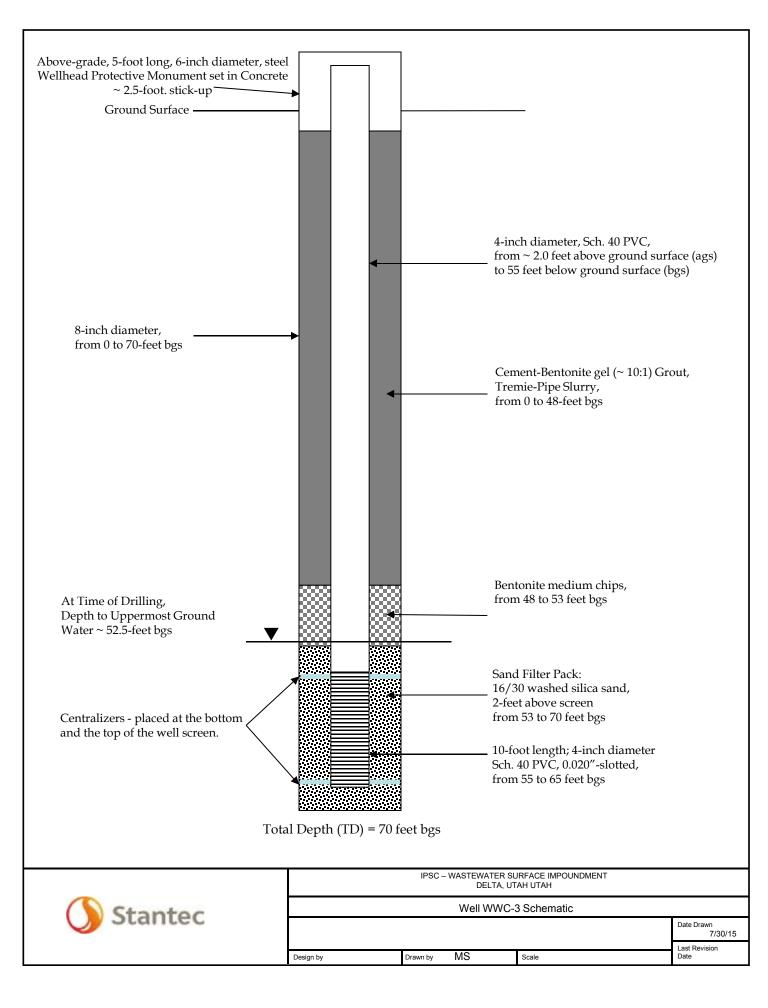
Interval (feet)	Drilling Method	USCS	Sample Description			
	7/26/2015					
0-0.5	8" Sonic	TOPSOIL	IL Surface - Sand, Gravel, roots, coal ash.			
0.5-2	8" Sonic	ML	Sandy SILT:			
2-2.5	8" Sonic	SP	SAND:			
2.5-5	8" Sonic	31	SAND:			
5-6.75	8" Sonic	SM	Silty SAND:			
6.75-7.5	8" Sonic		Sandy SILT:			
7.5-10	8" Sonic	ML	Sandy SILT:			
10-12	8" Sonic		Sandy SILT:			
12-12.5	8" Sonic	SP/SM	SAND with silt:			
12.5-13	8" Sonic	SM	Silty SAND:			
13-15	8" Sonic		Silty CLAY:			
15-17.5	8" Sonic		Silty CLAY:			
17.5-18.5	8" Sonic	CL	Silty CLAY:			
18.5-19	8" Sonic		Sandy CLAY:			
19-20	8" Sonic		Silty CLAY:			
20-22	8" Sonic		CLAY:			
22-24.5	8" Sonic		Sandy CLAY:			
24.5-25.5	8" Sonic		Sandy CLAY:			
25.5-27	8" Sonic		Sandy CLAY:			
27-31	8" Sonic	CH	CLAY:			
31-31.5	8" Sonic		CLAY:			
31.5-33	8" Sonic		CLAY:			
33-34.5	8" Sonic		Sandy CLAY:			
34.5-35	8" Sonic		Sandy CLAY:			
35-37.5	8" Sonic	SM	Silty SAND:			
37.5-40	8" Sonic	SIVI	Silty SAND:			
40-41.5	8" Sonic		SAND:			
41.5-42.5	8" Sonic	SP	SAND:			
42.5-44	8" Sonic	01	SAND:			
44-45	8" Sonic		SAND:			
45-46.5	8" Sonic	CH	CLAY:			
46.5-47.5	8" Sonic		Sandy CLAY:			
47.5-50.5	8" Sonic	SC/SM	SAND with silt and clay:			
50.5-52.5	8" Sonic	SW	SAND:			
52.5-53.5	8" Sonic		SAND:			
53.5-55	8" Sonic	SM	Silty SAND:			
55-57	8" Sonic		Silty SAND:			
57-57.5	8" Sonic	CH	CLAY:			
57.5-60		-	CLAY:			

TD = 60'; PVC 4-inch screen from 48 to 58; PVC 4-inch riser from -2.5 to 48

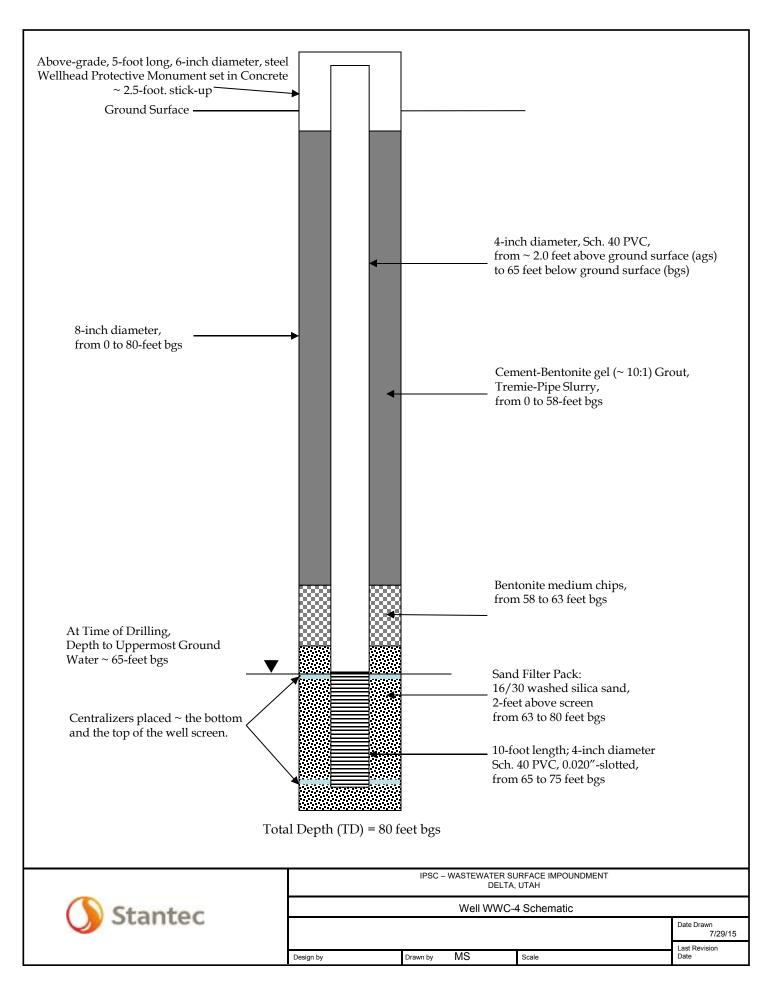

Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Interval (feet)	Driling Method	USCS				
	7/27/2015					
0-0.5	8" Sonic	TOPSOIL	IL Surface - Sand, Gravel, roots, coal ash.			
0.5-2.5	8" Sonic	SM	Silty SAND:			
2.5-5	8" Sonic	SP	SAND:			
5-7	8" Sonic	51	SAND:			
7-9.5	8" Sonic	SW	Gravelly SAND:			
9.5-10	8" Sonic	SW/SP	SAND:			
10-12	8" Sonic	SP	SAND:			
12-12.5	8" Sonic	SP/SW	Gravelly SAND:			
12.5-14.5	8" Sonic	SW	Gravelly SAND:			
14.5-15	8" Sonic	SP	SAND with gravel:			
15-16	8" Sonic	3F	SAND:			
16-17.5	8" Sonic	CL	Sandy CLAY:			
17.5-19	8" Sonic		Clayey SAND:			
19-20	8" Sonic	SC	Clayey SAND:			
20-21	8" Sonic		Clayey SAND:			
21-22	8" Sonic	CH	CLAY:			
22-24	8" Sonic	CH	CLAY:			
24-25	8" Sonic	SM	Silty SAND with clay:			
25-26.5	8" Sonic	SM/SC	Silty SAND and clay:			
26.5-27.5	8" Sonic	SC	Clayey SAND with silt:			
27.5-31.5	8" Sonic	CII	CLAY:			
31.5-34	8" Sonic	CH	Silty CLAY:			
34-35.5	8" Sonic	SP	SAND:			
35.5-37	8" Sonic	ML	Sandy SILT with clay:			
37-38.5	8" Sonic	CL	Silty CLAY:			
38.5-40	8" Sonic	SM	Silty SAND:			
40-42	8" Sonic	CH	CLAY:			
42-42.5	8" Sonic	CH	Silty CLAY:			
42.5-45	8" Sonic	SC	Clayey SAND:			
45-46.25	8" Sonic	CH	CLAY:			
46.25-46.75	8" Sonic	SW/SM	SAND with silt:			
46.75-47	8" Sonic	ML	Sandy SILT:			
47-47.5	8" Sonic	SM	Silty SAND:			
47.5-50	8" Sonic	CH	CLAY:			
50-51.5	8" Sonic	SM	Silty SAND:			
51.5-52	8" Sonic	CH	Sandy CLAY:			
52-52.5	8" Sonic	SM	CLAY:			
52.5-53.5	8" Sonic	CH	Sandy CLAY:			
53.5-55	8" Sonic	SM	Silty SAND:			
55-56.25	8" Sonic	ML	Sandy SILT:			
56.25-57.5	8" Sonic	IVIL	SILT:			
57.5-60	8" Sonic	SP/SM	SAND with silt:			
60-61.5	8" Sonic	SM	Silty SAND:			
61.5-62.5	8" Sonic	CH	CLAY:			
62.5-63.75	8" Sonic	SP/SM	SAND with silt:			
63.75-65	8" Sonic		SAND:			
65-67.5	8" Sonic	SW	SAND:			
67.5-70	8" Sonic		Gravelly SAND:			
70-70.5	8" Sonic	SC/SM	Silty SAND and clay:			
70.5-72.5	8" Sonic		CLAY:			
72.5-75	8" Sonic	CH	CLAY:			

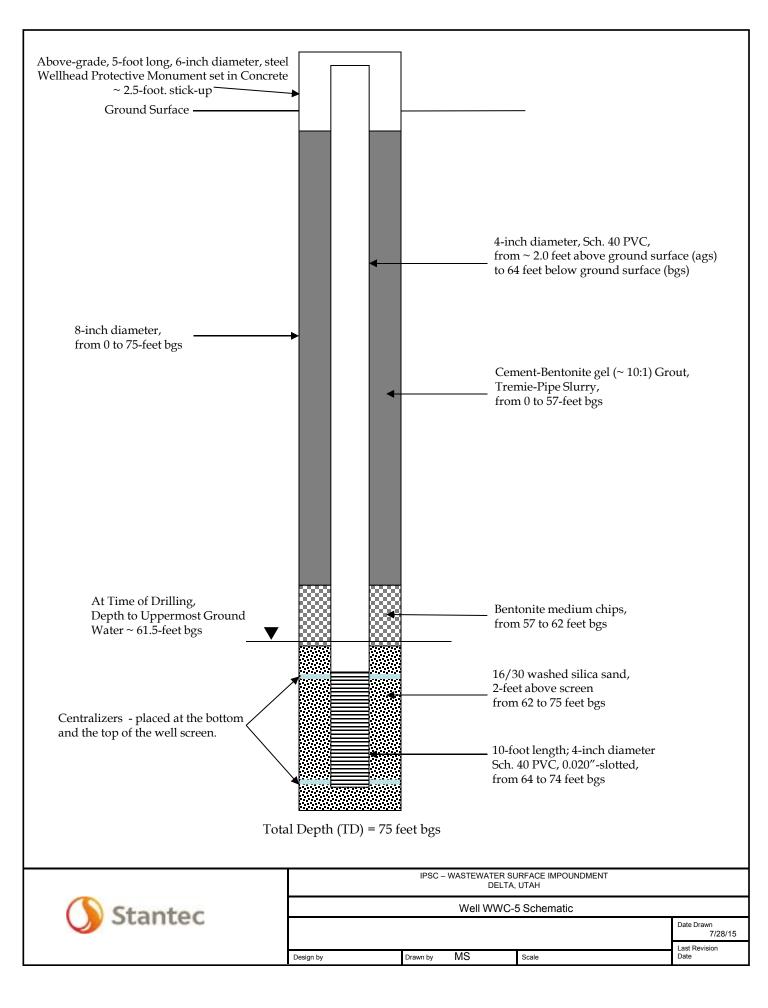
TD = 75'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60


Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Interval (feet)	Drilling Method	USCS	Sample Description			
	7/30/2015					
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
0.5-1	8" Sonic	SP	Gravelly SAND:			
1-2.5	8" Sonic	SM	Silty SAND:			
2.5-3.5	8" Sonic	SIVI	Silty SAND:			
3.5-5	8" Sonic	SP/SM	SAND with silt:			
5-6.5	8" Sonic	ML	Sandy SILT:			
6.5-7.5	8" Sonic	CL	Sandy CLAY:			
7.5-8	8" Sonic	SM	Silty SAND:			
8-10	8" Sonic	SC	Clayey SAND:			
10-11	8" Sonic		Silty SAND:			
11-12.5	8" Sonic	SM	Silty SAND with clay:			
12.5-13.5	8" Sonic		Silty SAND:			
13.5-14	8" Sonic	SC	Clayey SAND:			
14-15	8" Sonic	SM	Silty SAND:			
15-15.5	8" Sonic		CLAY:			
15.5-16	8" Sonic		CLAY:			
16-16.5	8" Sonic		Sandy CLAY:			
16.5-17.5	8" Sonic		Sandy CLAY:			
17.5-20	8" Sonic	CH	CLAY:			
20-21	8" Sonic		CLAY:			
21-22	8" Sonic		CLAY:			
22-24	8" Sonic		CLAY:			
24-25	8" Sonic	SM	Silty SAND:			
25-26.25	8" Sonic	SP/SM	SAND with silt:			
26.25-27	8" Sonic	SP	SAND:			
27-29	8" Sonic	SM	Silty SAND:			
29-30	8" Sonic		CLAY:			
30-31	8" Sonic	CH	CLAY:			
31-32.5	8" Sonic	an.	SAND:			
32.5-34	8" Sonic	SP	SAND:			
34-36	8" Sonic		CLAY:			
36-37	8" Sonic	CH	CLAY:			
37-39.5	8" Sonic	SP/SM	SAND with silt:			
39.5-40.5	8" Sonic	,	SAND:			
40.5-41.5	8" Sonic	SP	SAND:			
41.5-43	8" Sonic	CH	CLAY:			
43-44	8" Sonic	SP/SM	SAND with silt:			
44-45	8" Sonic	SM	Silty SAND:			
45-47.5	8" Sonic	SP	SAND:			
47.5-50	8" Sonic	CII	CLAY:			
50-52.5	8" Sonic	CH	CLAY:			
52.5-55	8" Sonic	CD	SAND:			
55-61	8" Sonic	SP	SAND:			
61-62.5	8" Sonic	0717	SAND:			
62.5-65	8" Sonic	SW	SAND:			
65-67.5	8" Sonic	SP	SAND:			
67.5-69.5	8" Sonic	SW	SAND:			
69.5-70	8" Sonic	CH	CLAY:			

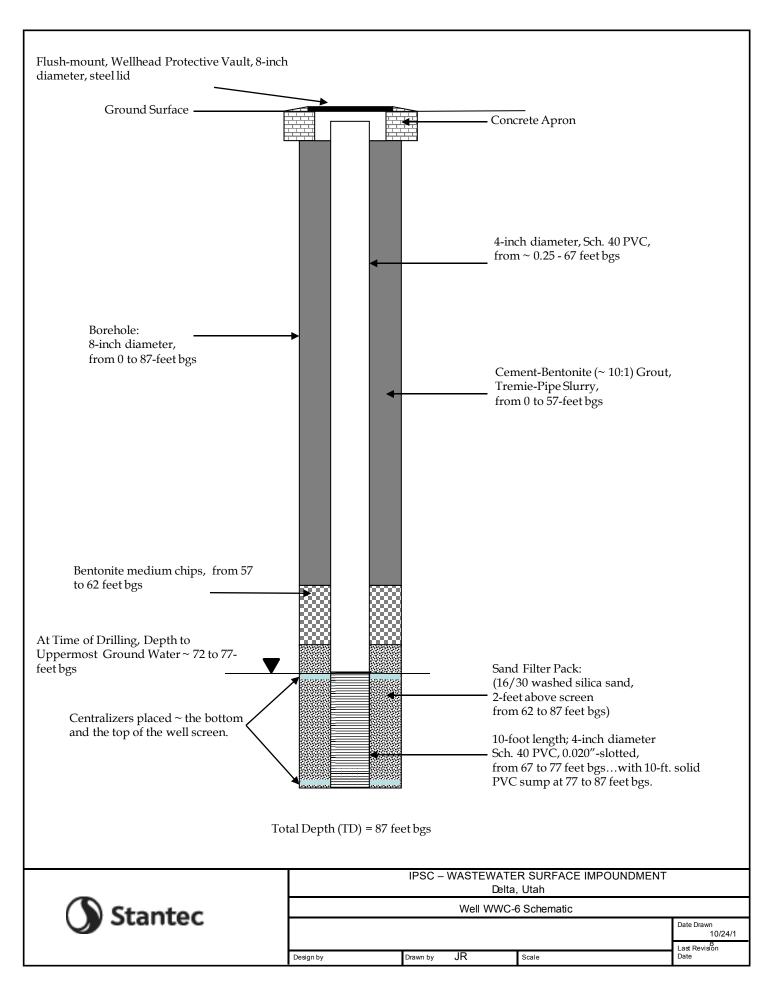

TD = 70'; PVC 4-inch screen from 55 to 65; PVC 4-inch riser from -2.5 to 55

Drilling Method: Guspech GS24-300RS, 8" Rotosonic


Interval (feet)	Drilling Method	USCS	Sample Description	
			7/29/2015	
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.	
0.5-2.5	8" Sonic	SP/SM	SAND with silt:	
2.5-5	8" Sonic	51 / 5141	SAND with silt:	
5-6.25	8" Sonic	ML	Sandy SILT:	
6.25-7.25	8" Sonic	CL	CLAY:	
7.25-8	8" Sonic	SC	Clayey SAND:	
8-9	8" Sonic	SP/SC	SAND with clay:	
9-10	8" Sonic	SP	SAND:	
10-11	8" Sonic	ML	SILT:	
11-12.5	8" Sonic	ML/CL	Clayey SILT:	
12.5-14	8" Sonic		CLAY:	
14-15	8" Sonic	CL	Sandy CLAY:	
15-16	8" Sonic		Clayey SAND:	
16-18	8" Sonic	SC	Clayey SAND:	
18-19.5	8" Sonic	SM	Silty SAND:	
19.5-20	8" Sonic		CLAY:	
20-21.25	8" Sonic	CH	Sandy CLAY:	
21.25-22.5	8" Sonic	SM	Silty SAND:	
22.5-23.75	8" Sonic	CH	CLAY:	
23.75-25	8" Sonic	SM	Silty SAND:	
25-25.75	8" Sonic	SC	Clayey SAND:	
25.75-27.5	8" Sonic	CL	Sandy CLAY:	
27.5-29	8" Sonic	CL	CLAY:	
		CH	CLAY:	
29-30.5	8" Sonic	CM		
30.5-31.5	8" Sonic 8" Sonic	SM	Silty SAND:	
31.5-32.25		CL	Sandy CLAY:	
32.25-32.5	8" Sonic 8" Sonic	CII	Sandy CLAY:	
32.5-33		CH CP/CM	CLAY:	
33-36	8" Sonic	SP/SM	SAND with silt:	
36-37	8" Sonic	SM	Silty SAND:	
37-40	8" Sonic	CD	SAND:	
40-42.5	8" Sonic	SP	SAND:	
42.5-45	8" Sonic		SAND:	
45-46	8" Sonic	SP/SW	SAND:	
46-46.5	8" Sonic		CLAY:	
45.5-47.5	8" Sonic		Sandy CLAY:	
47.5-48.5	8" Sonic	CH	CLAY:	
48.5-50	8" Sonic		CLAY:	
50-50.5	8" Sonic		CLAY:	
50.5-52.5	8" Sonic	SM	Silty SAND:	
52.5-54	8" Sonic	CH	CLAY:	
54-55	8" Sonic	SP	SAND:	
55-57	8" Sonic	CH	Sandy CLAY:	
57-57.5	8" Sonic	SP	SAND:	
57.5-60	8" Sonic	SM	Silty SAND:	
60-62	8" Sonic		Silty SAND:	
62-62.5	8" Sonic	SC	Clayey SAND:	
62.5-63	8" Sonic	CH	Sandy CLAY:	
63-65	8" Sonic	SM	Silty SAND:	
65-67.5	8" Sonic	SW	SAND:	
67.5-69.5	8" Sonic	SP	SAND:	
69.5-70	8" Sonic	SW	SAND:	
70-72	8" Sonic	344	SAND:	
72-72.5	8" Sonic	SP/SM	SAND with silt:	
72.5-75	8" Sonic	SM	Silty SAND:	
75-80	8" Sonic	CH	CLAY:	

 $TD=80; PVC\ 4-inch\ screen\ from\ 65\ to\ 75; PVC\ 4-inch\ riser\ from\ -2.5\ to\ 65$ Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Interval (feet)	Drilling Method	USCS	Sample Description			
		I	7/28/2015			
0-0.5	8" Sonic	TOPSOIL	Surface - Sand, Gravel, roots, coal ash.			
0.5-2	8" Sonic	ML	Sandy SILT:			
2-2.5	8" Sonic	SP/SM				
2.5-4.25	8" Sonic	SM	Silty SAND:			
4.25-5	8" Sonic	SP	SAND:			
5-7.5	8" Sonic	ML	Clayey SILT:			
7.5-9	8" Sonic	CL	Silty CLAY:			
9-10	8" Sonic		Sandy CLAY:			
10-10.5	8" Sonic	SC	Clayey SAND:			
10.5-11.25	8" Sonic	CL	CLAY:			
11.25-12.5	8" Sonic	ML	Clayey SILT:			
12.5-13.25	8" Sonic	SM	Silty SAND:			
13.25-13.75	8" Sonic	SC	Clayey SAND:			
13.75-15	8" Sonic	CL	CLAY:			
15-16	8" Sonic		CLAY:			
16-17.5	8" Sonic	CH	CLAY:			
17.5-19	8" Sonic	SC	Clayey SAND:			
19-20.5	8" Sonic		CLAY:			
20.5-21.25	8" Sonic	CH	Sandy CLAY:			
21.25-22	8" Sonic		CLAY:			
22-22.5	8" Sonic	SC	Clayey SAND:			
22.5-24	8" Sonic	SM	Silty SAND:			
24-25	8" Sonic	CH	CLAY:			
25-26	8" Sonic	SM/CH	Silty SAND / CLAY:			
26-27.5	8" Sonic	СН	CLAY:			
27.5-28	8" Sonic	CII	Sandy CLAY:			
28-28.25	8" Sonic	SM	Silty SAND:			
28.25-30	8" Sonic	CH	CLAY:			
30-32.5	8" Sonic		SAND:			
32.5-34	8" Sonic	SP	SAND:			
34-37.5	8" Sonic		SAND:			
37.5-40	8" Sonic	SP/SM	SAND with silt:			
40-42.5	8" Sonic	CH	CLAY:			
42.5-42.75	8" Sonic	SM	Silty SAND:			
42.75-44	8" Sonic	CH	Sandy CLAY:			
44-44.5	8" Sonic		Silty SAND:			
44.5-45	8" Sonic	SM	Silty SAND:			
45-45.5	8" Sonic	JIVI	Silty SAND:			
45.5-46.75	8" Sonic		Silty SAND:			
46.75-47.5	8" Sonic		CLAY:			
47.5-50	8" Sonic	CII	CLAY:			
50-50.5	8" Sonic	CH	Sandy CLAY:			
50.5-51.5	8" Sonic		CLAY:			
51.5-52	8" Sonic	SM	Silty SAND:			
52-53.25	8" Sonic	CII	CLAY:			
53.25-53.5	8" Sonic	CH	CLAY:			
53.5-54	8" Sonic	SC	Clayey SAND:			
54-55	8" Sonic	SM/SC	Silty SAND and clay:			
55-57.5	8" Sonic	, , , , , , , , , , , , , , , , , , ,	SAND:			
57.5-60	8" Sonic	SP	SAND:			
60-60.75	8" Sonic		SAND:			
60.75-61.5	8" Sonic	CH	CLAY:			
61.5-62.5	8" Sonic		SAND with silt:			
62.5-64	8" Sonic	SP/SM	SAND with silt:			
64-65	8" Sonic		SAND:			
65-67.5	8" Sonic		SAND with gravel:			
67.5-70	8" Sonic	SW	Gravelly SAND:			
70-72.5	8" Sonic		SAND:			
72.5-75	8" Sonic		SAND:			
12.0-10	O JOINE	l	out.			

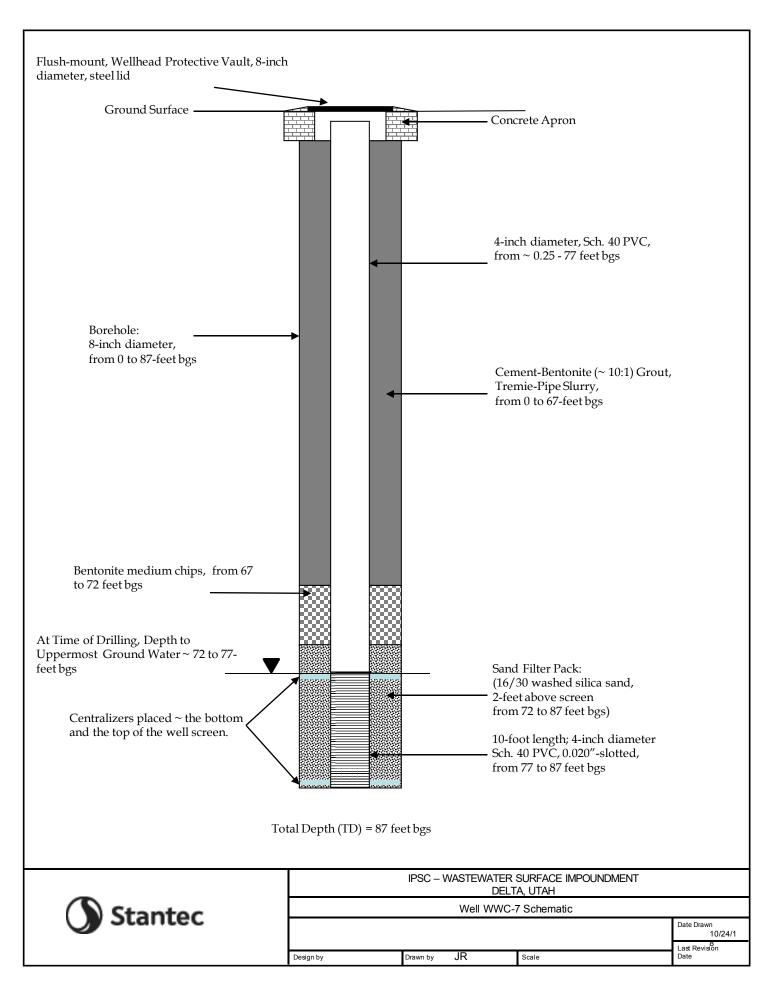

TD = 75'; PVC 4-inch screen from 64 to 74; PVC 4-inch riser from -2.5 to 64
Drilling Method: Guspech GS24-300RS, 8" Rotosonic

Interval (feet)	Drilling Method	USCS	Sample Description
			03/23/2018 - 03/24/2018
0-0.5	8" Sonic	SM	Silty sand
0.7-7	8" Sonic	SP	Sand, poorly graded, dry
7-12.5	8" Sonic	СН	Silty clay
12.5-15.5	8" Sonic	SM	Sand, some silt
15.5-19.5	8" Sonic	SP	Sand, poorly graded
19.5-21.5	8" Sonic	SW/GW	Sand and gravel
21.5-27	8" Sonic	SP	Sand, poorly graded, running sands @ ~26
27-29.5	8" Sonic	SP	Sand, poorly graded, running sands
29.5-30	8" Sonic	SW	Sand with gravel
30.37	8" Sonic	CH	Clay, stiff
37-41	8" Sonic	CH	Clay, trace silt, moist, stiff
41-47	8" Sonic	CH	Clay, stiff, moist
47-48	8" Sonic	SP	Sand
48-57	8" Sonic	SW	Sand, silt and gravel
57-59	8" Sonic	SP	Sand
59-60.5	8" Sonic	CH	Clay wet
60.5-64.5	8" Sonic	MH	Silt, trace clay
64.5-67	8" Sonic	СН	Clay wet
67-72	8" Sonic	CH	Clay wet
72-77	8" Sonic	SP	Sand, saturated
77-87	8" Sonic	CH	Clay

TD = 87'; PVC sump 87-77; 4" screen 77-67; sand 87-62 centralizers 67.5 and 76.5 Drilling Method: Sonic

Drilling Company - Cascade Drilling Driller - David Donnely Geologist - Tom Fendler

Interval (feet)	Drilling Method	USCS	Sample Description
			03/20/2018 - 03/23/2018
0-1.5	8" Sonic	SM	Silty sand, dry
1.5-8.5	8" Sonic	SP	Sand, poorly graded, saturated at 7.5
8.5-9	8" Sonic	СН	Sandy clay
9-14	8" Sonic	SC	Clay with trace sand
14-24	8" Sonic	SP	Sand, poorly graded, saturated with heaving sands at 17 '
24-25	8" Sonic	SW/GW	Gravel/sand and gravel
25-27	8" Sonic	СН	Clay, moist
27-34.5	8" Sonic	SP	Sandy, wet
34.5-35.5	8" Sonic	SW/GW	Sand, some gravel
35.5-37	8" Sonic	CH	Clay, moist, stiff
37-47	8" Sonic	CH	Clay, moist, stiff
47-49.5	8" Sonic	СН	Clay, moist, stiff
49.5-50.5	8" Sonic	SP	Sand, poorly softed, moist
50.5-57	8" Sonic	CH	Clay, moist, stiff
57-67	8" Sonic	CH	Clay, moist, stiff
67-72	8" Sonic	СН	Clay, moist, stiff
72-77	8" Sonic	SP	Sand, poorly graded, saturated @76.5
77-87	8" Sonic	SP	Sand, poorly graded, saturated


TD = 87'; PVC 4-inch screen from 77 to 87; sand pack 72-87; bentonite pellets 67-72; grout 67-

grade

Drilling Method: Sonic

Drilling Company - Cascade Drilling

Driller - David Donnely Geologist - Tom Fendler

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: WWC-8

Boring Diameter: 10 inches

Project No.: 203709098 **Completion Date:** 2019-04-25

Drilling Firm: CascadeDriller: Ryan MillerBoring Method: SonicLogged by: Rich Pratt

Depth to Water at Drilling: 77 feet

Depth to Water at Drilling (static at 24 hours): 27

feet

WWC-8

Interval (feet)	Description
0 - 3	Light brown sand, moist
3 - 7	Light brown sand with silt, dry
7 - 9	Medium brown clay with sand, moist
9 - 13	Medium brown clay, moist
13 - 15	Light brown clay, moist
15 - 17	Light brown clay, dry
17 - 26	Light brown clay, moist
26 - 35	Light brown clay with sand, moist
35 - 37	Light brown clay, moist
37 - 41	Medium brown medium grained sand, moist
41 - 43	Medium brown medium grained sand, moist
43 - 55	Medium brown medium grained sand, moist
55 - 59	Light brown clay, moist
59 - 63	Light brown clay with sand, moist
63 - 66	Light brown clay, moist
66 - 67	Light brown clay with sand, moist
67 - 68	Light brown sand, moist
68 - 77	Light brown clay with sand, moist
77 - 88	Medium brown sand, saturated
88 - 93	Light brown clay
93 - 94	Light brown clay with sand
94 - 96	Light brown clay
96 - 97	Medium brown sand

Well Completion materials and Depth Intervals (feet) Below Ground Surface

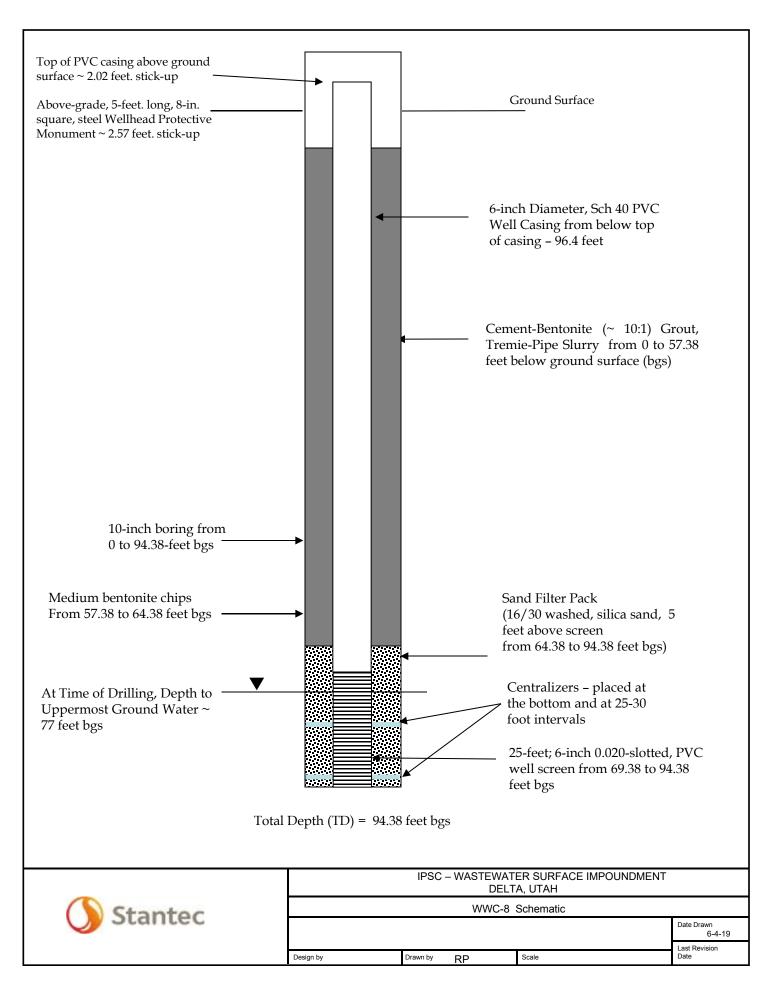
Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-69.38 feet

Screen (6 inch, 0.02 slotted, PVC): 69.38-94.38 feet

Sand Pack: 16/30 sand, 64.38-94.38 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


57.38-64.38 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NΑ

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: WWC-9

Drilling Firm: Cascade

Boring Method: Sonic

Boring Diameter: 10 inches

Project No.: 203709098 **Completion Date:** 2019-04-28

Driller: Ryan Miller **Logged by:** Rich Pratt

Depth to Water at Drilling: 67 feet

Depth to Water at Drilling (static at 24 hours):

23.75 feet

WWC-9

Interval (feet)	Description
0 - 0.5	Medium brown silt, dry
0.5 - 1	Medium brown clay, dry
1 - 4	Light brown fine-grained sand, dry
4 - 8	Light brown clay, dry
8 - 13	Light brown fine-grained sand, dry
13 - 15	Light brown clay, dry
15 - 16	Light brown clay with sand, dry
16 - 17	Light brown clay, dry
17 - 18	Light brown clay with sand, moist
18 – 21.5	Light brown clay, moist
21.5 - 22	Light brown clay with sand, moist
22 - 23	Light brown clay, moist
23 - 26	Light brown clay with sand, moist
26 - 27	Light brown clay, moist
27 - 30	Light brown clay, moist
30 - 31	Light brown clay, saturated
31 - 32	Light brown clay with sand, moist
32 - 36	Light brown clay, moist
36 - 37	Light brown clay with sand, moist
37 - 38	Light brown clay with sand, moist
38 - 51	Medium brown medium grained sand, moist
51 - 54	Light brown clay, moist
54 - 58	Medium brown medium grained sand, moist
58 - 59	Medium brown medium grained sand, moist
59 - 62	Medium brown medium grained sand, moist
62 - 63	Light brown clay, moist to moist
63 - 66	Light brown clay with sand, moist
66 - 67	Light brown clay, moist
67 - 69	Light brown clay with sand, saturated

Interval (feet)	Description		
69 – 69.5	Medium brown sand		
69.5 - 70	Light brown clay with sand		
70 - 71	Light brown clay		
71 - 74	Light brown clay with sand		
74 - 75	Medium brown sand		
75 - 77	Light brown clay		
77 - 83	Medium brown sand		
83 - 85	Light brown clay		
85 - 87	Light brown clay with sand		

Well Completion materials and Depth Intervals (feet) Below Ground Surface

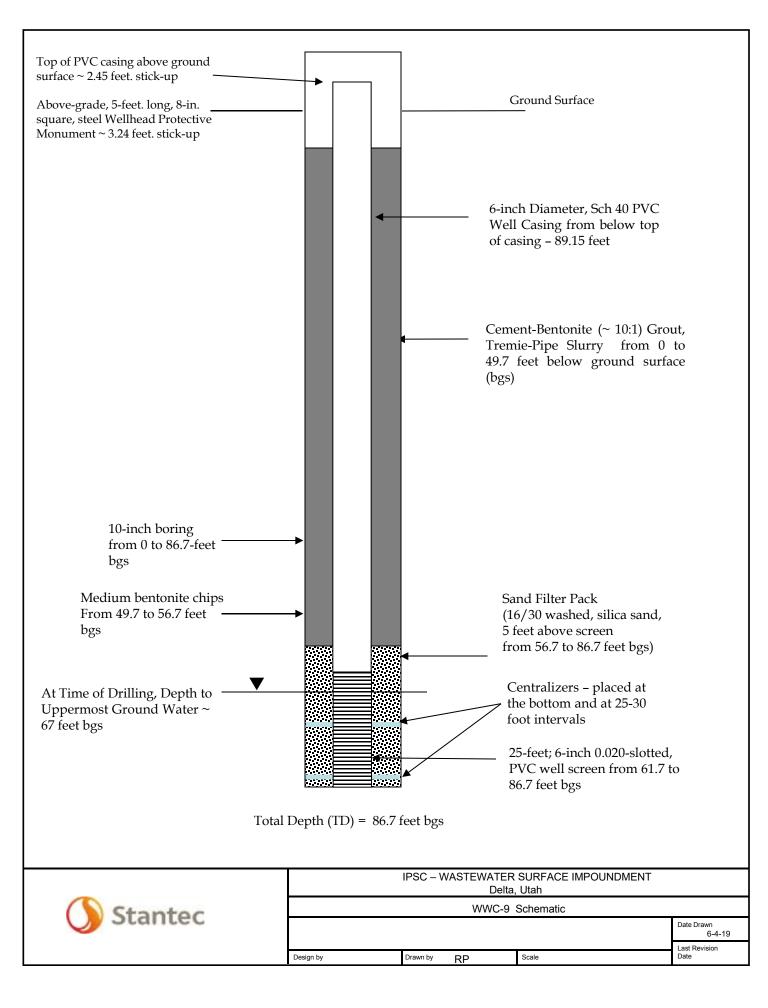
Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-61.7 feet

Screen (6 inch, 0.02 slotted, PVC): 61.7-86.7 feet

Sand Pack: 16/30 sand, 56.7-86.7 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


49.7-56.7 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NA

Project Name: Intermountain Power Service

Corporation

Boring Monitor Well: WWC-10

Drilling Firm: Cascade

Boring Method: Sonic

Boring Diameter: 10 inches

Project No.: 203709098 **Completion Date:** 2019-04-26

Driller: Ryan Miller **Logged by:** Rich Pratt

Depth to Water at Drilling: 67 feet

Depth to Water at Drilling (static at 24 hours):

17.65 feet

WWC-10

Interval (feet)	Description
0 - 5	Light brown sand, moist
5 – 9.5	Light brown clay with sand, moist
9.5 - 13	Dark gray clay, moist
13 - 14	Dark brown silt with organic plant matter, moist
14 - 15	Dark gray clay, moist
15 - 17	Gray medium grained sand, moist
17 - 34	Gray medium grained sand, moist
34 - 45	Brown medium grained sand, moist
45 - 47	Medium brown clay, moist
47 - 49	Medium brown clay with sand, moist
49 - 50	Medium brown medium grained sand, moist
50 - 51	Medium brown clay with sand, moist
51 - 52	Medium brown medium grained sand, moist
52 - 53	Medium brown clay with sand, moist
53 - 54	Medium brown medium grained sand, moist
54 - 60	Medium brown clay, moist
60 - 61	Medium brown clay with sand, moist
61 - 67	Medium brown clay, moist
67 - 68	Medium brown clay, saturated
68 - 69	Medium brown clay with sand
69 - 70	Medium brown clay
70 - 76	Medium brown clay with sand
76 - 87	Medium brown clay

Well Completion materials and Depth Intervals (feet) Below Ground Surface

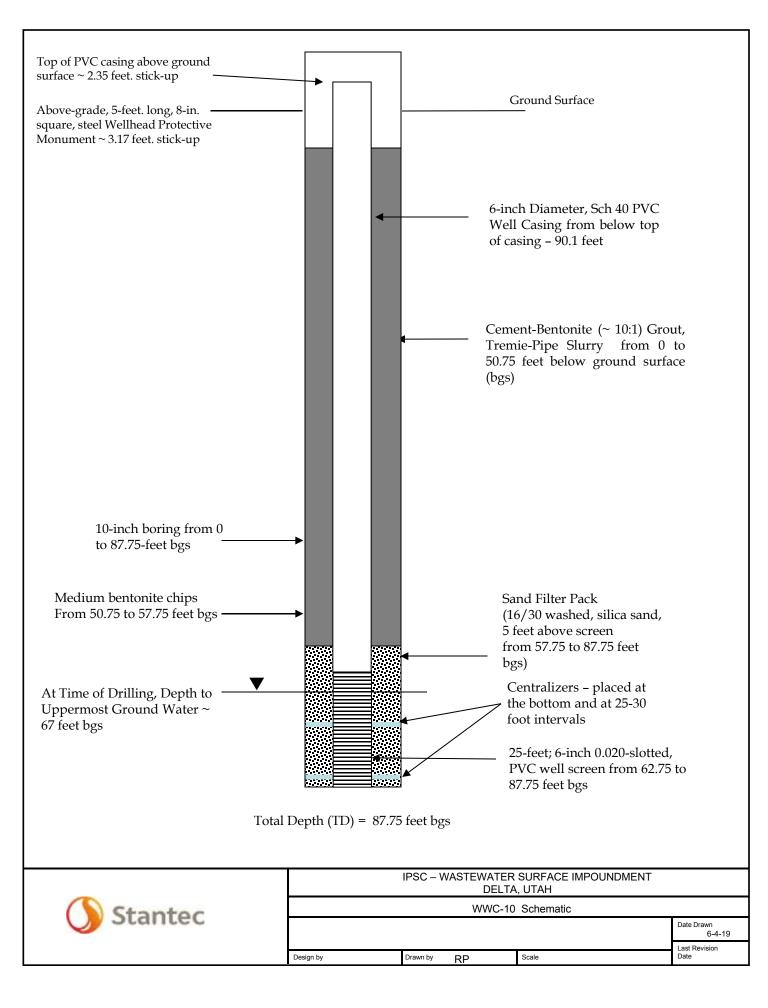
Surface Completion: Stick-up

Casing, solid (6-inch PVC): 0-62.75 feet

Screen (6 inch, 0.02 slotted, PVC): 62.75-87.75 feet

Sand Pack: 16/30 sand, 57.75-87.75 feet

Bentonite Seal: Hydrolyzed bentonite pellet seal


50.75-57.75 feet

Top of 6 in. PVC Casing Elevation (Relative Datum

Survey): NA

Top of Manhole Cover (Relative Datum Survey):

NΑ

Intermountain Power Service Corporation CLIENT:

Monitoring Well Installation

PROJECT

South of Waste Water Basin Surface Impoundment SITE LOCATION:

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 91 GROUNDWATER LEVEL (ft. btoc.): 22.82

DATE STARTED: 11/15/2019 DATE FINISHED: 11/16/2019


		LOGGED BY: Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION		CONSTUCTION IAGRAM	
0	Poorly graded Sand with Silt (SP), fine sand 95%, loose 7/4), trace gravel 5%.	, soft, dry, very pale brown (10 YR		Above ground monument with
5	Clay (CL), medium plasticity, cohesive, moist, soft to me	odium donsity light gray (10 VP 7/1)		well cap
10-	\most (cE), medium plasticity, corlesive, molst, sort to me \text{\most mottled with some trace interfingered clay, brownish yell \text{\most Well Graded Sand with Clay (SW-SC), medium grained \text{\most, loose, pale brown (10 YR 6/3).	ow (10 YR 6/8).		Grout 0 to 54.4 ft bgs.
15 ///	Clay with Sand (CL), low to medium plasticity, soft to me hoist, brown (10 YR 5/3).	edium density, non cohesive, dry to		Borehole diameter 10 inches from 0 to
20-	Same as above, Clay (CL), no sand. Poorly Graded Sand (SP), fine sand 98%, loose soft, dry subrounded.	y, pale brown (10 YR 6/3), 2% grave	ēl,	91 ft bgs.
25— -				
30— —				0 to 65 ft bgs., 6 in dia., Sch. 40
35— <u> </u>	Well Graded Sand with Gravel (SW), fine to coarse sand moist, brown (10 YR 5/3), gravel are subangular to subr			PVC riser
40— —	moot, brown (10 11000), graver are subungular to subtr	sanaca, assortea graver matrix.		
45- <i>///</i> 50-	Clay (CL), medium plasticity, medium density, moist to well Graded Sand with gravel (SW), fine to coarse sand (10 YR 5/3).	vet, cohesive, pale brown (10 YR 6/ 90%, gravel 10%, loose, soft, brow	3). /n	
55-///	Same as above, becoming wet. Clay (CL), medium plasticity, medium density, wet, cohe	sive, pale brown (10 YR 6/3).		Bentonite 54.4 to 56.7 ft bgs.
60-	Clay with Sand (CL), low to medium plasticity, soft to me pale brown (10 YR 6/3). Same as above, fine grained sand, saturated, low plastic		7	Filter pack sand 56.7 to 91 ft bgs.
65-	Same as above, with trace interfingering clay, reddish ye			
70-//	Well Graded Sand with Gravel (SW), fine to coarse sand			65 to 90 ft bgs.,
75–	brown (10 YR 5/3), gravel are subrounded, assorted ma			6 in dia., Sch. 40 PVC screen with 0.02 inch slot
80-				aperture
85—				
90-7/	Clay with Sand (CL), medium plasticity, medium density 6/3). End of borehole to 91 ft bgs., per scope of work.	, wet, cohesive, pale brown (10 YR		End Cap
95 Notes:	bgs. = below ground surface Sch. = Schedule		/	

SITE LOCATION:

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 91 GROUNDWATER LEVEL (ft. btoc.): 20.46

DATE STARTED: 11/11/2019 DATE FINISHED: 11/12/2019

		LOGGED BY: Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION	WELL CONSTUCTION DIAGRAM		
0	Poorly Graded Sand with Silt (SP-SM), 90% sand, 10% s	silts light gray (7.5 VR 7/1) soft	Above groun	
_ 5—	loose, fine grained, dry, sand are mostly quartz, subangu Same as above, becoming light yellowish brown (10 YR	ular quartz grains.	monument v well cap	with
)	Same as above, becoming wet at 8.5 ft bgs., perched gr Clay (CL), medium plasticity, medium stiff, cohesive, ver Poorly Graded Sand with Silt (SP-SM), 95% fine grained	ry pale brown (10 YR 7/4).	Grout 0 to 5 bgs.	55 ft
5 	brown (10 YR 4/3), trace gravel. Well Graded Sand with Gravel (SW), 80% sand, 20% gravel, and the soft, dark yellowish brown (10YR 4/4), gravel are subrou	avel, fine to coarse sand, moist, loos	Borehole diameter 10 inches from	
) - -	Terry graves are subject		91 ft bgs.	
	Clay (CL), medium plasticity, medium density, moist, col 6/4), thickly bedded, sharp contact at 25 ft bgs.	hesive, light yellowish brown (10 YR		
	Poorly Graded Sand (SP), fine grained sand 100%, loos	e, soft, moist, brown (10YR 5/3).	0 to 65 ft bg in dia., Sch. PVC riser	
)	Well Graded Sand with Gravel (SW), fine to coarse grain loose, soft, moist, dark yellowish brown (10 YR 4/4).	ned sand 90%, small gravel 10%,		
;— <u>; </u>	Same as above, increase in gravel to 30%. Same as above, decrease in gravel to 10%. Poorly Graded Sand (SP), fined grained sand 100%, loo contact.	se, moist, brown (10YR 4/3). Sharp	7	
-///	Clay (CL), high plasticity, stiff, moist, cohesive, light yello	owish brown (10 YR 6/4) sharp	Bentonite 5	5 to
-///	contact. Lost core sample from sonic casing.		58 ft bgs. Filter Pack S 58 to 91 ft b	San
-	Clay (CH), high plasticity, stiff, moist, cohesive, yellowish	n brown (10 YR 5/4).	30 10 91 11 1	ys.
-77777	Well Graded Sand with Silt and Clay (SW-SM), fine or m loose, brown (10 YR 4/3).	-	65 to 90 ft b 6 in dia., Sc	
-	Clay (CH), high plasticity, stiff, moist, cohesive, yellowish	h brown (10 YR 5/4).	PVC screen 0.02 inch sk	n wit
-/// -///	Poorly Graded Sand with Silts and Clay (SP-SC), fine gr light yellowish brown (10 YR 6/4), trace clay. Clay with Sand (CL), medium plasticity, soft to medium of			
	sand are fine grained.			
)—————————————————————————————————————	Same as above with gradational transition to clay. Clay (CH), high plasticity, mottled, wet, cohesive, pale bi reddish yellow (7.5 YR 7/6). End of borehole to 91 ft bgs., per scope of work.	rown (10 YR 6/3), mottled color is	End Cap	
lotes:	bgs. = below ground surface Sch. = Schedule		/]	

SITE LOCATION:

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

DRILLING CONTRACTOR: Cascade Drilling

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600 11-77287

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

10 inch sonic core barrel 0 to 91 ft bgs.

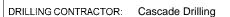
COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees

TOTAL DEPTH (ft.): 91 GROUNDWATER LEVEL (ft. btoc.): 19.55

DATE STARTED: 11/13/2019 DATE FINISHED: 11/15/2019


	3	LOGGED BY:	Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			W	ZELL CONSTUCTION DIAGRAM
0	Poorly Graded Sand with Silts (SP-SM), fine sand 95%, (7.5 YR 7/1).	5% silts, soft, loose	, dry, light gray		Above ground monument with
5	Well Graded Sand (SW), fine to medium grained sand 9	5%, soft, loose, dry,	pinkish gray (7.5	-	well cap
0 777	YR 7/2), trace gravel, small gravel, assorted matrix, substance as above, with clay, increase gravel 10%, wet. Clay with Sand (CL), low to medium plasticity, moist, colors and the color of the color	hesive, very pale bro			Grout 0 to 52.8 ft bgs.
5-	Well Graded Sand (SW), fine to medium grained sand 9 (10 YR 6/3), trace gravel 5%, subrounded.	5%, soit, loose, , mo	dist, pale brown		Borehole diameter 10 inches from 0 to
0- :::	Same as above, with clay (SW-SC) at 10%, wet, soft, lo	w plasticity clay			91 ft bgs.
5-///	Clay with Sand (CL), medium plasticity, moist cohesive, contact at 23 ft, bgs,		and, sharp		×
)— -	\Same as above, Clay (CL), trace black staining. Clay with Sand (CL), medium plasticity, moist cohesive, Poorly Graded Sand (SP), fine grained sand 100%, loos	fine sand. e, soft, moist, browr	n (10 YR 5/3).	_/	0 to 65 ft bgs., 6 in dia., Sch. 40
5— -					PVC riser
O— ———————————————————————————————————	Well Graded Sand with gravel (SW), fine to coarse sand	85% 15% gravel lo	oose soft moist	_	
5 	brown (10 YR 5/3), gravel are small, subrounded, assort Poorly Graded Sand (SP), fine to medium grained sand YR 5/3), trace small gravel 2%, subrounded.	ted matrix.			0 to 65 ft bgs., 6 in dia., Sch. 40 PVC riser Bentonite 52.8 to 55 ft bgs.
)-///	Same as above, trace clay. Clay with Sand (CL), low to medium plasticity, soft to me	edium density, moist	, yellowish brown		Bentonite 52.8 to
5-///	(10 YR 5/4), secondary sand are fine grained.				8
)-///	Clay (CL), medium to high plasticity, medium to stiff den- brown (10 YR 5/3), mottled, reddish yellow (5 YR 6/6).	sity, moist, thickly be	edded, cohesive,		Filter pack sand 55 to 91 ft bgs.
5-///	Clay with Sand (CL) , medium plasticity, moist to wet, co	phasiva brown (10 V	/P 5/3)		
-///	Clay (CL), medium plasticity, medium to stiff density, momentum of the control of				65 to 90 ft bgs., 6 in dia., Sch. 40
5-///	Poorly Graded Sand with Clay (SP-SC), fine grained sar		wet, brown (10		PVC screen with 0.02 inch slot
)-///	YR 5/3), some trace interfingering clay 5%, reddish yello Clay with Sand (CL), low plasticity, soft, wet, non cohesi	ve, pale brown (10	•	1	aperture
5-///	Clay (CL), medium to high plasticity, wet, cohesive, pale clay reddish yellow (5 YR 6/6), trace sand.	brown (10 YR 6/3),	interfingering		
///	Same as above, becoming medium plasticity.				End Cap
)-///	End of borehole to 91 ft bgs., per scope of work.				

Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet

PROJECT: Monitoring Well Installation

SITE LOCATION: South of Waste Water Basin Surface Impoundment

INTERMOUNTAIN POWER SERVICE CORP.

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 88 ft bgs.,

10 inch sonic core barrel 0 to 88 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

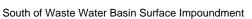
ELEVATION: BOREHOLE ANGLE: 90 degrees

Stantec

TOTAL DEPTH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/6/2020 DATE FINISHED: 5/7/2020

LOGGED BY: Rich Pratt


			LOGGED BY:	Rich Pratt	
DEPTH (feet)	LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION AGRAM
0-		Poorly graded Sand with Silt (SP), light brown, dry Well Graded Sand with Clay (SW-SC), light and dark bro		-	Above ground monument with well cap
5- - 10-		Poorly graded Sand with Silt (SP), light brown, dry			Crout 0 to E1 ft
15-		Well Graded Sand with Clay (SW-SC), light and dark bro Well Graded Sand with Gravel (SW), moist, dark brown Well Graded Sand with Gravel (SW), moist, light brown	wn, dry		Grout 0 to 51 ft bgs. Borehole diameter 10
20-		Won Graded Gard War Graver (GVV), molet, light brown			inches from 0 to 88 ft bgs.
25-	::: ///	Well Graded Sand with Gravel (SW), moist, dark brown Clay (CL), light brown, moist			
35-		Well Graded Sand with Clay (SW-SC), light brown, moist Well Graded Sand with Gravel (SW), moist, dark brown	i	_	0 to 60 ft bgs., 6 in dia., Sch. 80 PVC riser
40-					
45 <u>-</u>					
50-					
55-		Well Graded Sand with Clay (SW-SC), light brown, moist	i	-	Bentonite 51 to 58 ft bgs. Filter pack sand
60- 65-		Clay (CL), light brown, moist			58 to 88 ft bgs.
70-		Well Graded Sand with Clay (SW-SC), light brown, moist Well Graded Sand with Gravel (SW), moist, dark brown		/	60 to 85 ft bgs.,
75-		Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, dark brown			6 in dia., Sch. 80 PVC screen with 0.02 inch slot aperture
80-		Well Graded Sand with Clay (SW-SC), light brown, moist		/	αρειταίε
85- 90-		Clay (CL), light brown, moist End of borehole to 88 ft bgs., per scope of work.			End Cap
95_					
Not	(ogs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red t = feet			1

CLIENT: Intermountain Power Service Corporation

Monitoring Well Installation

DRILLING CONTRACTOR: Cascade Drilling

INTERMOUNTAIN POWER SERVICE CORP.

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 88 ft bgs.,

10 inch sonic core barrel 0 to 88 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/6/2020 DATE FINISHED: 5/7/2020

LOGGED BY: Michael Ward

			LOGGED BY:	Michael Ward		
(feet)	GRAPHIC	LITHOLOGICAL DESCRIPTION		CONSTUCTION DIAGRAM		
0— 5—		Well graded sand with silt (SW-SM), fine to medium graiunconsolidated, light yellowish brown (10 YR 6/4).				Above ground monument with well cap
10-		Poorly graded sand (SP), fine to medium grained, dry, so YR 6/2).	oft, loose, light bro	ownish gray (10		Grout 0 to 51 ft bgs.
15— 20—		Poorly Graded Sand with Clay (SP-SC), fine grained, mo brown (10 YR 5/4). Well Graded Sand (SW), fine to coarse sand, loose, sof	•	•		Borehole diameter 10 inches from 0 to 88.5 ft bgs.
25		brown (10 YR 4/4), trace gravels. Poorly graded sand (SP), fine to medium grained, dry, so		•		00.5 it bys.
30		Clay (CL), stiff, medium to high plasticity, moist, cohesiv	e, light yellowish l	prown (10 YR 6/4).		0 to 63 ft bgs., 6 in dia., Sch. 80
40-	//	Poorly Graded Sand with Clay (SP-SC), fine to medium noncohesive, pale brown (10 YR 6/3). Clay (CL), stiff, medium to high plasticity, moist, cohesive	•			PVC riser
45	//	Poorly Graded Sand (SP), fine or medium grained, loose trace gravels.	e, soft, moist, brow	vn (10 YR 5/3),	-	
50— 55—	//	Well Graded Sand (SW), fine to coarse sand, loose, sof YR 5/3). Clays (CL), stiff, medium to high plasticity, moist.		`_		Bentonite 51 to 58 ft bgs.
60-		Well Graded Sand (SW), fine to coarse sand, loose, sof YR 5/3), trace gravels, rounded. Clay (CL), medium plasticity, stiff, cohesive, brown (7.5)		moist, brown (10	_	Filter pack sand 58 to 88 ft bgs.
65-		Same as above, becoming high plasticity.				
70-	77	Poorly Graded Sand (SW), fine or medium grained, wet, YR 5/3). Clay (CL), medium plasticity, stiff, cohesive, brown (7.5)	YR 5/4).			63 to 88 ft bgs., 6 in dia., Sch. 80
75— 80—		Poorly Graded Sand (SW), fine or medium grained, wet, YR 5/3). Clay (CL), medium plasticity, stiff, cohesive, brown (7.5).	YR 5/4).			PVC screen with 0.02 inch slot aperture
85		Clay with Sand (CL), wet, non cohesive, low plasticity, b	10WII (10 TK 5/3).			
90-	//)	End of borehole at 88 ft bgs. Installed monitoring well pe	er scope of work.		<u> </u>	End Cap
95		and below and order to a Carlo				
Notes		ogs. = below ground surface Sch. = Schedule YR = Yellow-Red				1

CLIENT: Intermountain Power Service Corporation

PROJECT: Monitoring Well Installation

SITE LOCATION: South of Waste Water Basin Surface Impoundment

Stantec

DRILLING CONTRACTOR: Cascade Drilling

INTERMOUNTAIN POWER SERVICE CORP.

DRILLING METHOD: Sonic

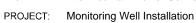
DRILLING EQUIPMENT: Pro Sonic 600

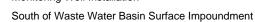
SAMPLING METHOD: 4 inch sonic core barrel 0 to 88 ft bgs.,

10 inch sonic core barrel 0 to 88 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:


ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.):


DATE STARTED: 5/7/2020 DATE FINISHED: 5/8/2020

	LOGGED BY: Rich Pratt	
(feet) (feet) LITHOLOGICAL GRAPHIC GRAPHIC GRAPHIC		WELL CONSTUCTION DIAGRAM
Poorly graded Sand with Silt (SP), light brown, dry		Above ground monument with well cap
5 Clay (CL), light brown, dry Well Graded Sand with Clay (SW-SC), light brown, dry	,	well cap
		Grout 0 to 51 ft bgs. Borehole
Clay (CL) with sand, light brown, dry Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, brown		diameter 10 inches from 0 to 88 ft bgs.
25—:::		35.1.295.
30 Clay (CL), light brown, moist — — — — —		0 to 63 ft bgs., 6 in dia., Sch. 80
35-		PVC riser
40 Well Graded Sand with Clay (SW-SC), light brown, most Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), light brown, mois		
45—		
50—:::: -:::: 55—::::		Bentonite 51 to
60 Clay (CL), light brown, moist — — — — —		58 ft bgs. Filter pack sand 58 to 88 ft bgs.
Well Graded Sand with Clay (SW-SC), light brown, mo Clay (CL), light brown, moist Well Graded Sand with Clay (SW-SC), light brown, mo		
70 Clay (CL), light brown, moist		63 to 88 ft bgs., 6 in dia., Sch. 80
75 Well Graded Sand with Gravel (SW), light brown, mois	it	PVC screen with 0.02 inch slot aperture
80 Clay (CL), light brown, moist Well Graded Sand with Gravel (SW), moist, brown Clay (CL), light brown, moist		aperture
Well Graded Sand with Clay (SW-SC), light brown, mo	oist	End Cap
95 End of borehole at 86 it bgs. Installed mornioring well	sol scope of work.	
Notes: bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red ft = feet		1

SITE LOCATION:

DRILLING CONTRACTOR: Cascade Drilling

INTERMOUNTAIN POWER SERVICE CORP.

DRILLING METHOD: Sonic

DRILLING EQUIPMENT: Pro Sonic 600

SAMPLING METHOD: 4 inch sonic core barrel 0 to 91 ft bgs.,

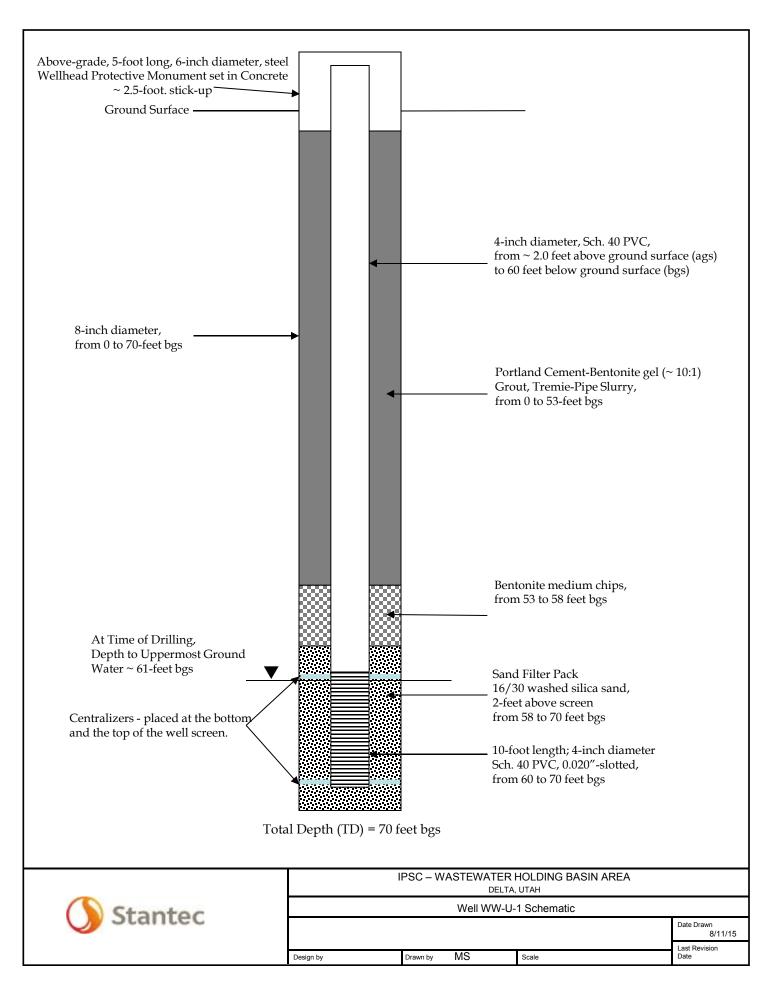
10 inch sonic core barrel 0 to 91 ft bgs.,

COORDINATE SYSTEM:

EASTING: NORTHING:

ELEVATION: BOREHOLE ANGLE: 90 degrees TOTAL DEPTH (ft.): 88 GROUNDWATER LEVEL (ft. btoc.):

DATE STARTED: 5/8/2020 DATE FINISHED: 5/8/2020


	<u> </u>	LOGGED BY: Michael Ward		
(feet) LITHOLOGICAL GRAPHIC	LITHOLOGICAL DESCRIPTION			ONSTUCTION AGRAM
0	Well Graded Sand with Silt (SW-SM), fine or medium gra pale brown (10 YR 7/4).			Above ground monument with
5—	Poorly Graded Sand (SP), fine to coarse, loose, soft, dry 7/2). Clays (CL), low to medium plasticity, medium dense, mo			well cap
) - /// -///	Poorly Graded Sand (SP), fine to coarse, loose, soft, dry 7/2).			Grout 0 to 50 ft bgs.
-///	Clay (CL), medium plasticity, medium dense, cohesive, of Well Graded Sand (SW), fine grained, loose, soft, moist			Borehole diameter 10
	Clay (CL), medium plasticity, medium dense, cohesive, o			inches from 0 to 88 ft bgs.
5-///				
) ///	Well Graded Sand (SW), fine grained, loose, soft, brown Clay (CL), medium plasticity, medium dense, cohesive, or	n_(10 YR 4/3)		0 to 63 ft bgs., 6 in dia., Sch. 80
-///	gray (10 YR 6/1). Well Graded Sand (SW), fine grained, loose, soft, wet, b	rown (10 YR 4/3), with thin black		PVC riser
)—	lenses.			
5-				
)	Sandy Lean Clay (CL), low plasticity, soft to medium der 6/1).	nse, wet, yellowish brown (10 YR		
5-///	Well Graded Sand with Clay (SW-SC), fine grained sand	d. wet. loose, soft, vellowish brown		Bentonite 50 to 55 ft bgs.
)-	(10 YR 5/4).	, , , ,		Filter pack sand 55 to 88 ft bgs.
-///	Sandy Lean Clay (CL), low plasticity, soft to medium der	nse, wet, brown (10 YR 5/3).		
)-	Well Graded Sand (SW), fine or medium grained sand, le	oose, soft, wet, brown (10 YR 5/3)		63 to 88 ft bgs.,
, ///	Clay (CL), moderate plasticity, medium dense, consolida Well Graded Sand (SW), fine or medium grained sand, le	ated, brown (10 YR 5/3). oose, soft, wet, brown (10 YR 5/3)		6 in dia., Sch. 8 PVC screen with 0.02 inch slot
	Clay (CL), medium to high plasticity, stiff, dense, consoli			aperture
5	Well Graded Sand (SW), fine or medium grained sand, le	oose, soft, wet, brown (10 YR 5/3)		
)-	End of borehole at 88 ft bgs. Installed monitoring well pe	er scope of work.	88	End Cap
5_				
Notes:	bgs. = below ground surface Sch. = Schedule dia. = diameter YR = Yellow-Red tf = feet			1

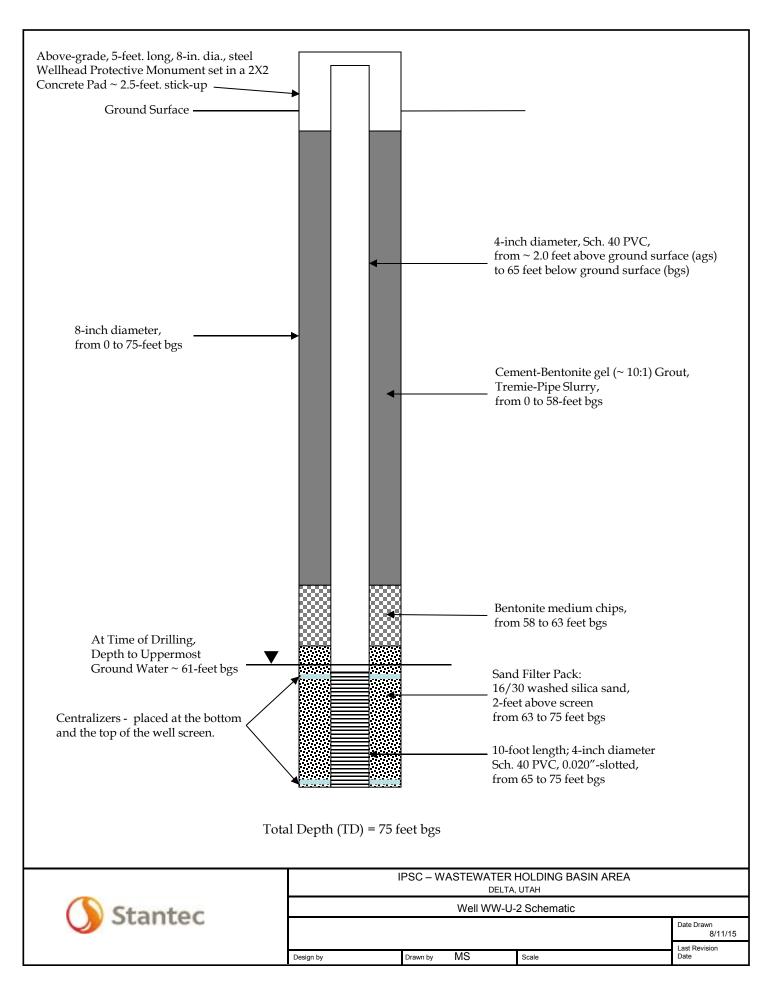
WWU-1

Interval (feet)	Drilling Method	USCS	Sample Description
			8/11/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand and Gravel.
0.5-1.5	8" Sonic	SM	Silty SAND:
1.5-2.5	8" Sonic	SP/SM	SAND with silt:
2.5-3.5	8" Sonic	ML	Sandy SILT:
3.5-4.75	8" Sonic	SP	SAND:
4.75-5	8" Sonic	SC	Clayey SAND:
5-7	8" Sonic	SP/SM	SAND with silt:
7-10.75	8" Sonic	SC	Clayey SAND:
10.75-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13	8" Sonic	SC	Clayey SAND:
13-14	8" Sonic	SM	Silty SAND:
14-15	8" Sonic	SP	SAND:
15-17.5	8" Sonic	SP/SM	SAND with silt:
17.5-20	8" Sonic	SP	SAND:
20-22	8" Sonic	SP/SM	SAND with silt:
22-22.5	8" Sonic	SC	Clayey SAND:
22.5-25	8" Sonic	CT.	Sandy CLAY:
25-27.5	8" Sonic	CL	Sandy CLAY:
27.5-28	8" Sonic	SC	Clayey SAND:
28-30	8" Sonic	SW	Gravelly SAND:
30-32.5	8" Sonic	SP/SM	SAND with silt:
32.5-35	8" Sonic	SM	Silty SAND:
35-37.5	8" Sonic	an.	SAND:
37.5-40	8" Sonic	SP	SAND:
40-42.5	8" Sonic	SW/SM	5AND with silt:
42.5-43.25	8" Sonic		Silty SAND:
43.25-44.25	8" Sonic	SM	Silty SAND:
44.25-45	8" Sonic	SP/SW	SAND:
45-47.5	8" Sonic	SW	SAND:
47.5-50	8" Sonic	an.	SAND:
50-50.5	8" Sonic	SP	SAND:
50.5-51.75	8" Sonic	ML	Sandy SILT:
51.75-52.5	8" Sonic	SP	SAND:
52.5-53.25	8" Sonic		Clayey SAND:
53.25-55	8" Sonic		Clayey SAND:
55-56.5	8" Sonic	SC	Clayey SAND:
56.5-57.5	8" Sonic		Clayey SAND:
57.5-60	8" Sonic		Clayey SAND:
60-61	8" Sonic	ML	Clayey SILT with sand:
61-62.5	8" Sonic	SM	Silty SAND:
62.5-63.75	8" Sonic	CL	Sandy CLAY:
63.75-64.75	8" Sonic	SM	Silty SAND:
64.75-65.5	8" Sonic	SP	SAND:
65.5-66.5	8" Sonic	ML	Clayey SILT with sand:
66.5-67.5	8" Sonic	SC	Clayey SAND:
67.5-70	8" Sonic	SM	Silty SAND with clay:

TD = 70'; PVC 4-inch screen from 60 to 70; PVC 4-inch riser from -2.5 to 60 Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

WWU-2

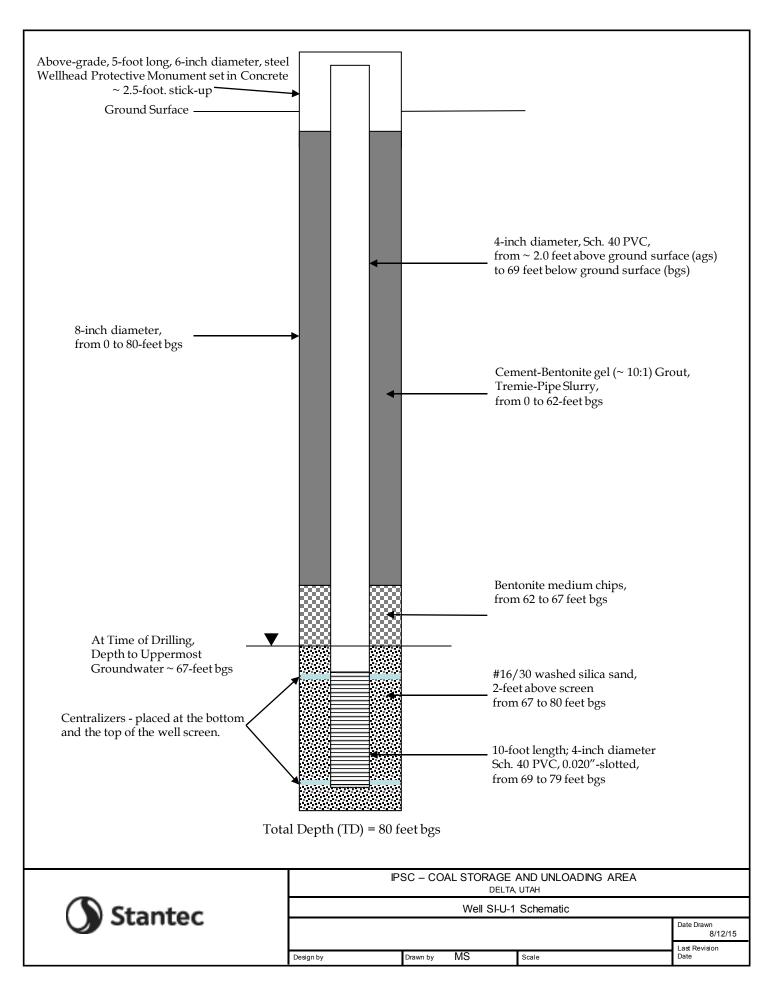

Interval (feet)	Drilling Method	USCS	Sample Description
			8/11/2015
0-0.5	8" Sonic	TOPSOIL	Surface - Sand and Gravel.
0.5-2.5	8" Sonic	ML	Gravelly SILT with sand:
2.5-4	8" Sonic		SAND:
4-5	8" Sonic	SP	SAND:
5-5.5	8" Sonic	01	SAND:
5.5-7.5	8" Sonic		SAND:
7.5-9.5	8" Sonic	SP/SW	SAND:
9.5-10	8" Sonic	SP	SAND:
10-11	8" Sonic	SW	SAND:
11-12.5	8" Sonic	SP/SM	SAND with silt:
12.5-13	8" Sonic	SM	Silty SAND:
13-15	8" Sonic	ML	Sandy SILT:
15-15.5	8" Sonic	SP	SAND:
15.5-17	8" Sonic	SC	Clayey SAND with gravel:
17-17.5	8" Sonic		Gravelly SAND with sand:
17.5-19	8" Sonic	SW	SAND:
19-20	8" Sonic		SAND:
20-22.5	8" Sonic	GW	Sandy GRAVEL:
22.5-23.5	8" Sonic	SW	SAND:
23.5-25	8" Sonic	SP/SM	SAND with silt:
25-32.5	8" Sonic	01 / 0111	SAND with silt:
32.5-33.5	8" Sonic	SW/SC	Gravelly SAND with clay:
33.5-35	8" Sonic	SP/SM	SAND with silt:
35-37.5	8" Sonic	01 / 0111	SAND with silt:
37.5-39	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
39-40	8" Sonic	SC	Clayey SAND:
40-45	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
45-45.5	8" Sonic	SM	Silty SAND with clay:
45.5-47.5	8" Sonic	SC/CL	Clayey SAND/Sandy CLAY:
47.5-49.5	8" Sonic	CH/SC	Sandy CLAY/Clayey SAND:
49.5-50	8" Sonic	SP/SM	SAND with silt:
50-51.5	8" Sonic	SC	Clayey SAND:
51.5-52.5	8" Sonic	SP/SC	SAND with clay:
52.5-55	8" Sonic	SP	SAND:
55-56.5	8" Sonic	CH	Sandy CLAY:
56.5-57.5	8" Sonic	SC	Clayey SAND:
57.5-59	8" Sonic	ML	Clayey SILT with sand:
59-60	8" Sonic	CH	Sandy CLAY:
60-62.5	8" Sonic	SC	Clayey SAND:
62.5-64	8" Sonic	CH	Sandy CLAY:
64-65	8" Sonic	SM	Silty SAND:
65-66.5	8" Sonic	SP	SAND:
66.5-67.5	8" Sonic	SM	Silty SAND:
67.5-75	8" Sonic	SW	SAND:

TD = 75'; PVC 4-inch screen from 65 to 75; PVC 4-inch riser from -2.5 to 65 Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling

Driller - Rick Mallett

Geologist - Michael Sauerwein



SI-U-1

Interval (feet)	USCS	Sample Description
		8/12/2015
0-0.5	TOPSOIL	Surface - Sand and Gravel, roots and grass.
0.5-2.5	SP/SM	SAND with silt:
2.5-5	SP	SAND:
5-6.5	SP/SM	SAND with silt:
6.5-7.5	SW/SM	SAND with silt:
7.5-8	SW	SAND:
8-12.5	SP	SAND:
12.5-17.5	31	SAND:
17.5-18	SP/SM	SAND with silt:
18-19	SM	Silty SAND:
19-20	CL	CLAY:
20-21.5	SP	SAND:
21.5-22.5	SP/SM	Gravelly SAND with silt:
22.5-26.5	SW	SAND:
26.5-27.5	SW/SC	SAND with clay:
27.5-29.5	ML	Sandy SILT with clay:
29.5-30	SP	SAND:
30-32	ML	Sandy SILT with clay:
32-32.5	SW	SAND with gravel:
32.5-38	SC	Clayey SAND:
38-40	SM	Silty SAND:
40-42.5	SP/SM	SAND with silt:
42.5-44.25	GW	Sandy GRAVEL with clay:
44.25-45	SM	Silty SAND:
45-46.5	SC	Clayey SAND:
46.5-47.75	SP/SC	SAND with clay:
47.75-52.5	SP	SAND:
52.5-54	CH	CLAY:
54-55	SC/CH	Clayey SAND/Sandy CLAY:
55-60		CLAY:
60-62.5	CH	CLAY:
62.5-66		CLAY:
66-70	SC	Clayey SAND:
70-70.75	ML	Clayey SILT with sand:
70.75-71.5	CH	CLAY:
71.5-72.5	SP/SC	SAND with clay:
72.5-75	SP/SM	SAND with silt:
75-75.75	SM	Silty SAND:
75.75-77	SC	Clayey SAND:
77-80	SP/SM	SAND with silt:

TD = 80'; PVC 4-inch screen from 69 to 79; PVC 4-inch riser from -2.5 to 69 Drilling Method: Prosonic T600, 8" Rotosonic

Drilling Company - Cascade Drilling Driller - Rick Mallett Geologist - Michael Sauerwein

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-101 / RW-2

DRILLING FIRM: Boart Longyear

BORING METHOD: Sonic BORING DIAMETER: 10.0-inch

DRILLING LOG

PROJECT No.: 07.00408.01 COMPLETION DATE: 12/11/2007

DRILLER: Robert

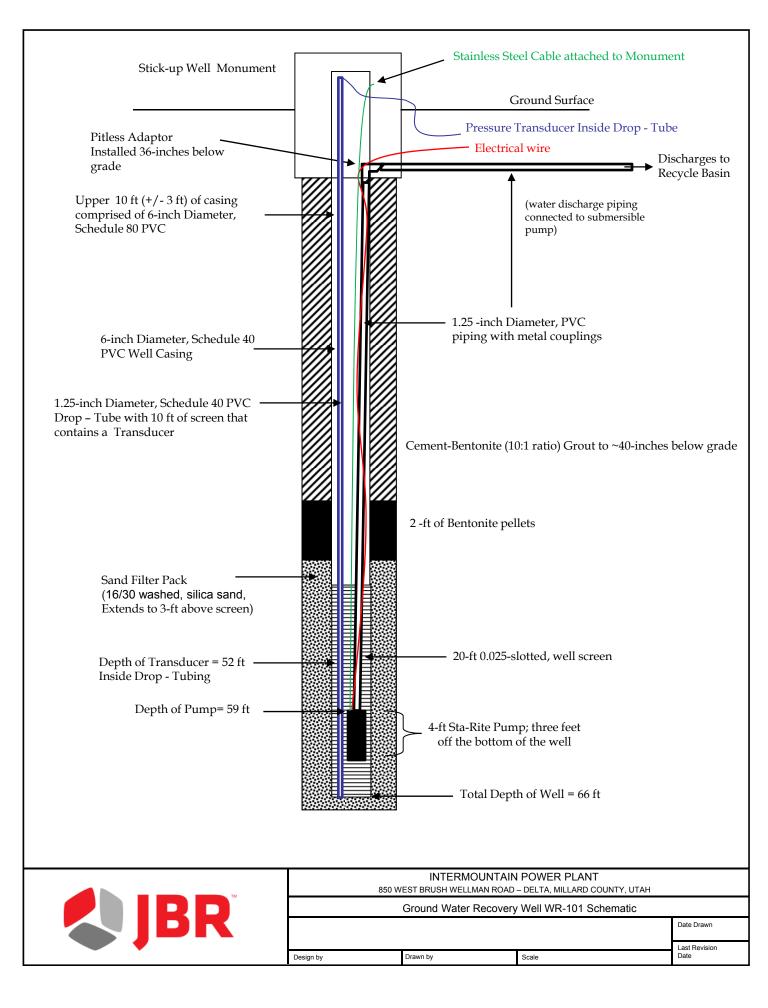
LOGGED BY: Thomas Hedrick
DEPTH TO WATER (at drilling): ~ 40 ft.
DEPTH TO WATER (static > 24-hrs.): 36.09 ft.

WR-101 / RW-2

Interval (feet)	Drilling Method	Sample Description
0 - 9	SDM	Light Brown fine grained SAND with clay matrix
9 - 17	SDM	Light Brown clayey SILT
17 - 20	SDM	Light Brown silty CLAY
20 - 25	SDM	Brown medium grained SAND with pebbles, Dry and loose
25 - 28	SDM	Light Brown silty CLAY, very tight, MOIST
28 - 38	SDM	Light Brown CLAY, Moist
38 - 42	SDM	Brown fine grained SAND, Moist
42 - 50	SDM	Brownish/Red CLAY, Dry
50 - 56	SDM	Brown medium grained SAND with clay matrix, very moist/saturated
56 - 58	SDM	Brown silty CLAY, moist
60 - 66	SDM	Brown medium grained SAND, Saturated
		Total Depth = 66 feet BGS, Screened from 66 – 46', Sand 40-66', Bentonite 36-40', Grout 0-36'

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up


Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-7 ft. **Casing, solid:** 6 inch diameter sch. 40 PVC casing, 7 -46 ft.

Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 46-66 ft.

Sand Pack: 16/30 washed, silica sand, 40-66 ft.

Bentonite Seal: "Pure Gold" Bentonite Pellets, 36-40 ft.

Cement-Bentonite (10:1 ratio) Grout: 0-36 ft.

DRILLING LOG

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-102

DRILLING FIRM: Boart Longyear

BORING METHOD: Sonic Drilling Method

BORING DIAMETER: 10.0-inch

PROJECT No.: 08.00463.01 COMPLETION DATE: 3/30/2009

DRILLER: Chato

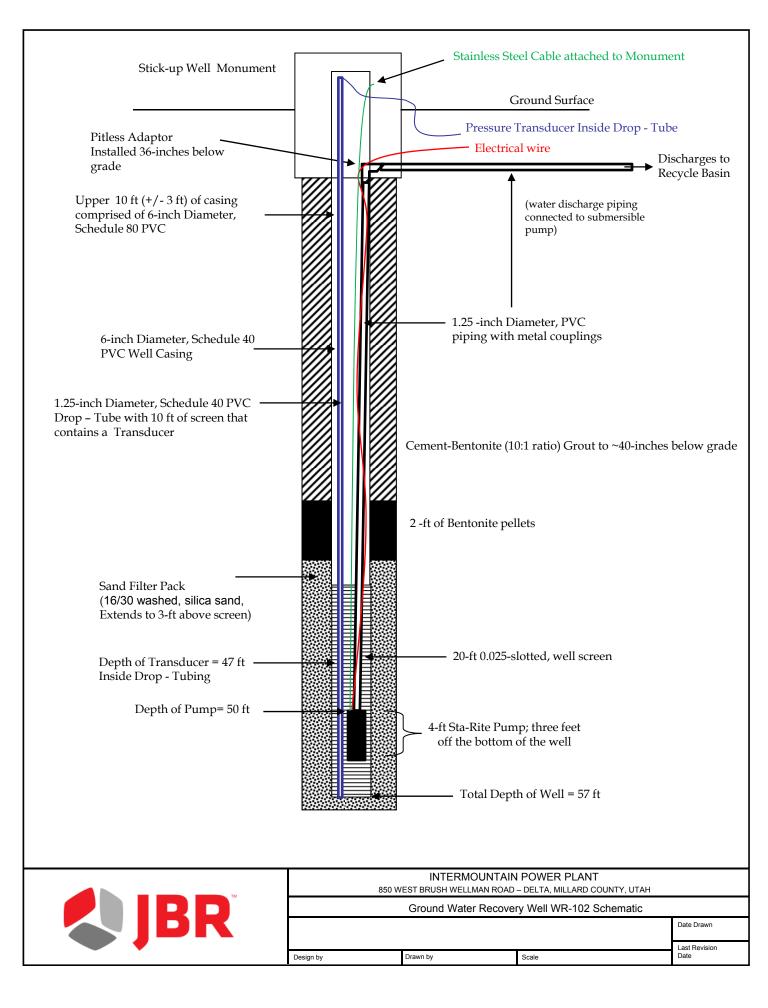
LOGGED BY: Thomas Hedrick
DEPTH TO WATER (at drilling): ~ 40 ft.
DEPTH TO WATER (static > 24-hrs.): ~ 27 ft.

WR-102

Interval (feet)	Drilling Method	Sample Description
0 - 11	SDM	Light Brown fine grained SAND with pebbles present from 3 - 7 feet, Dry
11 - 16	SDM	Light Brown fine grained SAND with interbeds of brown CLAY, Dry
16 - 35	SDM	Light Gray CLAY, moist at ~ 35 feet,
35 - 37	SDM	Light Gray Clay with a fine to medium grained sandy matrix, very moist
37 - 48	SDM	Brown fine to medium grained SAND, saturated
48 - 50	SDM	Brown CLAY, dry
50 - 53	SDM	Brown to Black medium grained SAND, saturated
53 - 57	SDM	Brown CLAY with two fine grained sand layer present
		Total Depth = 57 feet BGS, Screened from 37 – 57', Sand 34-57', Bentonite 31-34, Grout 0-31'

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up


Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-9 ft. **Casing, solid:** 6 inch diameter sch. 40 PVC casing, 9 -37 ft.

Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 37-57 ft.

Sand Pack: 16/30 washed, silica sand, 34-57 ft.

Bentonite Seal: "Pure Gold" Bentonite Pellets, 31-34 ft.

Cement-Bentonite (10:1 ratio) Grout: 0-31 ft.

DRILLING LOG

PROJECT NAME: Intermountain Power Plant BORING/MONITORING WELL: WR-103

DRILLING FIRM: Boart Longyear

BORING METHOD: Sonic BORING DIAMETER: 10.0-inch

PROJECT No.: 08.00463.01 COMPLETION DATE: 3/31/2009

DRILLER: Chato

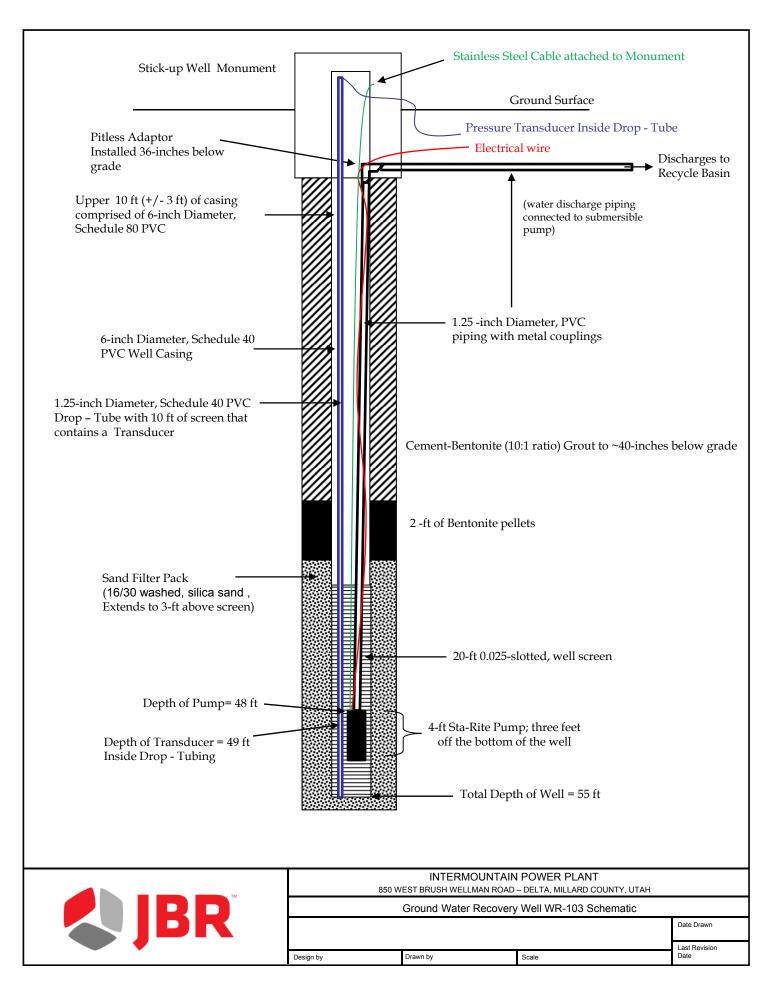
LOGGED BY: Thomas Hedrick
DEPTH TO WATER (at drilling): ~ 40 ft.
DEPTH TO WATER (static > 24-hrs.): ~ 30 ft.

WR-103

Interval (feet)	Drilling Method	Sample Description
0 - 3	SDM	Brown to Light brown fine grained SAND to silt, Dry
3 - 15	SDM	Light brown fine to medium grained SAND, pebbles present from 3 - 5 feet, Dry
15 - 17	SDM	Light brown fine to medium grained SAND, with interbeds of light brown CLAY with a sandy matrix, Dry
17 - 24	SDM	Light brown CLAY, Dry
24 - 37	SDM	Reddish Gray CLAY, Dry
37 - 45	SDM	Brown to Black medium fine to medium grained SAND, very moist
45 - 47	SDM	Brown fine grained SAND with a CLAY matrix, very moist
47 - 52	SDM	Brown Fine to medium grained SAND, saturated
52 - 55	SDM	Red CLAY, dry
		Total Depth = 55 feet BGS, Screened from 35 – 55', Sand 32-55', Bentonite 29-32, Grout 0-29'

Well Completion Materials and Depth Intervals (ft.)

Surface Completion: Stick-up


Casing, solid: 6 inch diameter sch. 80 PVC casing, 0-6.5 ft. **Casing, solid:** 6 inch diameter sch. 40 PVC casing, 6.5 -35 ft.

Screen: 6 inch diameter sch. 40 PVC well screen 0.025-slotted, 35-55 ft.

Sand Pack: 16/30 washed, silica sand, 32-55 ft.

Bentonite Seal: "Pure Gold" Bentonite Pellets, 29-32 ft.

Cement-Bentonite (10:1 ratio) Grout: 0-29 ft.

AMENDED ASSESSMENT OF CORRECTIVE MEASURES REPORT

Appendix C Tabulation of UTL and GWPS Values, CCR Unit-Specific November 30, 2020

Appendix C Tabulation of UTL and GWPS Values, CCR Unit-Specific

Assessment Monitoring - Statistically Significant Levels above Groundwater Protection Standards Intermountain Power Service Corporation - Intermountain Generation Facility Delta, Utah

								,								
Constituent	Downgradient Well ID	N	Mean	SD	SE	Median	1st Quartile	3rd Quartile	Minimum	Maximum	% Non-Detects	UTL	MCL	GWPS	LCL	LCL Exceeds GWPS
	BOTTOM ASH BASIN															
lithium (mg/L)																YES
molybdenum (mg/L)	BAC-2	11	0.1595	0.01643	0.004953	0.156	0.143	0.167	0.14	0.194	0.0%	0.04038	0.1	0.1	0.1506	YES
						•	0.4DUICTION 5	V DDGDUGT6	LANDELL							

COMBUSTION BY-PRODUCTS LANDFILL

NO STATISTICALLY SIGNIFICANT LEVELS ABOVE GWPS

							WASTE	WATER BASII	N							
arsenic (mg/L)	WWC-1	11	0.01664	0.006735	0.002031	0.0181	0.0173	0.02	0.00331	0.0243	0.0%				0.01496	YES
arsenic (mg/L)	WWC-2	11	0.01455	0.0007488	0.0002258	0.0147	0.0141	0.0152	0.0129	0.0155	0.0%	0.01275	0.01	0.01275	0.01415	YES
arsenic (mg/L)	WWC-3	11	0.02086	0.003704	0.001117	0.0214	0.021	0.0226	0.0102	0.0247	0.0%				0.02045	YES

All units micrograms per liter (mg/L)

N: Number of Samples SD: Standard Deviation SE: Standard Error

UTL: Upper Tolerance Limit, calculated using samples collected from upgradient wells

Bottom Ash upgrandient wells: BA-U-1, BA-U-2 (n=22)

Waste Water upgradient wells: WW-U-1, WW-U-2, SI-U-1 (n=33)

GWPS: Ground water Protection Standard = the greater value of the UTL or MCL

LCL: Lower Confidence Limit of the Mean, If the LCL exceeds the GWPS it is evidence of a statistically significant level above background

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects	UTL	MCL	GWPS	LCL	UCL	LCL Exceeds GWPS2	UCL Exceeds GWPS
antimony (mg/L)	Background	33	0.00103	0.0001741	0.0000303	0.001	0.001	0.001	0.001	0.002	96.97	0.001	0.006	0.006				
antimony (mg/L)	WWC-1	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	WWC-2	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	WWC-3	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	WWC-4	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	WWC-5	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
arsenic (mg/L)	Background	33		0.002831	0.0004929	0.00573	0.004425	0.00935	0.001	0.0109	3.03	0.01275	0.01	0.01275				
arsenic (mg/L)	WWC-1	11	0.01664	0.006735	0.002031	0.0181	0.0173	0.02	0.00331	0.0243	0				0.01496	0.0203	YES	YES
arsenic (mg/L)	WWC-2	11	0.01455	0.0007488	0.0002258	0.0147	0.0141	0.0152	0.0129	0.0155	0				0.01415	0.01496	YES	YES
arsenic (mg/L)	WWC-3	11	0.02086	0.003704	0.001117	0.0214	0.021	0.0226	0.0102	0.0247	0				0.02045	0.02262	YES	YES
arsenic (mg/L)	WWC-4	11		0.002721	0.0008204	0.013	0.0116	0.0135	0.00498	0.0145	0				0.01147	0.01344	NO	YES
arsenic (mg/L)	WWC-5	11	0.008509	0.002536	0.0007647	0.00783	0.00717	0.0104	0.00371	0.0131	0				0.007123	0.009895	NO	NO
barium (mg/L)	Background WWC-1	33 11	0.07908	0.02935 0.01967	0.005109 0.00593	0.0761 0.0317	0.05565 0.0268	0.09225 0.0536	0.0446	0.178	0	0.1481	2	2	0.02755	0.04481	NO	NO
barium (mg/L)			0.03876								0				0.02755		NO NO	NO NO
barium (mg/L) barium (mg/L)	WWC-2 WWC-3	11 11	0.03947	0.007406 0.01088	0.002233 0.003279	0.0361 0.0302	0.0339 0.0278	0.0421 0.0342	0.031 0.0242	0.0543 0.0638	0				0.03543	0.04352 0.0357	NO NO	NO NO
	WWC-4		0.0646	0.01088	0.005334		0.0507	0.0342	0.0242		0				0.05493	0.0357	NO NO	NO
barium (mg/L) barium (mg/L)	WWC-4	11	0.05179	0.01769	0.005334	0.061	0.0307	0.0768	0.0302	0.101 0.103	0				0.03844	0.06223	NO NO	NO NO
beryllium (mg/L)	Background	33	0.002	0.02411	0.00727	0.002	0.002	0.002	0.002	0.002	100	0.002	0.004	0.004	0.03644	0.00223	NC	NO
beryllium (mg/L)	WWC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.004	0.004	0.002	0.002	NO	NO
beryllium (mg/L)	WWC-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO.	NO NO
beryllium (mg/L)	WWC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO
beryllium (mg/L)	WWC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
beryllium (mg/L)	WWC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO
cadmium (mg/L)	Background	33	0.004887	0.0006476	0.0001127	0.005	0.005	0.002	0.00128	0.002	96.97	0.005	0.005	0.005	5.002	5.502	0	
cadmium (mg/L)	WWC-1	11	0.005	0.0000470	0.0001127	0.005	0.005	0.005	0.00128	0.005	100	2.003	2.303	2.003	0.002	0.002	NO	NO
cadmium (mg/L)	WWC-2	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.002	0.002	NO NO	NO
cadmium (mg/L)	WWC-3	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.002	0.002	NO NO	NO
cadmium (mg/L)	WWC-4	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.002	0.002	NO	NO
cadmium (mg/L)	WWC-5	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.002	0.002	NO	NO
chromium (mg/L)	Background	33	0.00627	0.012	0.002088	0.00217	0.002	0.00481	0.000602	0.067	27.27	0.067	0.1	0.1	1		-	
chromium (mg/L)	WWC-1	11	0.00337	0.00355	0.00107	0.002	0.002	0.00348	0.002	0.0139	72.73				0.002	0.00369	NO	NO
chromium (mg/L)	WWC-2	11	0.004285	0.006663	0.002009	0.002	0.002	0.00335	0.002	0.0243	72.73				0.002	0.00348	NO	NO
chromium (mg/L)	WWC-3	11	0.002442	0.001151	0.0003471	0.002	0.002	0.002	0.002	0.00577	81.82				0.002	0.00309	NO	NO
chromium (mg/L)	WWC-4	11	0.002615	0.002041	0.0006155	0.002	0.002	0.002	0.002	0.00877	90.91				0.002	0.002	NO	NO
chromium (mg/L)	WWC-5	11	0.002665	0.002078	0.0006264	0.002	0.002	0.00202	0.002	0.00892	72.73				0.002	0.00238	NO	NO
cobalt (mg/L)	Background	33	0.004097	0.000557	0.00009697	0.004	0.004	0.004	0.004	0.0072	96.97	0.0072	0.006	0.0072				
cobalt (mg/L)	WWC-1	11	0.004522	0.001352	0.0004077	0.004	0.004	0.004	0.004	0.00842	81.82				0.004	0.00532	NO	NO
cobalt (mg/L)	WWC-2	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	WWC-3	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	WWC-4	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	WWC-5	11	0.004136	0.0004523	0.0001364	0.004	0.004	0.004	0.004	0.0055	90.91				0.004	0.004	NO	NO
fluoride (mg/L)	Background	33	0.4106	0.2331	0.04058	0.458	0.276	0.548	0	1.01	15.15	0.9086	4	4				
fluoride (mg/L)	WWC-1	11	0.1627	0.1651	0.04978	0.133	0	0.256	0	0.507	36.36				0.0767	0.2488	NO	NO
fluoride (mg/L)	WWC-2	11	0.4225	0.1728	0.0521	0.42	0.358	0.452	0.158	0.833	0				0.328	0.5169	NO	NO
fluoride (mg/L)	WWC-3	11	0.9894	0.09192	0.02772	1.01	0.897	1.06	0.845	1.13	0				0.9391	1.04	NO	NO
fluoride (mg/L)	WWC-4	11	0.4473	0.08237	0.02484	0.435	0.387	0.509	0.319	0.576	0				0.4023	0.4923	NO	NO
fluoride (mg/L)	WWC-5	11	0.3261	0.1374	0.04143	0.331	0.292	0.401	0	0.544	9.091				0.251	0.4012	NO	NO
lead (mg/L)	Background	33	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.015	0.015				
lead (mg/L)	WWC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	WWC-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	WWC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	WWC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	WWC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	<u> </u>			0.002	0.002	NO	NO
lithium (mg/L)	Background	33	0.5821	0.3149	0.05482	0.479	0.4385	0.784	0.235	1.35	0	1.35	0.04	1.35				
lithium (mg/L)	WWC-1	11	1.325	0.7251	0.2186	0.964	0.819	2.18	0.755	2.69	0				0.755	2.41	NO NO	YES
lithium (mg/L)	WWC-2	11	0.1539	0.05544	0.01672	0.124	0.112	0.225	0.104	0.243	0				0.104	0.241	NO NO	NO NO
lithium (mg/L)	WWC-3	11	0.1649	0.04891	0.01475	0.139	0.127	0.23	0.123	0.243	0				0.123	0.241	NO NO	NO NO
lithium (mg/L)	WWC-4 WWC-5	11 11	0.5123	0.2318	0.0033	0.382	0.351	0.75	0.309	0.909	0				0.309	0.879	NO NO	NO VEC
lithium (mg/L)			1.106	1.165	0.3513	0.555 0.00015	0.497 0.00015	1.4	0.472	4.41	100	0.00015	0.003	0.002	0.472	1.41	INU	YES
mercury (mg/L)	Background WWC-1	33 11	0.00015	0.00006787	0.00002046	0.00015	0.00015 0.000168	0.00015 0.00031	0.00015 0.00015	0.00015 0.000328	18.18	0.00015	0.002	0.002	0.0001872	0.0002579	NO	NO
mercury (mg/L)	WWC-1	11	0.0002225	0.00006787	0.00002046	0.000198	0.000168	0.00031	0.00015	0.000328	18.18	_			0.0001872	0.0002579	NO NO	NO NO
mercury (mg/L) mercury (mg/L)	WWC-2	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
	WWC-4	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
mercury (mg/L) mercury (mg/L)	WWC-4	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO
molybdenum (mg/L)	Background	33	0.00013	0.00735	0.001279	0.00619	0.00286	0.00015	0.0013	0.0342	0	0.02676	0.1	0.1	0.00013	0.00013	INU	NU
molybdenum (mg/L)	WWC-1	11	0.008233	0.00733	0.001279	0.00896	0.00286	0.009303	0.00182	0.0342	0	0.02070	0.1	J.1	0.007532	0.01021	NO	NO
molybdenum (mg/L)	WWC-1	11	0.008871	0.001372	0.000/387	0.00372	0.00341	0.00402	0.00394	0.00809	0				0.007332	0.01021	NO NO	NO
	WWC-3	11	0.004033	0.001372	0.003697	0.00572	0.00341	0.00402	0.00304	0.00809	0				0.00304	0.00403	NO NO	NO NO
Imolybdenum (mg/L)		11	0.002949	0.002736	0.003037	0.00215	0.001	0.00467	0.001	0.0082	45.45				0.001	0.00333	NO NO	NO NO
molybdenum (mg/L) molybdenum (mg/L)	WWC-4			0.002730	0.0003243	0.00523	0.00324	0.0119	0.00301	0.0062	0				0.004262	0.00783	NO NO	NO NO
molybdenum (mg/L)	WWC-4 WWC-5	11	0.008649						0.0000	3.3	0	3.4	5					
molybdenum (mg/L) molybdenum (mg/L)	WWC-5	11 30	0.008649 1.633	0.00.000	0.1453	1.54	1.045	2.19						5				
molybdenum (mg/L)			0.0000.0	0.7959 0.551	0.1453 0.1743	1.54 1.41	1.045 1.15	2.19	0.27	2.51	0	3.4	5	5	1.241	1.879	NO	NO
molybdenum (mg/L) molybdenum (mg/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L)	WWC-5 Background WWC-1	30 10	1.633 1.56	0.7959 0.551	0.1743	1.41	1.15	2.18	0.96	2.51	0	3.4	3	5				
molybdenum (mg/L) molybdenum (mg/L) radium226and228combined (pCi/L)	WWC-5 Background	30 10 10	1.633	0.7959					0.96	2.51 1.89	0 10	3.4	5	5	1.241 0.5526 0.02739	1.879 1.167 0.9845	NO NO NO	NO NO NO
molybdenum (mg/L) molybdenum (mg/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L)	WWC-5 Background WWC-1 WWC-2	30 10 10 10	1.633 1.56 0.86	0.7959 0.551 0.5302 1.124	0.1743 0.1677 0.3553	1.41 0.715 0.445	1.15 0.515 0.015	2.18 1.23 1.475	0.96 0 -0.14	2.51 1.89 3.43	0 10 10	3.4	3	5	0.5526	1.167 0.9845	NO	NO NO
molybdenum (mg/L) molybdenum (mg/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L) radium226and228combined (pCi/L)	WWC-5 Background WWC-1 WWC-2 WWC-3	30 10 10	1.633 1.56 0.86 0.801	0.7959 0.551 0.5302 1.124 0.5889	0.1743 0.1677 0.3553 0.1862	1.41 0.715	1.15 0.515	2.18 1.23 1.475 1.2	0.96 0 -0.14 -0.02	2.51 1.89 3.43 1.97	0 10	3.4	5	5	0.5526 0.02739	1.167	NO NO	NO NO NO
mohybdenum (mg/L) radium 226and228combined (pCl/L)	WWC-5 Background WWC-1 WWC-2 WWC-3 WWC-4 WWC-5	30 10 10 10 10 10	1.633 1.56 0.86 0.801 0.846 1.511	0.7959 0.551 0.5302 1.124 0.5889 0.4353	0.1743 0.1677 0.3553 0.1862 0.1377	1.41 0.715 0.445 0.815 1.555	1.15 0.515 0.015 0.375 1.12	2.18 1.23 1.475 1.2 1.77	0.96 0 -0.14 -0.02 0.92	2.51 1.89 3.43 1.97 2.42	0 10 10 10 10			0.05	0.5526 0.02739 0.5046	1.167 0.9845 1.187	NO NO NO	NO NO
molybdenum (mg/L) molybdenum (mg/L) radium 226and228combined (pCi/L) selenium (mg/L)	WWC-5 Background WWC-1 WWC-2 WWC-3 WWC-4 WWC-5 Background	30 10 10 10 10 10 10 33	1.633 1.56 0.86 0.801 0.846 1.511 0.005938	0.7959 0.551 0.5302 1.124 0.5889 0.4353 0.003461	0.1743 0.1677 0.3553 0.1862 0.1377 0.0006026	1.41 0.715 0.445 0.815 1.555 0.00617	1.15 0.515 0.015 0.375 1.12 0.002	2.18 1.23 1.475 1.2 1.77 0.007975	0.96 0 -0.14 -0.02 0.92 0.002	2.51 1.89 3.43 1.97 2.42 0.0122	0 10 10 10 0 33.33	0.0122	0.05	0.05	0.5526 0.02739 0.5046 1.259	1.167 0.9845 1.187 1.763	NO NO NO NO	NO NO NO NO
mohybdenum (mg/L) mohyddenum (mg/L) radium 226and228combined (pC/L) selenium (mg/L)	WWC-5 Background WWC-1 WWC-2 WWC-3 WWC-4 WWC-5	30 10 10 10 10 10	1.633 1.56 0.86 0.801 0.846 1.511	0.7959 0.551 0.5302 1.124 0.5889 0.4353	0.1743 0.1677 0.3553 0.1862 0.1377	1.41 0.715 0.445 0.815 1.555	1.15 0.515 0.015 0.375 1.12	2.18 1.23 1.475 1.2 1.77	0.96 0 -0.14 -0.02 0.92	2.51 1.89 3.43 1.97 2.42	0 10 10 10 10			0.05	0.5526 0.02739 0.5046	1.167 0.9845 1.187	NO NO NO	NO NO NO
mohybdenum (mg/L) mohybdenum (mg/L) radium226and228combined (pCl/L) selenium (mg/L) selenium (mg/L)	WWC-5 Background WWC-1 WWC-2 WWC-3 WWC-4 WWC-5 Background WWC-1	30 10 10 10 10 10 10 33	1.633 1.56 0.86 0.801 0.846 1.511 0.005938 0.01358	0.7959 0.551 0.5302 1.124 0.5889 0.4353 0.003461 0.002457	0.1743 0.1677 0.3553 0.1862 0.1377 0.0006026 0.0007407	1.41 0.715 0.445 0.815 1.555 0.00617 0.0145	1.15 0.515 0.015 0.375 1.12 0.002 0.0139	2.18 1.23 1.475 1.2 1.77 0.007975 0.015 0.002	0.96 0 -0.14 -0.02 0.92 0.002 0.00824	2.51 1.89 3.43 1.97 2.42 0.0122 0.0153	0 10 10 10 0 33.33			0.05	0.5526 0.02739 0.5046 1.259	1.167 0.9845 1.187 1.763	NO NO NO NO	NO NO NO NO NO
mohybdenum (mg/L) mohyddenum (mg/L) radium 226and228combined (pC/L) selenium (mg/L)	WWC-5 Background WWC-1 WWC-2 WWC-3 WWC-4 WWC-5 Background WWC-1 WWC-1	30 10 10 10 10 10 10 10 11 11	1.633 1.56 0.86 0.801 0.846 1.511 0.005938 0.01358 0.002	0.7959 0.551 0.5302 1.124 0.5889 0.4353 0.003461 0.002457	0.1743 0.1677 0.3553 0.1862 0.1377 0.0006026 0.0007407 0	1.41 0.715 0.445 0.815 1.555 0.00617 0.0145 0.002	1.15 0.515 0.015 0.375 1.12 0.002 0.0139 0.002	2.18 1.23 1.475 1.2 1.77 0.007975 0.015	0.96 0 -0.14 -0.02 0.92 0.002 0.00824 0.002	2.51 1.89 3.43 1.97 2.42 0.0122 0.0153 0.002	0 10 10 10 0 33.33 0			0.05	0.5526 0.02739 0.5046 1.259 0.00824 0.002	1.167 0.9845 1.187 1.763 0.0152 0.002	NO NO NO NO NO	NO NO NO NO NO

thallium (mg/L)	Background	33	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.02	0.02				
thallium (mg/L)	WWC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	WWC-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	WWC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	WWC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	WWC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO

Marging Marg	Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile.	Upper Quartile.	Minimum	Maximum	% Non-Detects	UTLs	MCL	GWPS	LC L	UCL	LCL Exceed GWPS	UCL Exceed GWPS
Marie Mari	antimony (mg/L)	Background	22	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100	0.001	0.006				ECE EXCECUTOR S	
Common C						0										0.001	0.001	NO	NO
Second Column Col	antimony (mg/L)	CLW-2	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
Property				0.000		•	0.000									0.000	0.000		
Control Cont																			
Part					-														
STATE 1967 1967 1968 1969																			
Secondary Column																			
Control Cont						-										0.001	0.001	NO	NO
			_										0.047	0.01	0.047	0.00750	0.02046	110	
March Marc		CLVV I			0.001013	0.0004002	0.0203	0.0200									0.02540		
Mart No. 14																			
Martin M																			
Secretary Control Co	arsenic (mg/L)			0.0000		0.000.00	0.000				0.0000					0.02000	0.0000		
Second Column Col																			
Second S		CLW-7	11	0.02379	0.00104	0.0003135	0.0239	0.0234	0.0244	0.0215	0.0257					0.02322	0.02436	NO	NO
Second S		CLW-8			0.00291												0.02476	NO	NO
Norman Company Compa	barium (mg/L)	Background											0.129	2	2				
Secondary Column	barium (mg/L)											0				0.053	0.0668	NO	NO
March 10 2 11 10 10 10 10 10				0.08037								0					0.08456		
Section Column		CLW-3		0.09952	0.006035			0.0948				0				0.09622	0.1028	NO	NO
Martin Column C																			
Martine Mart	barium (mg/L)	CLW-5		0.07757	0.007172	0.002163	0.0801	0.0714	0.0851	0.0671	0.0869	0				0.07365	0.08149	NO	NO
	barium (mg/L)															0.0000			
Section Sect	barium (mg/L)		11							0.0475									
Personal part Color Colo	barium (mg/L)	CLW-8	11	0.07477	0.01305	0.003936	0.0707	0.0643	0.0797	0.0609	0.107	0				0.06764	0.08191	NO	NO
Part	beryllium (mg/L)												0.002	0.004	0.004				
Evaluating Color																			
Semble	beryllium (mg/L)		-			-													
Sertime problem 1																			
Freedom (right)	beryllium (mg/L)																		
Sembler (1964) Semble	beryllium (mg/L)			0.000							0.000					0.00-	0.000		
Formal (1947) 1948 13 2022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.			_																
Selection (mg/s)						-													
Settlemen Page 1					-	-										0.002	0.002	NO	NO
Settlement (mg/s)													0.005	0.005	0.005	0.005	0.005	110	
Communicipal Card 11 0.003 0 0 0.005 0				0.000			0.000									0.000			
Settlement Company C																			
Communicipal Comm					-														
Administrict Care																			
Communicing		CETT 5			U														
Communicipal Comm	cadmium (mg/L)				0												0.000		
Settlement (Pight) Settlement 22 2002286 0.001172 0.0002897 0.002 0.00	cadmium (mg/L)																		
Communic right Clay 11 0.007946 0.008997 0.008989 0.002 0.003 0.0157 0.0017 0.0171 0.0017 0.0017 0.0017 0.0000000 0.00000000 0.00000000 0.00000000		Background	22	0.002286	0.001172	0.0002499	0.002	0.002	0.002	0.000529	0.00613	81.82	0.00613	0.1	0.1				
Communicipal Claw 2													0.00000	0.0		0.00102	0.0187	NO	NO
Principle Clay 1		CLW-2				0.001102		0.002	0.00411		0.014	72.73						NO	NO
Procedure Impair Charles 1	chromium (mg/L)	CLW-3	11	0.001997	0.0006608	0.0001992	0.002	0.002	0.002	0.000505	0.00346	81.82				0.000505	0.002	NO	NO
Chromating (mg/L) Clay	chromium (mg/L)	CLW-4	11	0.00652	0.01496	0.004511	0.002	0.002	0.002	0.000762	0.0516	72.73				0.000762	0.00336	NO	NO
chromating(a)(4)	chromium (mg/L)	CLW-5	11	0.002622	0.002475	0.0007463	0.002	0.002	0.002	0.000712	0.00999	72.73				0.000712	0.00214	NO	NO
chromium [m/h]	chromium (mg/L)	CLVV O						0.002											
cobat (mg/L)																			
cobait (mg/L)																0.002	0.00463	NO	NO
cobait [mg/l]	cobalt (mg/L)						0.00						0.004	0.006	0.006				
Coshi (mg/L) OW 3			_																
cobat (mg/l)																			
Cobat (mg/L)	copart (mg/L)																		
Cobalt (mg/L)																			
Cobalt (mg/L)			_																
Cobat (mg/L)																			
Fluoride (mg/L) Background 22 0.9517 0.1236 0.02635 0.976 0.8675 1.02 0.611 1.17 0 1.242 4 4 4				0.00												0.00			
Huoride (mg/L)													1.242	4	4	0.004	0.004	0	
fluoride (mg/L)													2.242			0.982	1.109	NO	NO
fluoride (mg/L)					0.000											0.000			
fluoride (mg/L)																			
fluoride (mg/L)						0.00.00			-100	0.0.0									
Huoride (mg/L) CLW-6 11 1.592 0.1303 0.03928 1.61 1.46 1.73 1.38 1.73 0 0 0 0 1.512 1.63 NO NO NO More defining (mg/L) CLW-7 11 1.098 0.1176 0.03632 1.02 0.945 1.11 0.993 1.18 0.782 1.13 0 0 0 0.002 0.947 1.063 NO NO NO NO NO NO NO N			_																
Hordie (mg/L)		CLW-6	11	1.592	0.1303	0.03928	1.61	1.46	1.73	1.38	1.73	0				1.521	1.663	NO	NO
Hordic (mg/L) CLW-8 11 0.9985 0.1176 0.03545 1.03 0.933 1.08 0.782 1.13 0.0	fluoride (mg/L)	CLW-7		1.009	0.1205	0.03632	1.02	0.945	1.11	0.792	1.16					0.9427		NO	NO
lead (mg/L)		CLW-8	11									0							
lead (mg/L)	lead (mg/L)	Background	22	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.015	0.015				
lead (mg/L) CLW-2 11 0.002 0 0 0.002 0		CLW-1			0	0	0.002	0.002	0.002	0.002	0.002	100					0.002		
lead (mg/L)	lead (mg/L)																		
lead (mg/L)	lead (mg/L)																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					-	-													
lead (mg/L) CLW-7 11 0.002 0 0 0.002 0.002 0.002 0.002 0.002 100 0 0.002 0.002 NO NO																			
				0.000	-	-					0.000					0.00-	0.000		
lead (mg/L)																			
	lead (mg/L)	CLW-8	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO

lithium (mg/L)	Background	22	0.2651	0.07813	0.01666	0.2155	0.207	0.3485	0.19	0.401	0	0.401	0.04	0.401				
lithium (mg/L)	CLW-1	11	0.2355	0.07161	0.01666	0.192	0.184	0.3485	0.19	0.401	0	0.401	0.04	0.401	0.173	0.318	NO	NO
lithium (mg/L)	CLW-1	11	0.2333	0.09059	0.02133	0.192	0.219	0.310	0.173	0.438	0				0.173	0.316	NO NO	NO NO
lithium (mg/L)	CLW-2	11	0.2722	0.08772	0.02645	0.217	0.214	0.368	0.197	0.435	0				0.197	0.375	NO NO	NO NO
lithium (mg/L)	CLW-4	11	0.2722	0.07328	0.02209	0.217	0.199	0.336	0.189	0.375	0				0.197	0.338	NO NO	NO NO
lithium (mg/L)	CLW-5	11	0.2314	0.1204	0.03631	0.21	0.188	0.346	0.025	0.411	0				0.1511	0.2828	NO NO	NO NO
lithium (mg/L)	CLW-6	11	0.217	0.09904	0.02986	0.203	0.193	0.333	0.023	0.411	9.091				0.1311	0.2924	NO NO	NO NO
lithium (mg/L)	CLW-7	11	0.2363	0.06576	0.01983	0.189	0.182	0.302	0.169	0.331	0				0.169	0.2324	NO NO	NO NO
lithium (mg/L)	CLW-7	11	0.2343	0.06641	0.02002	0.192	0.188	0.302	0.176	0.35	0				0.105	0.327	NO NO	NO NO
mercury (mg/L)	Background	22	0.00015	0.00041	0.02002	0.00015	0.00015	0.00015	0.00015	0.00015	100	0.00015	0.002	0.002	0.170	0.32	140	NO
mercury (mg/L)	CLW-1	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100	0.00013	0.002	0.002	0.00015	0.00015	NO	NO
mercury (mg/L)	CLW-2	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO
mercury (mg/L)	CLW-3	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
mercury (mg/L)	CLW-4	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
mercury (mg/L)	CLW-5	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
mercury (mg/L)	CLW-6	11	0.01677	0.05513	0.01662	0.00015	0.00015	0.00015	0.00015	0.183	90.91				0.00015	0.00015	NO NO	NO NO
mercury (mg/L)	CLW-7	11	0.01077	0.03313	0.01002	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
mercury (mg/L)	CLW-7	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO NO	NO NO
molybdenum (mg/L)	Background	22	0.00013	0.000791	0.0001686	0.00403	0.00013	0.00015	0.00359	0.00013	0	0.00733	0.1	0.1	0.00013	0.00013	140	140
molybdenum (mg/L)	CLW-1	11	0.005008	0.001067	0.0001000	0.00454	0.00407	0.00589	0.00388	0.00733	0	0.00733	0.1	0.1	0.004425	0.005591	NO	NO
molybdenum (mg/L)	CLW-2	11	0.003668	0.001007	0.0003218	0.00454	0.00437	0.00472	0.00388	0.00593	0				0.004423	0.003331	NO NO	NO NO
molybdenum (mg/L)	CLW-3	11	0.004852	0.0004331	0.0001572	0.00483	0.00472	0.00498	0.00463	0.0052	0				0.00427	0.004952	NO NO	NO NO
molybdenum (mg/L)	CLW-4	11	0.004832	0.002332	0.0007033	0.00525	0.00459	0.00762	0.00414	0.0115	0				0.004732	0.004332	NO NO	NO NO
molybdenum (mg/L)	CLW-5	11	0.006953	0.002332	0.0007033	0.00525	0.0054	0.00841	0.00519	0.00922	0				0.00615	0.007756	NO NO	NO
molybdenum (mg/L)	CLW-6	11	0.008009	0.002976	0.0008972	0.00746	0.00711	0.0105	0.001	0.0117	9.091				0.006383	0.009635	NO	NO NO
molybdenum (mg/L)	CLW-7	11	0.01692	0.04282	0.01291	0.00396	0.00331	0.00425	0.00329	0.146	0				0.00329	0.00638	NO	NO NO
molybdenum (mg/L)	CLW-8	11	0.004575	0.0007728	0.000233	0.00435	0.00391	0.00503	0.00359	0.00626	0				0.004153	0.004998	NO	NO
radium226and228combined (pCi/L)	Background	20	1.207	0.7924	0.1772	1.11	0.71	1.66	0	3.7	5	3.106	5	5	0.004133	0.004330	110	
radium226and228combined (pCi/L)	CLW-1	10	1.24	0.6247	0.1975	1.25	0.54	1.885	0.34	2.16	0	3.100			0.8779	1,602	NO	NO
radium226and228combined (pCi/L)	CLW-2	10	1.333	0.6785	0.2146	1.195	0.965	1.48	0.65	3.12	0				0.9641	1.603	NO	NO
radium226and228combined (pCi/L)	CLW-3	10	0.998	0.5829	0.1843	1.18	0.465	1.56	0	1.7	10				0.6601	1.336	NO NO	NO
radium226and228combined (pCi/L)	CLW-4	10	1.063	0.6487	0.2051	1.03	0.49	1.605	0.22	2.24	0				0.687	1.439	NO NO	NO.
radium226and228combined (pCi/L)	CLW-5	10	1.165	0.8818	0.2788	1.015	0.455	2.185	0	2.6	10				0.6538	1.676	NO	NO
radium226and228combined (pCi/L)	CLW-6	10	1.036	0.5369	0.1698	1.02	0.52	1.47	0.25	1.99	0				0.7248	1.347	NO	NO
radium226and228combined (pCi/L)	CLW-7	10	0.682	0.346	0.1094	0.625	0.465	0.93	0.14	1.4	0				0.4814	0.8826	NO	NO
radium226and228combined (pCi/L)	CLW-8	10	0.921	0.5334	0.1687	1.02	0.42	1,305	0.09	1.85	0				0.6118	1.23	NO	NO
selenium (mg/L)	Background	22	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.05	0.05				
selenium (mg/L)	CLW-1	11	0.001903	0.0003232	0.00009745	0.002	0.002	0.002	0.000928	0.002	90.91				0.000928	0.002	NO	NO
selenium (mg/L)	CLW-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	CLW-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	CLW-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	CLW-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	CLW-6	11	0.002436	0.001447	0.0004364	0.002	0.002	0.002	0.002	0.0068	90.91				0.002	0.002	NO	NO
selenium (mg/L)	CLW-7	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	CLW-8	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	Background	22	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.02	0.02				
thallium (mg/L)	CLW-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-6	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-7	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
thallium (mg/L)	CLW-8	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO

Constituent Name	Well	N	Mean	Standard Deviation	Standard Error	Median	Lower Quartile,	Upper Quartile,	Minimum	Maximum	% Non-Detects	UTL	MCL	GWPS	LCL	UCL	LCL Exceeds GWPS	UCL Exceeds GWPS
antimony (mg/L)	Background	22		0	0	0.001	0.001	0.001	0.001	0.001	100	0.001	0.006	0.006				
antimony (mg/L)	BAC-1	11	0.001212	0.0004318	0.0001302	0.001	0.001	0.00138	0.001	0.00237	72.73				0.001	0.00158	NO	NO
antimony (mg/L)	BAC-2	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	BAC-3	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	BAC-4	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	BAC-5	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	BAC-6	11	0.001	0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
antimony (mg/L)	BAC-7	11		0	0	0.001	0.001	0.001	0.001	0.001	100				0.001	0.001	NO	NO
arsenic (mg/L)	Background BAC-1	22		0.01013 0.002596	0.00216	0.02085	0.01585	0.02415 0.0164	0.001	0.0362	9.091	0.04317	0.01	0.04317	0.01335	0.04540	NO.	NO.
arsenic (mg/L) arsenic (mg/L)	BAC-1	11	0.01477	0.002596	0.0007828 0.001519	0.0146	0.0129 0.0416	0.0164	0.0103 0.0386	0.0202 0.0565	0				0.01335	0.01619	NO NO	NO YES
arsenic (mg/L)	BAC-3	11	0.04313	0.003039	0.001319	0.0239	0.0416	0.0496	0.0386	0.0588	0				0.04237	0.04788	NO NO	NO NO
arsenic (mg/L)	BAC-4	11	0.03214	0.01002	0.004831	0.0352	0.0322	0.0362	0.0138	0.0407	0				0.02233	0.03659	NO NO	NO NO
arsenic (mg/L)	BAC-5	11		0.003337	0.001006	0.0325	0.0297	0.0357	0.0275	0.0392	0				0.03099	0.03464	NO	NO
arsenic (mg/L)	BAC-6	11	0.01851	0.005069	0.001528	0.0214	0.0134	0.0229	0.0115	0.0248	0				0.01574	0.02128	NO	NO
arsenic (mg/L)	BAC-7	11		0.00717	0.002162	0.0234	0.0191	0.0241	0.0154	0.0434	0				0.02023	0.02683	NO	NO
barium (mg/L)	Background	22		0.03251	0.006932	0.1055	0.08195	0.139	0.0636	0.175	0	0.1866	2	2		0.0000		
barium (mg/L)	BAC-1	11		0.2106	0.06349	0.0643	0.049	0.279	0.0391	0.702	0				0.0391	0.39	NO	NO
barium (mg/L)	BAC-2	11		0.008703	0.002624	0.0228	0.021	0.0248	0.0202	0.0472	0				0.0202	0.0385	NO	NO
barium (mg/L)	BAC-3	11	0.04248	0.0155	0.004672	0.0376	0.0317	0.048	0.0306	0.0827	0				0.03428	0.04787	NO	NO
barium (mg/L)	BAC-4	11		0.01782	0.005373	0.0705	0.0666	0.0772	0.0171	0.0821	0				0.06453	0.07578	NO	NO
barium (mg/L)	BAC-5	11	0.08295	0.008322	0.002509	0.0877	0.0736	0.0893	0.0706	0.0928	0				0.07841	0.0875	NO	NO
barium (mg/L)	BAC-6	11		0.02748	0.008286	0.0287	0.0245	0.0781	0.0227	0.0859	0				0.0227	0.0833	NO	NO
barium (mg/L)	BAC-7	11		0.0109	0.003288	0.026	0.0214	0.0315	0.0195	0.0577	0				0.0231	0.03327	NO	NO
beryllium (mg/L)	Background	22		0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.004	0.004				
beryllium (mg/L)	BAC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
beryllium (mg/L)	BAC-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
beryllium (mg/L)	BAC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
beryllium (mg/L)	BAC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
beryllium (mg/L)	BAC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
beryllium (mg/L) beryllium (mg/L)	BAC-6 BAC-7	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
, , , , ,		11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.005	0.005	0.005	0.002	0.002	NO	NO
cadmium (mg/L) cadmium (mg/L)	Background BAC-1	22 11	0.005	0	0	0.005	0.005 0.005	0.005 0.005	0.005 0.005	0.005	100 100	0.005	0.005	0.005	0.005	0.005	NO	NO
cadmium (mg/L)	BAC-2	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.005	0.005	NO NO	NO NO
cadmium (mg/L)	BAC-3	11		0	0	0.005	0.005	0.005	0.005	0.005	100				0.005	0.005	NO NO	NO NO
cadmium (mg/L)	BAC-4	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.005	0.005	NO NO	NO NO
cadmium (mg/L)	BAC-5	11		0	0	0.005	0.005	0.005	0.005	0.005	100				0.005	0.005	NO	NO
cadmium (mg/L)	BAC-6	11	0.004607	0.001303	0.000393	0.005	0.005	0.005	0.000677	0.005	90.91				0.000677	0.005	NO	NO NO
cadmium (mg/L)	BAC-7	11	0.005	0	0	0.005	0.005	0.005	0.005	0.005	100				0.005	0.005	NO	NO
chromium (mg/L)	Background	22	0.002836	0.002757	0.0005879	0.002	0.002	0.00208	0.000506	0.0125	68.18	0.0125	0.1	0.1				
chromium (mg/L)	BAC-1	11		0.03328	0.01003	0.00612	0.00451	0.0184	0.0028	0.114	0	0.0000			0.0028	0.0412	NO	NO
chromium (mg/L)	BAC-2	11		0.003057	0.0009216	0.00777	0.00547	0.0111	0.00483	0.0145	0				0.00652	0.009861	NO	NO
chromium (mg/L)	BAC-3	11	0.01152	0.01677	0.005055	0.00676	0.00447	0.00968	0.00362	0.0615	0				0.00362	0.0114	NO	NO
chromium (mg/L)	BAC-4	11	0.003085	0.002737	0.0008253	0.002	0.002	0.0022	0.002	0.011	63.64				0.002	0.00461	NO	NO
chromium (mg/L)	BAC-5	11	0.003285	0.00425	0.001281	0.002	0.002	0.002	0.002	0.0161	81.82				0.002	0.00204	NO	NO
chromium (mg/L)	BAC-6	11	0.00525	0.0103	0.003106	0.002	0.002	0.00257	0.002	0.0363	63.64				0.002	0.00283	NO	NO
chromium (mg/L)	BAC-7	11		0.007316	0.002206	0.002	0.002	0.00217	0.002	0.0264	72.73				0.002	0.00398	NO	NO
cobalt (mg/L)	Background	22	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100	0.004	0.006	0.006				
cobalt (mg/L)	BAC-1	11	0.004242	0.000627	0.000189	0.004	0.004	0.004	0.004	0.00605	81.82				0.004	0.00461	NO	NO
cobalt (mg/L)	BAC-2	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	BAC-3	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	BAC-4	11	0.004	0	0	0.004	0.004	0.004	0.004	0.004	100				0.004	0.004	NO	NO
cobalt (mg/L)	BAC-5	11		0	0	0.004	0.004	0.004	0.004	0.004	100	<u> </u>			0.004	0.004	NO NO	NO NO
cobalt (mg/L)	BAC-6 BAC-7	11		0	0	0.004	0.004		0.004		100						NO	NO
cobalt (mg/L)		11		0 2272	0	0.004	0.004	0.004	0.004	0.004	100	1 75			0.004	0.004	NO	NO
fluoride (mg/L) fluoride (mg/L)	Background BAC-1	22	1.081 0.3694	0.3373	0.07191 0.07368	0.959	0.843 0.266	1.39 0.507	0.727	1.75 0.854	0 18.18	1.75	4	4	0.242	0.4967	NO	NO
, , ,	BAC-1	11	0.3694	0.2444	0.07368	0.401	0.266		0						0.242	1.073	NO NO	
fluoride (mg/L) fluoride (mg/L)	BAC-2 BAC-3	11	0.8338	0.4598	0.1386	0.986	0.684	1.11 1.62	0	1.33 2.51	18.18 27.27				0.5942	1.403	NO NO	NO NO
fluoride (mg/L)	BAC-4	11	1.236	0.8142	0.2455	1.26	1.13	1.35	1.01	1.38	0				1.166	1.403	NO NO	NO NO
fluoride (mg/L)	BAC-5	11	1.144	0.1387	0.03837	1.11	1.04	1.26	0.916	1.34	0				1.068	1.219	NO NO	NO NO
fluoride (mg/L)	BAC-6	11		0.1652	0.04181	0.847	0.754	1.01	0.582	1.15	0				0.7761	0.9566	NO	NO NO
fluoride (mg/L)	BAC-7	11		0.3078	0.09282	1.09	0.936	1.31	0.388	1.51	0				0.9252	1.262	NO	NO
lead (mg/L)	Background	22		0.3078	0.03282	0.002	0.002	0.002	0.002	0.002	100	0.002	0.015	0.015	3.3232	1.202	140	140
lead (mg/L)	BAC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.010	0.013	0.002	0.002	NO	NO
lead (mg/L)	BAC-2	11	0.002019	0.00006332	0.00001909	0.002	0.002	0.002	0.002	0.00221	90.91				0.002	0.002	NO	NO
lead (mg/L)	BAC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	BAC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO

lead (mg/L)	BAC-5	11	0.002	0	n	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lead (mg/L)	BAC-6	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO
lead (mg/L)	BAC-7	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
lithium (mg/L)	Background	22	0.322	0.1536	0.03275	0.288	0.2125	0.3525	0.191	0.773	0	0.7415	0.04	0.7415	0.002	0.002	1,0	
lithium (mg/L)	BAC-1	11	0.7318	0.4543	0.137	0.581	0.402	1.3	0.305	1.52	0	0.7413	0.04	0.7413	0.4639	0.8974	NO	YES
lithium (mg/L)	BAC-2	11	0.7655	0.408	0.123	0.524	0.44	1.22	0.414	1.38	0				0.414	1.32	NO NO	YES
lithium (mg/L)	BAC-3	11	1,369	0.6401	0.193	1.06	0.944	2.13	0.812	2.53	0				0.812	2.37	YES	YES
lithium (mg/L)	BAC-4	11	0.3416	0.1315	0.03966	0.262	0.243	0.508	0.228	0.532	0				0.228	0.509	NO	NO
lithium (mg/L)	BAC-5	11	0.3574	0.1144	0.03449	0.294	0.277	0.479	0.219	0.538	0				0.2914	0.4126	NO	NO
lithium (mg/L)	BAC-6	11	0.3775	0.1536	0.04631	0.28	0.265	0.542	0.25	0.599	0				0.25	0.597	NO	NO
lithium (mg/L)	BAC-7	11	0.4395	0.193	0.0582	0.327	0.285	0.674	0.269	0.699	0				0.269	0.681	NO	NO
mercury (mg/L)	Background	22	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100	0.00015	0.002	0.002	0.200	0.000		
mercury (mg/L)	BAC-1	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100	0.00013	0.002	0.002	0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-2	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-3	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-4	11		0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-5	11		0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-6	11		0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
mercury (mg/L)	BAC-7	11	0.00015	0	0	0.00015	0.00015	0.00015	0.00015	0.00015	100				0.00015	0.00015	NO	NO
molybdenum (mg/L)	Background	22	0.01015	0.01031	0.002198	0.00717	0.00297	0.01355	0.00215	0.0408	0	0.04038	0.1	0.1				
molybdenum (mg/L)	BAC-1	11	0.05256	0.03347	0.01009	0.0467	0.0288	0.0607	0.0232	0.143	0				0.03483	0.06541	NO	NO
molybdenum (mg/L)	BAC-2	11	0.1595	0.01643	0.004953	0.156	0.143	0.167	0.14	0.194	0				0.1506	0.1685	YES	YES
molybdenum (mg/L)	BAC-3	11	0.03511	0.008635	0.002604	0.0337	0.0275	0.0396	0.026	0.0525	0				0.03039	0.03983	NO	NO
molybdenum (mg/L)	BAC-4	11	0.01258	0.002503	0.0007548	0.012	0.0104	0.0143	0.00992	0.017	0				0.01122	0.01395	NO	NO
molybdenum (mg/L)	BAC-5	11	0.008795	0.00228	0.0006875	0.0077	0.00728	0.00926	0.00666	0.0134	0				0.00666	0.0128	NO	NO
molybdenum (mg/L)	BAC-6	11	0.07072	0.02813	0.008481	0.0858	0.0359	0.0921	0.0213	0.0968	0				0.07083	0.08867	NO	NO
molybdenum (mg/L)	BAC-7	11	0.07822	0.00959	0.002892	0.075	0.0702	0.0888	0.0681	0.0944	0				0.0681	0.0942	NO	NO
radium226and228combined (pCi/L)	Background	20	1.231	0.6188	0.1384	1.245	0.84	1.675	0.28	2.42	0	2.713	5	5				
radium226and228combined (pCi/L)	BAC-1	10	1.643	0.7154	0.2262	1.555	0.99	2.435	0.61	2.6	0				1.228	2.058	NO	NO
radium226and228combined (pCi/L)	BAC-2	10	1.067	0.8147	0.2576	0.905	0.405	1.595	0.22	2.9	0				0.5947	1.539	NO	NO
radium226and228combined (pCi/L)	BAC-3	10	1.311	0.5293	0.1674	1.335	0.88	1.78	0.38	2.09	0				1.004	1.618	NO	NO
radium226and228combined (pCi/L)	BAC-4	10	0.85	0.7078	0.2238	0.84	0.31	1	0	2.6	10				0.3394	1.157	NO	NO
radium226and228combined (pCi/L)	BAC-5	10	1.052	0.8877	0.2807	0.665	0.335	1.78	0.19	2.96	0				0.5374	1.567	NO	NO
radium226and228combined (pCi/L)	BAC-6	10	1.22	1.109	0.3508	1.01	0.675	1.5	-0.09	4.07	0				-0.09	1.79	NO	NO
radium226and228combined (pCi/L)	BAC-7	10	1.231	1.035	0.3274	0.95	0.435	1.975	0	3.38	10				0.6308	1.831	NO	NO
selenium (mg/L)	Background	22	_	0.0007933	0.0001691	0.002	0.002	0.002105	0.000691	0.00426	68.18	0.00426	0.05	0.05				
selenium (mg/L)	BAC-1	11	0.01246	0.004803	0.001448	0.0131	0.00818	0.0168	0.00643	0.0204	0				0.009831	0.01508	NO	NO
selenium (mg/L)	BAC-2	11	0.01469	0.001404	0.0004233	0.0144	0.0136	0.0157	0.0128	0.0173	0				0.01392	0.01546	NO	NO
selenium (mg/L)	BAC-3	11	0.02131	0.002908	0.0008769	0.0211	0.019	0.0228	0.0184	0.0287	0				0.01973	0.02278	NO	NO
selenium (mg/L)	BAC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	BAC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO
selenium (mg/L)	BAC-6	11		0.0009703	0.0002925	0.002	0.002	0.00369	0.002	0.0045	54.55				0.002	0.00414	NO	NO
selenium (mg/L)	BAC-7	11	0.004189	0.001492	0.0004499	0.00446	0.00276	0.00541	0.00257	0.007	0				0.003374	0.005005	NO	NO
thallium (mg/L)	Background	22		0	0	0.002	0.002	0.002	0.002	0.002	100	0.002	0.02	0.02				
thallium (mg/L)	BAC-1	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	BAC-2	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	BAC-3	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	BAC-4	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	BAC-5	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	BAC-6 BAC-7	11	0.002	0	0	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO NO	NO NO
thallium (mg/L)	DAC-/	11	0.002	U	U	0.002	0.002	0.002	0.002	0.002	100				0.002	0.002	NO	NO